

GlycoStil ANR project: Accessing stilbene oligomers through Green Chemistry

Amandine Flourat

Research Scientist in green chemistry

December 3, 2024

Aim of GlycoStil project

- » Producing new stilbenes derivatives for the cosmetic industry
- » Private-Public partnership

by AgroParisTec

Aim of GlycoStil project

- » Producing new stilbenes derivatives for the cosmetic industry
- » Private-Public partnership

by AgroParisTec

Oxidative coupling: generation of radicals

- » Radical can be generated by oxidases (*i.e.* laccase, peroxidase) or metal (*e.g.* silver acetate)
- » 6 radicals from the *para*-phenol

Oxidative coupling: generation of radicals

- » Radical can be generated by oxidases (*i.e.* laccase, peroxidase) or metal (*e.g.* silver acetate)
- » 6 radicals from the *para*-phenol

Oxidative coupling: generation of radicals

- » Radical can be generated by oxidases (*i.e.* laccase, peroxidase) or metal (*e.g.* silver acetate)
- » 6 radicals from the *para*-phenol

- » A literature review reported from natural sources: 6 monomers, 39 dimers, 23 trimers and 13 tetramers Shien *et al. Molecules* **2017**, *22*, 2050
- » How influence the reaction to increase selectivity and yield?

Focus on Labruscol

Sursin et al. ACS Sustainable Chemistry & Engineering 2023, 11, 31, 11559-11569, 10.1021/acssuschemeng.3c01997

- » Enzymatic coupling with commercial laccase from *Trametes versicolor*
 - Only one example in the literature reported presence of labruscol from laccase-mediated oxidation of resveratrol (less than 5% yield)

Ponzoni et al. Adv Synth Catal 2007, 349 (8–9), 1497–1506. 10.1002/adsc.200700043

• After OVAT screening, a DOE was performed

OH			Units	T - 1			Precision
Parameters	Name	Abbr.		Levels			
				-1	0	1	
\mathbf{X}_{1}	%Acetone	%Ace	⁰∕₀	20	45	70	1.25
\mathbf{X}_2	Enzyme/substrate ratio	E/S	U/mmol	6	33	60	0.45
\mathbf{X}_{3}	Concentration	Conc	mmol/L	20	50	80	1.5
\mathbf{X}_4	Enzyme addition rate	rate	mL/h	7	28.5	50	1.08
\mathbf{X}_{5}	Temperature	Temp	°C	25	35	45	0.5

Labruscol

но

Amount of radical at each time influences the radical coupling

Focus on Labruscol

Sursin et al. ACS Sustainable Chemistry & Engineering 2023, 11, 31, 11559-11569, 10.1021/acssuschemeng.3c01997

» Enzymatic coupling with commercial laccase from *Trametes versicolor*

Focus on Labruscol

Sursin et al. ACS Sustainable Chemistry & Engineering 2023, 11, 31, 11559-11569, 10.1021/acssuschemeng.3c01997

- » Scale from 114 mg to 2 g of resveratrol
 - Increased reaction time from 1.5 to 6 hours to achieve 95% conversion
- » Purification by two methodologies: flash chromatography vs centrifugal partition chromatography

Labrusco

δ-viniferin

2 separations required

- Normal phase to recover δ-viniferin (57%)
- Reverse phase to recover labruscol (21%) and Leachianol (10%)

Leachiano

1 run Leachianol (6%) Pallidol (1.4%) Labruscol (26%) δ-viniferin (63%) +unknown compounds

Solvent	n-heptane	Ethyl acetate	Methanol	Water	
systems	(% v/v)	(% v/v)	(% v/v)	(v/v)	
System L	47.73	48.10	3.04	1.12	
System J	33.09	62.42	2.61	1.87	
System G	22.65	72.84	2.1	2.2	

Identification of new compounds

Sursin et al. ACS Sustainable Chemistry & Engineering 2023, 11, 31, 11559-11569, 10.1021/acssuschemeng.3c01997

» CPC fractions containing unknown product were repurified by HPLC-prep to afford pure sample for NMR analysis

Hypothesized mecanism for iso-e-viniferin

Sursin et al. ACS Sustainable Chemistry & Engineering 2023, 11, 31, 11559-11569, 10.1021/acssuschemeng.3c01997

» Dismutation as key event

- » Production of glucosylated stilbenes in alcoholic solvent
 - Previous work to synthesis δ-viniferin diglucoside (63%) + Presence of ethyl oxystilbenin diglucoside (up to 26%)
 Vinet *et al. ACS Sustainable Chemistry and Engineering* 2022, *10*, 28, 9166-9175, 10.1021/acssuschemeng.2c02010
 - Extension to other alcohol
- » Aims: Expand the library of compounds and optimized production of δ -viniferin diglucoside

- » Impact of substitution degree
 - Decreasing with increase of the alcohol substitution

EtOH iPrOH tBuOH nBuOH HexOH HexOH_Ac HexOH_tBuOH nOctOH OctOH-Ac OctOH-tBuOH nDecOH DecOH-Ac DecOH-tBuOH DoDecOH-Ac DecOH-Ac DecOH-Ac DecOH-tBuOH

- » Impact of the chain lenght of the alcohol
 - Maximal production at C4 and drastic dreacrease from C8 probably due to solubility issues

 $\blacksquare EtOH \blacksquare iPrOH \blacksquare tBuOH \blacksquare nBuOH \blacksquare HexOH \blacksquare HexOH _ Ac \blacksquare HexOH _ BuOH \blacksquare nOctOH \blacksquare OctOH-Ac \blacksquare OctOH-tBuOH \blacksquare nDecOH \blacksquare DecOH-Ac \blacksquare DecOH-tBuOH \blacksquare DoDecOH-Ac \blacksquare Dodec-tBuOH \blacksquare DecOH-tBuOH ■ DecOH ■ DecOH-tBuOH ■ DecOH-tBuOH ■ DecOH-tBuOH ■ DecOH-tBuOH ■ DecOH-tBuO$

- » Impact of using a co-solvent
 - Acetone decreased drastically the selectivity toward oxystilbenin forms
 - *Tert*-butanol allowed a better production of oxystilbenin from C10

 $\blacksquare EtOH \blacksquare iPrOH \blacksquare tBuOH \blacksquare nBuOH \blacksquare nBuOH \blacksquare hexOH | HexOH_Ac & HexOH_tBuOH \blacksquare nOctOH | OctOH-Ac & OctOH-tBuOH \blacksquare nDecOH || DecOH-Ac & DecOH-tBuOH || DoDecOH-Ac & Dodec-tBuOH || DoDecOH-Ac & Dodec-tBuOH$

Increasing amount of δ -viniferin diglucoside

» Inhibition of oxystilbenin increased yield of δ -viniferin diglucoside

Conclusion & Perpespectives

Take home message

- » 11 new compounds
- » Improved synthesis of Labruscol (37%) and δ -viniferin diglucoside (89%)
- » Alternative and efficient purification by centrifugal partition chromatography (CPC)

Perspectives

- » Test biological activities of these new compounds
- » Find alternative to silver acetate
- » Expand further more the diversity of structure

Acknoledgement

ECMR Institut de Chimie Moléculaire de Reims

Jean-Marc Nuzillard Agathe Martinez Jean-Hugues Renault Nicolas Borie Laurence Voutquenne

Emmanuel Sursin Julien Vinet Florent Allais Fanny Brunissen Fanny Brunois Abdouramane Dosso

Ecaterina Gore and all the organisation commitee

Thank you

- Amandine Flourat
- Amandine.flourat@agroparistech.fr
- in URD ABI AgroParisTech
- % urd-abi-agroparistech.com

