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Abstract 21 

This opinion paper explores the potential of integrating synthetic biology into microbial 22 

polymers to produce tailored biopolymers for food packaging applications. Synthetic biology 23 

has shown precise control over metabolic machinery, enabling the manipulation of pathways 24 

involved in microbial biopolymer production. However, there is limited literature available 25 

on utilizing the same pathways for designing tailored biopolymers suitable as efficient food 26 

contact materials. This is primarily due to the regulatory status of microbial polymers as 27 

determined by food safety authorities. One possible solution is to leverage synthetic biology 28 

tools by adopting safety assessment protocols established within the regulatory framework. 29 

By considering the advantages of synthetic biology-driven microbial polymers, this 30 

innovative approach has the potential, not only to replace conventional methods but also to 31 

provide additional value by addressing environmental concerns associated with traditional 32 

food packaging.       33 

Keywords: synthetic biology; tailored biopolymers; microbial polymers; food packaging; 34 

microbial cell factories  35 
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1. Introduction 43 

Recently, there has been a growing interest among researchers in exploring biopolymers as 44 

green and sustainable alternatives to synthetic materials for the development of active 45 

packaging (Sid et al., 2021). Moreover, in the past decade, considerable research efforts have 46 

been dedicated to utilizing microbial sources to obtain biobased materials, thanks to their 47 

biocompatibility, biodegradability, and excellent barrier properties stemming from their 48 

inherent hydrophobic nature (Salgado et al., 2021). However, their use in food packaging was 49 

limited due to their poor thermo-mechanical properties (Battegazzore et al., 2019). To address 50 

this limitation, the concept of polymer tunability was introduced, enabling the production of 51 

polymers with tailored design for specific applications. This involves modifying the chemical 52 

structure of the polymer (Hazer and Steinbüchel, 2007), incorporating additives into the 53 

polymer matrix (Battegazzore et al., 2019; Carboué et al., 2021; Khan et al., 2023), or using 54 

new technologies such as electrospinning or 3D printing to develop tailored polymers (Zhao 55 

et al., 2021; Zieliński et al., 2023). Still, these methodologies face challenges such as 56 

precision control and scalability (NRC, 2015). This is where synthetic biology comes into 57 

play.  58 

Synthetic biology is a multidisciplinary field that offers a powerful toolset to design new 59 

biological systems with enhanced functionalities. Notably, synthetic biology tools such as 60 

CRISPR-cas9 (a gene-editing tool), promoter engineering, and metabolic modeling, have 61 

been effectively used to improve the production of microbial polymers for biomedical 62 

applications (Katz et al., 2018). These approaches can also be employed to develop tailored 63 

biopolymers with enhanced functionalities to cater to the needs of the food packaging 64 

industry. Several strategies have been used to produce higher amounts of polymer from 65 

microbial sources, such as modifying metabolic pathways and altering the PHA 66 

(Polyhydroxyalkanoates) synthase enzyme (Gahlawat et al., 2020). Similar strategies were 67 
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explored to improve thermo-mechanical properties by manipulating phaC gene sequence to 68 

achieve desired expression for polymerization (Tanadchangsaeng and Yu, 2012). Despite their 69 

many advantages i.e., sustainable production, tailored properties, and cost-effectiveness the 70 

regulatory status of certain microbial polymers (e.g., alginates and exopolysaccharides from 71 

gram-negative bacteria) derived from synthetic biology is a major hurdle in using these 72 

materials as active packaging (Hinchliffe et al., 2021) (Fig 1). Thus, the aim of this opinion 73 

herein is to answer the critical question: Can synthetic biology really empower microbial 74 

biopolymers as efficient food contact materials by controlling polymer tunability?   75 

76 
                77 

Figure 1. Manipulation of microbial cell factories for tailored biopolymer production and its 78 

status.  79 

2. Using synthetic biology as a tool for microbial biopolymers production 80 

Recently, synthetic biologists have embraced genetic engineering approaches such as 81 

modulating DNA fragments and employing computational models to engineer living 82 

organisms efficiently (Tang et al., 2021). This involves controlling microbial cellular 83 

behavior by using advanced synthetic biology methods, including the construction of 84 
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metabolic pathways to engineer biological circuits, rapid assembly of DNA fragments, and 85 

the utilization of CRISPR/Cas systems for gene deletion, insertion, and transcription control 86 

(McCarty and Ledesma, 2019). Nonetheless, the focus of these technologies has been limited 87 

to obtaining functional biomaterials with applications such as medicines, biofuels, 88 

inexpensive carbon sources, and nutraceuticals (Ghosh et al., 2021). Nevertheless, these 89 

techniques hold the potential for producing tunable microbial biopolymers as efficient food 90 

contact materials (An et al., 2022).  91 

Over the past decade, the combined knowledge of systems biology, synthetic biology, and 92 

biosynthesis of microbial polymers has revolutionized the design of microbial cell factories 93 

for enhanced production of functional biomaterials, including poly(3-hydroxybutyrate-co-4-94 

hydroxybutyrate) (P(3HB-co-4HB)), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-95 

co-3HV)) and poly(3-hydroxybutyrate) (P(3HB)) (Fig 2). Consequently, the prospect of 96 

producing these novel materials with adjustable thermo-mechanical and barrier properties 97 

appears achievable (Moradali and Rehm, 2020).  98 

 99 



6 
 

Figure 2. Synthesis of some novel PHAs i.e., P(3HB-co-4HB) and P(3HB-co-3HV) 100 

polymers with phaC as a key player in their production (adopted from Lv et al., 2015 and 101 

Chen et al., 2019).  102 

2.1 Regulatory pathways for controlling biosynthesis of microbial biopolymers 103 

The biosynthesis of biopolymers such as cellulose, alginate, polyphosphate, and PHAs in 104 

microbes is controlled by regulatory pathways that facilitate their production and response to 105 

environmental signals. These pathways regulate gene expression through transcription level 106 

(conversion of DNA to RNA) and post-translational level (modification occurring after 107 

protein synthesis) modifications. Microbes can precisely control the synthesis of biopolymers 108 

in response to changes in their environments. Transcription factors activate promoters that 109 

influence the expression of genes responsible for the bioproduction of functional materials 110 

such as P(3HB) and P(3HB-co-4HB) (Babele et al., 2019). By controlling the expression of 111 

these genes or providing a specific external stimulus (temperature-sensitive 112 

promoters/circuits, chemical inducers, pH levels, nutrient availability, light, and quorum 113 

sensing) we can exercise control over biomaterial production (Fig 2).  114 

While the mechanism of bacterial exopolysaccharides, a key component of virulence, is 115 

extensively studied, limited information is available on using similar pathways to obtain 116 

functional biomaterial from non-pathogenic species (Hay et al., 2014). Several proof-of-117 

concept studies have demonstrated the potential of genetic engineering approaches to 118 

enhance biopolymer production. Another example of using a combination of genetic 119 

engineering approaches to get enhanced biopolymer production was reported by Dumon et al. 120 

(2001). The authors enhanced fucosylated oligosaccharide production by redirecting cellular 121 

carbon and energy influx towards biomaterial production, rather than biomass/metabolic 122 

byproducts. This was achieved by identifying and downregulating competing pathways that 123 
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led to the formation of unwanted byproducts. Sim et al. (1997) reported a reduced molecular 124 

weight (1.3×106 Da) for the produced polyhydroxy butyrate (PHB) polymer by genetically 125 

modified E. coli in comparison to the native E. coli (4.0×106 Da) by modulating PHA 126 

synthase activity which indeed can impact the structural and mechanical properties of the 127 

polymeric materials (Tanadchangsaeng and Yu, 2012). Despite the potential of utilizing 128 

microbial biopolymers as food contact materials, exploration of these avenues remains 129 

limited in literature.  130 

2.2 Microbial self-assembly structures as packaging material  131 

Bacterial self-assembly structures (e.g., fimbriae, pili, and flagella) are used for adhesion in 132 

response to chemical and physical stimuli especially during pathogenesis, due to this unique 133 

property they hold promise for producing nanomaterials for their application in packaging. 134 

The precise arrangement of protein building blocks in self-assembling structures such as 135 

flagella, high surface area to volume ratio, and their polymorphic nature can be useful in the 136 

production of nanostructures for novel food packaging. These nanostructures can transform 137 

the polymer matrix in such a way that they restrict polymer chain mobility, thereby 138 

improving tensile properties. Additionally, they create convoluted pathways for gas/water 139 

molecule transport and improve the barrier properties of the packaging material (Abbineni 140 

and Mao, 2010; Bera et al., 2019).  Chen et al. (2014) reported a dual-functioning Escherichia 141 

coli strain capable of acting as a material synthesis platform and producing functional 142 

material i.e., amyloid. This work prompted further investigations, including the improvement 143 

of the tunability of the above system by using three-dimensional (3D) printing (Cao et al., 144 

2017). The utilization of 3D patterned curli fibrils has demonstrated the capability to 145 

assemble inorganic materials upon external stimuli, resulting in the development of structural 146 

materials with well-defined physiochemical properties.  147 
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Table 1. Comparison of methods available for tailored biopolymer design. 148 

Method 

 

Pros Cons Challenges References 

Synthetic 

biology 

- Precise control over 

material production and 

properties. 

- Utilizing renewable 

resources and reducing 

environmental impact. 

- Cost-effective once 

established. 

- Biodegradation control.  

 

- Long 

developmental 

phase for strain 

engineering and 

its optimization. 

 -Regulatory 

constraints 

Anderson et 

al., 2018 

Chemical 

modification 

- Using simple chemical 

reactions to make tailored 

biopolymers. 

- Availability of (green) 

chemical modification 

techniques. 

- Chemical 

reactions may use 

toxic, non-food 

grade materials.  

- Loss of 

biopolymer 

inherent property. 

 

- Impact on 

biocompatibility 

and 

biodegradability. 

El Itawi et 

al., 2022; 

Fadlallah et 

al., 2021; 

Wang et al., 

2015 

Using additives  - Easy processing method 

and incorporation for 

desired properties. 

- Wide range of additives 

catering to fine-tuning the 

material properties. 

- Modulating material 

properties based on 

additive concentration.  

- Limited control 

over additive 

distribution in the 

polymer matrix. 

- Migration of 

additives into 

foods. 

- Compatibility 

issues between 

polymer and 

additive.  

 

- Additive 

homogeneity 

and stability. 

Samyn and 

Taheri, 2020 

  

3D printing  

 

 

 

 

Electrospinning 

- Reduced material waste 

due to precision. 

- Manufacturing 

flexibility. 

- Difficult 

optimization of 

parameters for a 

specific polymer.  

- High cost. 

 

- Inconsistent 

mechanical 

properties. 

 

- Good for producing 

nanomaterials with high 

surface area. 

- Enhanced barrier and 

mechanical properties.  

- Complex setup 

and control over 

method is 

difficult.  

- Difficulty in 

handling 

nanofibers and 

mats. 

- Scaling up at 

industrial level. 

Romero-

Araya et al., 

2021 

 149 

3. Tailored biopolymer design for sustainable food packaging 150 
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Within the existing literature, three main methodologies have been employed to produce 151 

tailored biopolymers for food packaging applications. These methods involve: (1) modifying 152 

the polymer itself by chemical modifications such as esterification, etherification, 153 

transesterification, ring-opening polymerization, and oxidation, (2) incorporating additives 154 

such as antioxidants, antimicrobials, or plasticizers through casting or extrusion processes, 155 

and (3) using techniques such as 3D printing by creating 3-dimensional objects by depositing 156 

successive polymer layer to have more control on structure, and electrospinning which aligns 157 

polymer chains along fiber axis (Fraeye et al., 2010; Ghosal et al., 2018; Munteanu and 158 

Vasille, 2019; Shahbazi and J ger, 2020). Still, these approaches have several 159 

limitations/disadvantages when compared to synthetic precision biology (Table 1). For 160 

instance, synthetic biology approaches allow precise and targeted modifications of the 161 

microbes at the genetic level to produce polymers with tunable properties. Genetic 162 

engineering tools to precisely engineer the genetic makeup of the microorganism in such a 163 

way that not only optimizes production but also enhance physicochemical properties of the 164 

resultant materials since that is not easily achievable by tunning methods i.e., 3D printing and 165 

electrospinning. Synthetic biology can provide a high level of cost-effectiveness, 166 

customization, and adaptability to produce tailored biopolymers for scalable production. For 167 

instance, synthetic biology has been shown to affect the microstructure of bacterial 168 

cellulose/pullulan composites by decreasing the space between polymer fibers due to 169 

hydrogen bonding between polar groups of cellulose and pullulan which led to significantly 170 

higher tensile properties (tensile strength: 27 MPa) as compared to control cellulose materials 171 

(16 MPa) (Zhantlessova et al., 2022). Even though the authors did not observe the barrier 172 

properties of these materials, microstructure analysis indicates possibly higher barrier 173 

characteristics of these composite polymer materials than cellulose. Fang et al. (2015) 174 

similarly produced a cellulose copolymer by using genetic engineering and highlighted that 175 



10 
 

cellulose copolymer had a more compact structure than native cellulose which also impacted 176 

the surface hydrophobicity of the materials. The contact angle rose significantly from 25° to 177 

46° for the cellulose copolymer which indicates that cellulose nanofibers can prevent water 178 

permeation and can act as a food packaging material. Recently, Gahlawat et al. (2020) 179 

adequately highlighted the importance of using metabolic engineering strategies, i.e., 180 

CRISPR/Cas9 and ribosome-binding site optimization, for high-output and cost-effective 181 

production of PHAs. However, limited attention has been given to modifying the mechanical 182 

and barrier properties of these polymers for food contact applications. Moreover, Li et al. 183 

(2017) recently targeted phaC gene to get improved PHA production from the over-184 

expression of PHA synthase enzyme, however, no attention was given to utilizing phaC gene 185 

to get tailored polymer with desired properties. To address this, we suggest altering specific 186 

amino acid sequences (i.e., replacing glycine with alanine) to get increased polymerization 187 

efficiency and non-polarity or introducing additional motifs and domains such as self-188 

assembly peptides and elastin into PHA synthase which can improve the mechanical and 189 

thermal properties of the films (Fig 3) (Singh et al., 2015). Altering amino acid sequence can 190 

broaden the substrate acceptance range of PHA synthase enzyme which can lead to improved 191 

polymerization efficiency, similar trends can also be observed for improved catalytic activity 192 

of the enzyme due to mutation. On the other hand, replacing glycine with alanine in the PHA 193 

synthase enzyme can lead to a change in the stereochemistry of the polymer thus affecting 194 

polymer’s properties and crystallinity. Furthermore, altering the substrate specificity of PHA 195 

synthase enzyme can redirect the polymerization process towards different monomer 196 

substrates, resulting in PHA-based polymers with improved barrier characteristics for food 197 

packaging applications. Similar concepts can also be applied to other genes, such as phaZ, 198 

which encodes a depolymerization enzyme. By controlling this gene, we can control the 199 

polymer degradation rate, however, this requirement is product-specific as far as packaging is 200 
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concerned (Santos-Beneit et al., 2023). For instance, the gene encoding for phaZ enzyme can 201 

be controlled by using promoters that can respond to specific environmental factors i.e., pH. 202 

A pH-dependent promoter can upregulate phaZ gene expression when the pH of the 203 

surrounding environment or product falls below a certain range. This can allow a pH-204 

dependent polymer degradation. This phenomenon can also be used for the release of 205 

bioactives from the packaging material when the product displays a pH comparable to 206 

spoilage conditions, however, in this scenario downregulation of the gene should be 207 

considered.     208 

 209 

 210 

Figure 3. Scheme for the increased polymerization efficiency and non-polarity by altering the 211 

amino acid sequence in PHA synthase.  212 

Potential as food contact materials 213 
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As discussed in previous sections, limited literature is available on the utilization of microbial 214 

biopolymers obtained from synthetic biology as efficient food contact materials. Thus, here 215 

we briefly discuss how different additives were used in the literature to modify the structure 216 

of microbial polymers in such a way that their properties (barrier and mechanical) relevant to 217 

food applications were significantly improved. For instance, the addition of essential oils into 218 

PHB matrices could lead to reduced interactions between polymer chains; as a result, strong 219 

polymer-polymer interactions could be replaced by weaker polymer-oil interactions in the 220 

intermolecular film network which could lead to 10-30% decrease in tensile strength (TS) 221 

and up to 100-200% improvement in elongation at break (EAB) (Mittal et al., 2023; Rech et 222 

al., 2021). Contrarily, the addition of nanoparticles (NPs) into the PHA blends could lead to 223 

improved tensile properties of the films (up to a certain extent) due to uniform dispersion of 224 

large surface area NPs which enhanced interfacial adherence and crystallinity between 225 

polymer phases through hydrogen bonding (Lan and Sun, 2018; Mittal et al., 2023). On the 226 

other hand, the water vapor permeability (WVP) of the microbial biopolymers was also 227 

affected by the type of additives used. For instance, the addition of oils into the PHA matrix 228 

led to a 225% increase in the WVP of the packaging films (Castro-Mayorga et al., 2017; 229 

Mittal et al., 2023). The hydrogen bond formation between polymer hydroxyl groups and 230 

oxygen atoms of the NPs has been shown to improve the permeability properties (~40%) of 231 

the materials as compared to the neat ones (Venezia et al., 2023). These properties are 232 

essential to utilize microbial biopolymers as food contact materials, for instance, PHB, 233 

PHBV, P(3HB-CO-4HB), microalgal exopolysaccharides, riclin, and bacterial cellulose have 234 

been utilized to pack a variety of food products like white bread, cheese, shrimp, and fruits 235 

and vegetables, however, their application of these materials have only been limited to keep 236 

the microbial burden below (< 6 Log CFU/g) and to serve as a colorimetric indicator of 237 

spoilage as shown in Table 2. More studies needs to be conducted by utilizing synthetic 238 
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biology to develop food contact materials since most of the existing studies needed 239 

polymer/additive technology to fine tune polymers according to product requirements. 240 

Table 2. Application of microbial biopolymers on food products   241 

Packaging 

composition 

Mechanical 

properties  

Barrier 

properties 

Food 

application 

References 

PHB, nanosilica, 

and clove oil 

TS: 6.5 to 17.3 

Mpa 

WVP: 0.30-0.69 

g.mm/m
2
.kPa.day 

Brown bread Mittal et al., 

2023 

PHB/PCL, 

organoclay, and 

nisin 

TS: 6.29-7.49 

MPa; 

EAB: 0.72-3.03 

% 

WVP: 1.05-

2.62×10
-11

 g.s
-

1
.m

-1
.Pa

-1 

Ham Correa et al., 

2017 

Poly (3-

hydroxybutyrate-

co-4-

hydroxybutyrate) 

and thyme oil 

TS: 51.8-87.4 

MPa 

EAB: 28.1-40.1 

% 

 

WVP: 0.31-0.42 

g.mm/m2.kPa.day 

White bread Sharma et 

al., 2022 

PHBV, eugenol, 

and carvacrol 

NA NA Cheese, chicken 

breast, pumpkin, 

and melon 

Requena et 

al., 2019 

Riclin and PVA TS: 25-60 MPa 

EAB: 5-60 % 

WVP: 1.1-2 ×10
-

11
 g/(m.s.Pa) 

Shrimp Miao et al., 

2023 

Bacterial 

cellulose and 

silver NPs 

TS: 17-26 MPa 

EAB: 4.77-6.18 

% 

NA Oranges and 

tomatoes  

Atta et al., 

2021 
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Bacterial 

cellulose, 

pomegranate peel 

extract, green tea 

extract, and 

rosemary extract  

NA NA Button 

mushroom 

Moradian et 

al., 2018 

   Whereas NA= not applicable      242 

4. Limitations and future directions 243 

McCarty and Ledesma (2019) argued that the utilization of synthetic biology in microbial 244 

consortia can provide distinct advantages over monocultures in terms of enhanced production 245 

of microbial biopolymers (exopolysaccharides) with tunable functional properties. These 246 

properties encompass antioxidant and antibacterial properties as microbial consortia can also 247 

release active metabolites (pyocyanin, lactic acid, and other bacteriocins) (Fouillaud and 248 

Dufossé, 2022). This advantage stems from the labor division between different species 249 

within the consortium, which allows for a shared metabolic burden and broader metabolic 250 

capabilities. While this is an interesting prospect, the use of synthetic microbial consortia has 251 

inherent limitations. These include the constraint of a limited number of genetically 252 

engineered species that can be effectively incorporated into the consortium, the complexity 253 

associated with designing and engineering microbial consortia, and their sensitivity to 254 

environmental changes which can disrupt the delicate balance within the microbial consortia. 255 

Concerns regarding GMOs (Genetically Modified Organisms) were also raised by the EU and 256 

the USA in the past two decades which can limit the usage of synthetic biology in fine-tuning 257 

microbial polymers. Still, the US GMO approval process is less rigorous than the EU and is 258 

voluntary in nature. Although, the FDA encourages developers to submit their GMO-based 259 

products for pre-market clearance, however, it’s not mandatory, while the EU has more 260 
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stringent labeling requirements even if the product contains more than 0.9% GMO content 261 

(Anderson and Jackson, 2003; Eriksson et al., 2018). This could be a hurdle in utilizing 262 

synthetic biology for developing tunable packaging materials for food contact applications. 263 

However, this problem can be resolved by adopting robust safety assessment protocols 264 

implemented by manufacturers during microbial polymer production and tunning steps, 265 

combined with the establishment of a clear and uniform regulatory framework by relevant 266 

authorities. Nonetheless, synthetic biology can provide a way forward to develop smart 267 

packaging materials with tunable properties in which materials can respond to changes in the 268 

food environment (i.e., temperature, pH, and or freshness). For instance, intermolecular 269 

bonding between polymeric chains and bioactive can be utilized to effectively release 270 

compounds from packaging into the food due to the pH sensitivity of the intermolecular 271 

bonding as displayed by Zhou et al. (2016).    272 

5. Conclusions  273 

Despite their biodegradable and biocompatible nature, some microbial-based polymers like 274 

PHAs suffer from poor thermo-mechanical properties due to their highly crystalline structure. 275 

This issue can be effectively addressed by leveraging cutting-edge genetic engineering tools 276 

to tune their properties specifically for food packaging applications. This approach offers an 277 

alternative to costly and traditional modifying the polymer itself, adding additives into the 278 

mixture, or using methods such as electrospinning and 3D printing. While the potential of 279 

using genetic engineering to produce tailored biopolymers is an un-tapped gold mine, there 280 

are some regulatory considerations to overcome. Currently, some microbial-based polymers 281 

may not have been Generally Recognized as Safe (GRAS) by the FDA (which mainly 282 

depends on the status of the production strain). These factors can limit the full utilization of 283 

synthetic biology to enhance microbial biopolymers for innovative food packaging. We 284 

believe that adopting robust safety assessments implemented by manufacturers during 285 
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microbial polymer production (by using advanced chromatographic techniques), combined 286 

with the establishment of a clear and uniform regulatory framework by relevant authorities, 287 

can address these concerns. This approach will enable the realization of the full potential of 288 

using GRAS microbial cell factories as valuable sources for tailored biopolymers, ensuring 289 

their safe and innovative utilization in the food packaging industry.  290 
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