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Regular article 

Microbial production of 3-hydroxypropionic acid by acetic acid bacteria: 
Modeling including the buffering capacity of the biological medium enables 
prediction of pH and metabolite concentrations 

Pedro Arana-Agudelo , Florence de Fouchécour , Marwen Moussa , Violaine Athès , 
Kevin Lachin , Henry-Eric Spinnler , Claire Saulou-Bérion , Ioan-Cristian Trelea * 

Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau F-91120, France   

A R T I C L E  I N F O   

Keywords: 
Acetobacter cerevisiae 
Fed-batch bioconversion 
Buffering capacity 
Sensitivity analysis 
Acid inhibition 

A B S T R A C T   

A mathematical model of the fed-batch bioconversion of 1,3-propanediol into 3-hydroxypropionic acid using 
acetic acid bacteria is proposed. The model includes the microbial growth, the oxidation of 1,3-propanediol to 3- 
hydroxypropionaldehyde followed by a second oxidation reaction to 3-hydroxypropionic acid. The inhibitory 
effect of the total acid concentration upon the biological reactions was considered as well as the effect of pH on 
bacterial growth. A special attention was paid to make accurate pH predictions as pH is a key parameter that 
influences the microbial growth and bioconversion and also defines the strategy of downstream processing for 
acid recovery. The buffering capacity of the complex biological medium was found to change throughout the 
bioconversion. In addition to describing satisfactorily a set of experiments reported in the literature, the model 
was successfully used to predict metabolite concentrations and the resulting pH in new operating conditions with 
free pH dynamics. A sensitivity analysis was performed to identify the most influential parameters of the model. 
The proposed model represents a valuable tool for bioprocess design as it describes the detailed kinetics of 1,3- 
propanediol oxidation to 3-hydroxypropionic acid by acetic acid bacteria in bioreactor. Additionally, the pH 
prediction is a major feature of this model, which could guide the identification of optimal operating conditions 
for microbial activity with a simultaneous in-situ recovery process.   

1. Introduction 

Biotechnological processes for bulk chemical production have been 
gaining significant interest over the past decades, as a solution to replace 
the current chemicals mostly obtained from fossil feedstocks [1]. The 
production of organic acids through microbial routes is promising in this 
context as they can be entirely produced from renewable sources. 
Organic acids present not only a wide range of direct industrial appli
cations but can also be precursors of important bulk and fine chemicals 
[2]. The demand for a broader bio-based supply of organic acids places 
this market as one of the main growing markets across bioproducts in 
the recent years [3]. 

Among the emerging organic acids, 3-hydroxypropionic acid (3-HP) 
has gained interest after its classification as one of the most promising 
bio-based building blocks by the Department of Energy of the United 
States [4]. Thanks to its two functional groups (carboxyl and β-hy
droxyl), 3-HP is a versatile molecule with great potential for further 

transformation via either chemical or biological processes, or a combi
nation of both, into value-added chemicals, among which acrylic acid is 
the most noteworthy [4]. Acrylic acid is an important bulk chemical 
widely used as a precursor of polymers with a total market estimated at 
7700 kton in 2021 [5]. It is estimated that the bio-based route could 
reduce the greenhouse gas emissions related to the production of acrylic 
acid by at least 81% [6]. 

In view of this potential, microbial production of 3-HP has improved 
from metabolic engineering and process engineering standpoints. One of 
the most promising metabolic pathways identified is the conversion of 
1,3-propanediol (1,3-PDO). The bio-based production of 1,3-PDO from 
renewable resources such as glycerol, and especially glucose, has known 
major improvements in recent years reaching even the industrial scale. 
The availability of 1,3-PDO as renewable substrate for bio
transformations is thus expected to increase [7]. 

An important metabolic pathway for 1,3-PDO conversion into 3-HP 
has been identified in acetic acid bacteria [8]. These bacteria comprise 
a set of primary membrane-bound dehydrogenases capable of oxidizing 
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a wide range of alcohols and polyols. In the production of 3-HP, 1,3-PDO 
is first oxidized into 3-hydroxypropionaldehyde (3-HPA) by a 
membrane-bound alcohol dehydrogenase and further oxidized into 
3-HP by a membrane-bound aldehyde dehydrogenase [9]. This process, 
known as oxidative fermentation, leads to the accumulation of high 
amounts of metabolites in the culture broth. The use of acetic acid 
bacteria to convert 1,3-PDO into 3-HP is advantageous as these micro
organisms resist to acidic conditions and high substrate concentrations 
[10]. Although oxidative fermentation is a well-known process, its 
implementation for 3-HP production is still challenging due to the in
hibition phenomena caused by the acid stress due to a combined effect of 
3-HP molecules and pH [11]. There is thus a potential to improve 3-HP 
production by acetic acid bacteria. 

Given the complexity of the phenomena involved, bioprocess design 
and optimization through fully experimental approaches can be difficult 
and time-consuming. In contrast, modeling approaches can greatly 
reduce the experimental effort and be a valuable tool for better under
standing, designing and operating bioprocesses. To the best of the au
thors’ knowledge, the only work regarding 3-HP production via 1,3-PDO 
oxidation using acetic acid bacteria from a modeling standpoint was 
reported by Li et al. [12]. These authors conducted bioconversions in 
flasks using immobilized cells of Acetobacter sp. CGMCC 8142. They 
proposed a first-order differential equation to describe 1,3-PDO mass 
transfer from the medium to the spherical particles containing the cells 
whereas the kinetics of 3-HP production was described using an 
empirical function. The main goal of their work was to experimentally 
optimize the immobilization conditions, while the kinetics of 3-HP 
production was used as a criterion to compare the performance of 
different immobilization matrices. A limitation of empirical modeling is 
that the results are specific to the operating conditions in which they are 
obtained. Consequently, empirical kinetic modeling provides few 

insights into limiting mechanisms and can hardly be predictive for new 
operating conditions. 

One of the most important factors to consider in a mathematical 
model describing organic acid bioproduction is the pH dependence of 
reaction kinetics. pH strongly affects bacterial metabolism as well as the 
distribution of acid-base species present in culture media. pH also de
termines the recovery route, as common downstream processes for 
organic acid recovery are pH-dependent (e.g. precipitation, reactive 
liquid-liquid extraction, ion-exchange, nanofiltration, electrodialysis) 
[13]. 

During the microbial production of organic acids, the accumulation 
of acid molecules causes the pH of the medium to decrease. In practical 
applications, a base is thus constantly added to maintain the pH at a 
constant setpoint value. Hence, most of mathematical models describing 
organic acid production are developed considering constant medium 
pH, neglecting acid-base reactions. Some examples of such models in the 
literature are proposed for: acetic acid [14], lactic acid [15], and suc
cinic acid [16]. These models are strictly limited to processes conducted 
at controlled pH, and the prediction of the pH change as a function of the 
acid concentration is not possible as the acid-base reactions are not 
included. However, exploring biological acid production without pH 
control is encouraged due to environmental concerns aiming to limit the 
use of chemicals. In addition, this operating condition is advantageous 
for implementing simultaneous in-situ recovery techniques, which are 
mostly effective at low pH. 

A challenge for predicting accurately the pH is the buffering capacity 
of the medium. Buffering capacity is the resistance to pH changes when 
an external acid or base is added. Some models have been proposed in 
the literature to consider the buffering capacity of complex media, 
especially in lactic acid fermentation [17–19]. These models rely on 
experimental measurements of pH at different acid concentrations and 

Nomenclature 

Abbreviation Meaning 
1,3-PDO 1,3-propanediol 
3-HPA 3-hydroxypropionaldehyde 
3-HP 3-hydroxypropionic acid 
HPLC High Performance Liquid Chromatography 
MAD Mean absolute deviation 
MAE Mean absolute error 
Greek letters Meaning, Unit 
β Slope of pH inhibition factor, - 
κ Forward reaction kinetic constant, L mol− 1 h− 1 

μ Specific growth rate, h− 1 

Variable Meaning, Unit 
[1,3­PDO] Concentration of 1,3-propanediol, mol L− 1 

[3­HPA] Concentration of 3-hydroxypropionaldehyde, mol L− 1 

[A− ] Concentration of 3-HP dissociated species, mol L− 1 

[AH] Concentration of 3-HP undissociated species, mol L− 1 

[AH]T Total 3-HP acid concentration, mol L− 1 

[Bu− ] Concentration of buffer dissociated species, mol L− 1 

[BuH] Concentration of buffer undissociated species, mol L− 1 

[BuH]T Total buffer concentration, mol L− 1 

D Dilution rate, h− 1 

fpH,μ pH inhibition factor on growth, - 
F Flow rates, L h− 1 

[H+] Proton concentration, mol L− 1 

Ka 3-HP acid dissociation constant, mol L− 1 

Kbuff Buffer pseudo-species dissociation constant, mol L− 1 

Ki Inhibition constant, mol L− 1 

Kw Water dissociation constant, mol2 L− 2 

n Inhibition term exponent, - 

[OH− ] Hydroxide ion concentration, mol L− 1 

p Number of parameters in the model, - 
q Specific production rate, molmetab mol− 1

biomass h− 1 

r Reaction rate, mol L− 1 h− 1 

Si Main Sobol index related to parameter i, - 
STi Total Sobol index related to parameter i, - 
t Time, h 
V Bioreactor volume, L 
wi Weights attributed in the calibration process, - 
[X] Biomass concentration, mol L− 1 

Y Yield,mol mol− 1 

Subscripts/Superscripts 
3­HPA Related to the oxidation of 1,3-propanediol into 3- 

hydroxypropionaldehyde 
a Related to acid dissociation 
AH Related to the oxidation of 3-hydroxypionaldehyde into 3- 

hydroxypropionic acid 
buff Related to buffer dissociation 
evap Related to the evaporation 
exp Experimental data 
i Related to 3-hydroxypropionic acid inhibition 
in Related to the inlet 
max Maximum rate 
samp Related to the sampling 
sim Simulated data 
S Related to the substrate 
T Total concentration 
w Related to water dissociation 
X Related to biomass growth  
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can be completely empirical or quasi-mechanistic. 
The buffering capacity depends on the composition of the medium, 

and therefore it is a characteristic that evolves throughout the biocon
version, mainly because of the metabolism of nitrogen sources present in 
the medium. The studies on the evolution of the buffer capacity of 
complex media are very limited and have only been reported in fields 
other than organic acid production, mostly in alcoholic fermentation. 
The most significant work in terms of modeling was proposed by Akin 
et al. [20]. The authors proposed a model considering the concentration 
of multiple acid species measured during the process. In addition, they 
defined a weak acid pseudo-species called “vinic acid” with the aim of 
accounting for all the unknown buffering species in the culture medium. 
Considering these phenomena, the concentration of protons in the me
dium could be calculated as a function of the composition of the broth at 
any time. 

In the present work, a model of the biological production of 3-HP is 
proposed based on experimental data from our research group obtained 
at constant pH [21]. Despite the recognized importance of pH in mi
crobial growth and product formation, existing models fall short in 
accurately predicting pH changes due to bioconversion processes. Our 
work addresses this gap by integrating the buffering capacity of the 
biological medium into the bioconversion modeling. The 
quasi-mechanistic model proposed by Nicolaï et al. [22] was used to 
account for the buffer capacity of the complex bioconversion medium. 
This model presents the advantage of establishing mass balances for 
dissociated and non-dissociated acid species instead of empirical cor
relations. The buffering capacity at the beginning and at the end of the 
bioconversion was considered to account for the observed pH change 
during the process. The developed model was used to predict the 
metabolite concentrations using a new operating condition at uncon
trolled pH. Operating the process at uncontrolled pH avoids the con
sumption of alkali for pH control and enhances the performance of 
separation techniques for subsequent or simultaneous extraction, which 
are generally favored in acidic conditions (pH < pKa). A sensitivity 
analysis based on Sobol indices was performed to evaluate the relative 
importance of the model parameters on the production of 3-HP and to 
suggest ways to improve the model and the bioconversion process. 

2. Material and methods 

2.1. Materials 

The acetic acid bacterium strain Acetobacter cerevisiae CIP 58.66 was 
purchased as a lyophilizate from the Biological Resource Center of the 
Pasteur Institute (Paris, France). The lyophilizate was put successively in 
two liquid cultures: the first containing mannitol and the second con
taining ethanol. The last culture was aliquoted and stored at − 80◦C in 
1 mL cryotubes with glycerol (20% w/v) as cryoprotectant. Glycerol 
(CAS number 56–81–5, 97% purity) was purchased from VWR Chem
icals (Leuven, Belgium, 99% purity). Yeast extract and Bacto™ peptone 
were purchased from Organotechnie (La Courneuve, France) and BD- 
France (Le-Pont-de-Claix, France), respectively. H2SO4 (CAS number 
7664–93–9, 95% purity) and K2HPO4 (CAS number 7758–11–4, 99% 
purity) were purchased from Sigma-Aldrich (St Louis, USA). 3-hydroxy
propionic acid (CAS number 503–66–2, 29.1% w/w in water) and 1,3- 
propanediol (CAS number 504–63–2, 99.8% purity) were purchased 
from TCI Europe (Zwijndrecht, Belgium). 3-hydroxypropionaldehyde 
was obtained through chemical synthesis at URD Agro-Biotechnologies 
Industrielles (Pomacle-Bazancourt, France) as described by Burgé 
et al. [23]. 

2.2. Inoculum preparation 

Inoculum was prepared from two successive precultures as described 
by de Fouchécour et al. [21]. The basal medium for the first culture 
consisted of 5 g L− 1 yeast extract, 3 g L− 1 Bacto™ peptone and 

8.71 g L− 1 K2HPO4. Its initial pH was adjusted to 6.5 using 5.5 mol L− 1 

H2SO4. After sterilization at 120◦C for 20 min, 25 mL was put in a 
250 mL baffled shake flask, inoculated with a 1 mL cryotube stock, and 
incubated for 62 h at 30◦C under rotary shaking at 200 rpm. After 62 h, 
the cultures were found to be in the early stationary phase. For the 
second culture, 50 mL of the basal medium supplemented with 10 g L− 1 

glycerol was put in a 500 mL baffled shake flask and inoculated using 
the first culture as a starter to reach an initial cell dry weight of 
approximately 0.01 g L− 1. This second culture was then incubated for 
24 h under the same conditions as described above, and later used as a 
starter for the fed-batch experiments. 

2.3. Fed-batch bioconversions in bioreactor 

The experiments in the bioreactor started with a growth phase on 
glycerol. The growth medium contained 5 g L− 1 yeast extract, 3 g L− 1 

Bacto™ peptone, 8.71 g L− 1 K2HPO4 and 10 g L− 1 glycerol and its initial 
pH was adjusted to 5.0 using 5.5 mol L− 1 H2SO4. A volume of 1.2 L of 
medium was autoclaved in a 3.6 L Labfors 4 bioreactor (Infors HT, 
Bottmingen, Switzerland). The bioreactor was inoculated at an initial 
biomass concentration of approximately 0.01 g L− 1 using the inoculum 
prepared as described in Section 2.2. In all cultures, temperature was 
controlled at 30◦C, pH evolved freely and pO2 was controlled at 40% of 
the saturation value by means of a cascade control loop of stirring speed 
(100–800 rpm) and air flow (1–4 NL min− 1). pH and pO2 were moni
tored using a 405-DPAS-SC probe and an InPro 6800 polarographic 
probe, respectively (Mettler-Toledo, Greifensee, Switzerland). 

Once biomass growth reached the early stationary phase (about 
32 h), 3-HP production was triggered by a pulse addition of 1,3-PDO to a 
concentration in the bioreactor of about 0.09 mol L− 1. From this point, 
the strategy of continuous substrate addition differed from the work of 
de Fouchécour et al. [21]. In the experimental work described by de 
Fouchécour et al. [21], bioconversions were conducted at controlled pH 
by the addition of a 6 mol L− 1 equimolar solution of 1,3-PDO and 
NH4OH. The solution was automatically added when the pH of the 
medium decreased below the set point (pH = 4.0, 4.5 and 5.0), thus, the 
substrate addition was coupled to pH control. In the present work, the 
feeding solution composed of 6 mol L− 1 1,3-PDO was added at a con
stant flow rate by a Watson-Marlow 120 U peristaltic pump (Falmouth, 
UK) and pH was let to evolve freely. In both cases, the feeding solution 
was filter-sterilized through a filter of 0.22 µm pore diameter before 
being injected into the bioreactor. All the experiments were performed 
in duplicate. 

2.4. Titration of bioconversion media 

Titration curves of total 3-HP concentration versus pH were built by 
gradually adding known volumes of the commercial solution of 3-HP to 
the bioconversion broth and monitoring the pH change with a pH-meter 
pHenomenal 1100 L (VWR, Radnor, PA, USA). 

2.5. Analytical techniques 

Cell biomass concentration was estimated from an optical density 
measurement at 600 nm. Optical density was measured using an Evo
lution 201 spectrophotometer (ThermoScientific, Madison, USA). The 
relation to cell dry weight (in g L− 1) was established using a correlation 
(Eq. 1) previously determined by de Fouchécour et al. [21]. The corre
lation was validated for values of optical density ranging from 0 to 0.8. A 
dilution was prepared, when necessary, to be in the validity range. 

Cell dry weight = 0.59 × optical density at 600 nm (1) 

For molar calculations, cell biomass was expressed as equivalent 
carbon mole assuming the average formula CH1.75O0.5N0.25 corre
sponding to a molecular weight of 25.268 g Cmol− 1 [24]. 

Metabolite concentrations were measured by High Performance 
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Liquid Chromatography (HPLC). The samples containing cells were first 
centrifuged at 13,000 g and 25◦C for 10 minutes. The supernatant was 
then filtered at 0.22 µm and, if necessary, diluted with milliQ ultrapure 
water before HPLC analysis. The HPLC system was equipped with an 
Aminex HPX-87 H column (Richmond, CA, USA). For glycerol, 1,3-pro
panediol and 3-hydroxypropionic acid, the temperature of the column 
was set at 65◦C and the mobile phase used was H2SO4 0.5 mmol L− 1 at a 
flow rate of 0.4 mL min− 1. Regarding 3-hydroxypropionaldehyde, the 
mobile phase was H2SO4 5 mmol L− 1 circulating at 0.6 mL min− 1 in the 
column at 35◦C. All the molecules were detected by a refractive index 
detector (Waters, Guyancourt, France). 

3. Modeling 

3.1. Model structure 

The proposed mathematical model was developed as the combina
tion of two models: a biological model and a buffering capacity model. 
Each model comprised different parameters estimated using experi
mental data. A scheme of the whole model is presented in Fig. 1. Section 
3.1.1 describe the biological model, and Section 3.1.2 the buffer ca
pacity model, respectively. 

3.1.1. Biological model 
In the biological model, 1,3-PDO is metabolized for biomass pro

duction (X), and through the oxidative fermentation pathway producing 
3-HPA as an intermediate and 3-HP as the final product. The following 
assumptions were made:  

• The reactor is perfectly mixed: there are no concentration and no 
temperature gradients.  

• There is only one limiting substrate for each biological reaction. All 
the other substrates (e.g., nitrogen sources, O2) are in excess.  

• The only growth substrate during bioconversion is 1,3-PDO. 
• 1,3-PDO and 3-HPA concentrations are below their respective inhi

bition thresholds. 
• All the biomass is active: no cell death was considered and no con

version to an inactive biomass population.  

• There is neither substrate nor product loss by evaporation. However, 
water evaporation was considered.  

• There are no side reactions in the oxidative fermentation pathway, i. 
e., the conversion yields from 1,3-PDO to 3-HPA and from 3-HPA to 
3-HP are quantitative.  

• 3-HP is produced in its undissociated form. 

Mass balances were established for the biomass, 1,3-PDO, 3-HPA and 
the undissociated species of 3-HP (Eq. (2) – (5)). The biological reaction 
rates were expressed as modified Monod-like equations considering the 
inhibitory effect of 3-HP on both growth and oxidative fermentation (Eq. 
(7) – (9)). The form of the inhibition factor used in this study was pre
viously used by Jiménez-Hornero et al. [25] to describe the inhibitory 
effect of acetic acid on AAB. Furthermore, an additional inhibition factor 
was considered in the growth rate (Eq. (7)) due to the inhibitory effect of 
the pH. The inhibitory effect of pH was only considered on growth as de 
Fouchécour et al. [21] observed no effect of pH on the specific rates 
involved in the oxidative fermentation pathway in the studied range. 
The variation of the volume of the medium due to feed, sampling and 
evaporation was considered as expressed in Eq. (6). All the equations of 
the biological model are summarized in Tables 1 and 2. 

3.1.2. Buffer capacity model 
The buffering capacity model consists of three main acid-base re

actions: 3-HP acid dissociation, the dissociation of a buffer pseudo- 
species and water autoprotolysis. This model was first proposed by 
Nicolaï et al. [22] to describe the pH in a buffered medium during lactic 
fermentation. The main assumption of this model is that the buffering 
capacity of the complex medium can be explained by the presence of 
3-HP and a single buffer system composed of the acid pseudo-species 
BuH and its conjugated base Bu− . To integrate buffering capacity in 
the biological model, the mass balance of undissociated 3-HP species 
(Eq. (5)) can be rewritten as expressed in Eq. (11). Eq. (12) – (16) ex
press the mass balances of the other acid-base species considered. 

Given that the dissociation rates are significantly faster than the 
biological rates, the dissociation reactions are considered as almost 
immediately equilibrated in the medium. Therefore, the dissociation 
rates were defined as in Eq. (17) – (19) with high backward kinetic 
constants κa, κbuff and κw in order for the dissociation reactions to be 

Fig. 1. Schematic representation of the mathematical model of the bioconversion of 1,3-propanediol into 3-HP considering the buffering capacity of the medium.  
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equilibrium-limited. The backward constants were thus arbitrarily set to 
106 L mol− 1 h− 1. In the sensitivity analysis that will be described in 
Section 4.4, it was verified that the value had negligible impact on the 
model outputs. 

3.2. Parameter estimation 

3.2.1. Biological parameters 
The proposed biological model required the estimation of 14 pa

rameters listed in Table 3. The parameters were estimated using the 

experimental data reported by de Fouchécour et al. [21]. Those authors 
performed bioconversions in duplicate at controlled pH values of 5.0, 
4.5 and 4.0, which represents a total of 6 experiments. 

Considering the number of parameters, the estimation was divided in 
four steps, which required to define reduced versions of the model and to 
use experimental data as inputs. A stepwise approach was adapted in 
order to increase progressively the number of parameters estimated 
simultaneously. A major challenge to the estimation of the biological 
parameters proposed in this work was the lack of good initial guesses to 
initialize the optimization. Typically, the initial guesses are obtained 
from the literature. However, so far, no 3-HP production kinetics using 
acetic acid bacteria have been published. 

As a way to find initial guesses, a global optimization algorithm was 
used. Instead of a unique initial value, a global optimization algorithm 
starts with a plausible range for each parameter to be estimated. Another 
advantage of global optimization lies in the thorough exploration of the 
parameter ranges, avoiding premature convergence to local optima. 
Unlike local optimization, rather than one estimation, global optimiza
tion leads to a set of candidate estimations. Consequently, the best 
candidate estimation identified through global optimization were good 
initial guesses to initialize the local optimization approach. More details 
on the steps of the parameter estimation are available in Supplementary 
material A. 

Considering that the pH control was coupled to the feeding strategy 
in the experiments of de Fouchécour et al. [21], the feeding flow rate 
(Fin) was interpolated from the experimental volume fed. The sampling 
and the evaporation flow rates (Fsamp and Fevap, respectively) were also 
interpolated from the experimental data. The profiles of the different 
flow rates are presented in Supplementary material C. 

The estimation problems were defined to find the parameter values 
that minimize the cost function expressed in Eq. (20), representing the 
sum of the weighted squared differences between measured and simu
lated metabolite concentrations. 

Cost function =
1
2
∑

i

∑Ni

j=1

[

wi

(
yexp

i,j − ysim
i,j

Δyexp
i

)]2

(20)  

where i represents the species considered (i = {1,3­PDO, 3­HPA, AH, 

Table 1 
Equations of the biological model.  

Mass balances Eq. 

Biomass d[X]
dt

= μ[X] −
(
Din − Devap

)
[X]

(2) 

1,3-PDO d[1,3­PDO]

dt
= −

1
YX/1,3­PDO

μ [X] − q3­HPA [X] + Din [1,3­PDO]in −
(
Din − Devap

)
[1,3­PDO]

(3) 

3-HPA d[3­HPA]
dt

= (q3­HPA − qAH)[X] −
(
Din − Devap

)
[3­HPA]

(4) 

Und. 3-HP d[AH]

dt
= qAH[X] −

(
Din − Devap

)
[AH]

(5)  

Volume variation Eq. 
dV
dt

= Fin − Fevap − Fsamp 
(6) 

Specific biological rates Eq. 

Growth 
μ = μmax

[1,3­PDO]

KS,X + [1,3­PDO]

1

1 +

(
[AH]T
Ki,X

)nX
fpH,μ ; fpH,μ =

⎧
⎨

⎩

1
1 + β(pH − 5)

0

if pH > 5
if5 − 1/β < pH < 5

if pH < 5 − 1/β 

(7) 

3-HPA production q3­HPA = q3­HPA,max
[1,3­PDO]

KS, 3­HPA + [1,3­PDO]

1

1 +

(
[AH]T

Ki,3­HPA

)n3­HPA 

(8) 

3-HP production 
qAH = qAH,max

[3­HPA]
KS,AH + [3­HPA]

1

1 +

(
[AH]T
Ki,AH

)nAH  

(9)  

Dilution rates Eq. 

Dj =
Fj

V
; j = {in, evap, samp} (10)  

Table 2 
Equations of the buffer capacity model.  

Mass balances Eq. 

Und. 3-HP d[AH]

dt
= qAH[X] − ra −

(
Din − Devap

)
[AH]

(11) 

Diss. 3-HP d[A− ]

dt
= ra −

(
Din − Devap

)
[A− ]

(12) 

Und. buffer d[BuH]

dt
= − rbuff −

(
Din − Devap

)
[BuH]

(13) 

Diss. buffer d[Bu− ]

dt
= rbuff −

(
Din − Devap

)
[Bu− ]

(14) 

Hydronium ion d[H+]

dt
= ra + rbuff + rw −

(
Din − Devap

)
[H+]

(15) 

Hydroxide ion d[OH− ]

dt
= rw −

(
Din − Devap

)
[OH− ]

(16)  

Acid-base dissociation rates Eq. 

3-HP acid dissociation ra = κa(Ka[AH] − [A− ][H+] ) (17) 
Buffer dissociation rbuff = κbuff

(
Kbuff [BuH] − [Bu− ][H+]

)
(18) 

Water autoprotolysis rw = κw(Kw − [OH− ][H+] ) (19)  

Table 3 
Parameters of the biological model.   

Growth Oxidative fermentation 

Maximum specific rates μmax q3­HPA,max, qAH,max 

Saturation constants KS,X KS, 3­HPA, KS, AH 

Acid inhibition constants and exponents Ki,X, nX Ki, 3­HPA, n3­HPA, Ki, AH, nAH 

Yield YX/1,3­PDO NA 
pH inhibition coefficient β NA  
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X}), Ni is the number of experimental measurements available for var
iable i, yexp

i,j is the j-th experimental value of variable i, and ysim
i,j the 

corresponding simulated value. Given that each variable i has its own 
variation range Δyexp

i , they were normalized by dividing by Δyexp
i . 

Depending on the choice of the weights (wi) assigned to the variables 
in Eq. (20), different sets of estimated parameters can be obtained. 
Aiming to avoid biased estimations due to a choice of particular weights, 
a total set of 103 weights were randomly sampled from uniform distri
butions in the interval [1,5] and were used to estimate the parameters. 
As a result, an observed frequency distribution was obtained for each 
parameter. The values reported in Section 4.1 correspond to the medians 
of these distributions. 

3.2.2. Buffer capacity parameters 
As mentioned in Section 3.1.2, the model of Nicolaï et al. [22] was 

used to describe the buffering capacity of the medium. This model 
comprises two parameters to estimate: the buffer dissociation constant 
Kbuff and the total buffer concentration [Bu]T. Unlike the biological pa
rameters, the parameters of the buffering capacity model were estimated 
from titration curves obtained as described in Section 2.4. Considering 
the main assumptions of the model, the nonlinear equation system 
presented in Table 4 were solved to find the concentrations at the 
equilibrium. The pH was thus calculated from the proton concentration 
in the medium. 

3.3. Sensitivity analysis of the model parameters 

The global sensitivity of the model parameters was evaluated using 
the main and the total Sobol indices (Si and STi , respectively), using the 
estimators proposed by Jansen [27] and Saltelli et al. [28]. The model 
was simulated 104 times, with parameters randomly sampled from 
normal distributions with the mean equal to the values identified in the 
parameter estimation process, and standard deviations equal to 10% of 
the mean values. Regarding the backward dissociation kinetic constants, 
the parameter values were drawn from uniform distributions in the in
terval [105, 107] as these kinetic constants were arbitrarily set to 106 

L mol− 1 h− 1. 
Given that the model proposed in this work is dynamic, the sensi

tivity indices depend on time. To account for time variation, the main 
and total Sobol indices were evaluated at t = {0.5 h, 1 h, 5 h, 7.5 h, 
10 h, 15 h, 20 h, 25 h, 30 h, 35 h, 40 h, 45 h, 50 h}. The mean indices 
were then defined as Eqs. (27) and (28). 

S∗
i =

1
tf − t0

∫ tf

t0
Si(t)dt (27)  

S∗
Ti
=

1
tf − t0

∫ tf

t0
STi (t)dt (28)  

3.4. Numerical methods 

All the numerical methods were implemented in MATLAB R2022b 

(The MathWorks Inc., Natick, MA) including the Statistics and Optimi
zation toolboxes. The systems of ordinary differential equations were 
solved using the ode15s function, which is a variable-order method for 
the solution of stiff problems. 

During the estimation of the parameters of the biological model, the 
global optimization approach was undertaken using the genetic algo
rithm NSGA-II implemented in MATLAB by Song [29], considering in
termediate crossover and gaussian mutation. Based on preliminary tests, 
the number of individuals was set to 100 and the number of generations 
was 50. Local optimization problems were solved using the lsqnonlin 
function implementing the ‘Trust-region-reflective’ algorithm [30]. A 
non-negative constraint was defined to prevent the parameters from 
taking negative values. 

The function fsolve implementing the “trust-region” method [30] was 
used for solving the non-linear equation system related to buffering 
capacity presented in Table 4. The parameters of this model were esti
mated using the nlinfit function. 

4. Results and discussion 

4.1. Biological model 

The estimated parameters using the stepwise approach are presented 
in Table 5. The median absolute deviation (MAD) of each parameter is 
also reported as a means of measuring the dispersion of the observed 
frequency distributions. 

All the parameters related to the growth were estimated with MAD 
values lower than 10% compared to their median, except for YX/1,3­PDO, 
whose MAD/median is equal to 11.3%. The parameters related to the 
oxidative fermentation were estimated with MAD to median ratios 
ranging mainly from 8% to 30%. The parameters q3­HPA and KS,3­HPA, 
related to the oxidation of 1,3-PDO into 3-HPA were estimated with 
MAD values equal to 50% of their median values. High MAD values 
could be an indication of poor practical identifiability of both parame
ters. Indeed, if in Eq. (8), 1,3-PDO concentration is much less than 
KS,3­HPA, the product between the specific production rate and the 
Monod-like factor can be simplified to the ratio q3­HPA,max/KS,3­HPA 

multiplied by the concentration of 1,3-PDO as shown in Eq. (29). 
Consequently, q3­HPA,max and KS,3­HPA cannot be determined separately 
but their ratio can be identified with a reasonable uncertainty (MAD/ 

Table 4 
Nonlinear equation system used to describe titration curves.  

Acid dissociation* 
Ka =

[A− ][H+]

[AH]

(21) 

Buffer dissociation 
Kbuff =

[Bu− ][H+]

[BuH]

(22) 

Water dissociation Kw = [OH− ][H+] (23) 
Mass balance acid species** [AH]T = [AH] + [A− ] (24) 
Mass balance buffer pseudo species 2 [Bu]T = [BuH] + [Bu− ] (25) 
Charge balance [A− ] + [OH− ] + [Bu− ] = [H+] + [Bu]T  (26) 

*Ka was taken from [26]. 
**[AH]T were known from the controlled additions in the titration experiment.  

Table 5 
Estimated parameters of the biological model.  

Parameter Median MAD MAD/median 
(%) 

Units 

Growth 
μmax  1.06 0.05 4.7% h− 1 

KS,X  0.33 0.02 6.1% mol L− 1 

Ki,X  0.128 0.006 4.7% mol L− 1 

nX  3.54 0.01 0.3% - 
YX/1,3­PDO  0.80 0.09 11.3% molX mol1,3-PDO

− 1 

β*  0.375 � � - 
Oxidative fermentation 
q3­HPA,max  4 2 50.0% mol3-HPA molX− 1 

h− 1 

qAH,max  17 4 23.5% molAH molX− 1 h− 1 

KS,3­HPA  0.4 0.2 50.0% mol L− 1 

KS,AH  0.05 0.01 16.7% mol L− 1 

Ki,3­HPA  0.72 0.06 8.3% mol L− 1 

Ki,AH  0.5 0.1 20.0% mol L− 1 

n3­HPA  3.2 0.9 25.0% - 
nAH  1.8 0.5 27.8% - 
q3­HPA,max/KS,3­HPA  13 2 15.4% L mol− 1 h− 1 

μmax/KS,X  3.1 0.3 9.7% L mol− 1 h− 1 

qAH,max/KS,AH  379 31 8.2% L mol− 1 h− 1 

* β was calculated from the experimental maximum growth rate as a function of 
pH (described in Supplementary material C).  
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Fig. 2. Results of the model simulations with the determined biological parameters. Experimental data by de Fouchécour et al. [21] used for model calibration.  
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median = 15.4%, Table 5). 
If 

[1,3­PDO]≪KS,3­HPA :

q3­HPA,max
[1, 3­PDO]

KS, 3­HPA + [1,3­PDO]
≈

q3­HPA,max

KS,3­HPA
[1, 3­PDO]

(29) 

The lack of identifiability of parameters in Monod-like expressions 
has been widely studied in the literature (ex. in [31]). One of the main 
difficulties is related to the high correlation between the maximum rate 
and the substrate saturation constant. In this case, both parameters 
q3­HPA,max and KS,3­HPA were indeed found to be highly correlated (0.993 
according to the correlation matrix presented in Supplementary material 
D., Table D.1). 

The other couples of parameters related to Monod-like expressions 
(μmax and KS,X for growth; and qAH,max and KS,AH for 3-HPA oxidation) 
were also found to be highly correlated (Supplementary material D., 
Table D.1), nevertheless unlike q3­HPA,max and KS,3­HPA, the dispersions of 
the observed frequency distributions were lower (MAD/median ratio <
24%, Table 5). 

As previously discussed, the estimation of the ‘true’ values of the 
parameters in modeling biological systems can be challenging, or even 
impossible depending on the data available. Nevertheless, the goal of 
building a mathematical model is also to make predictions despite the 
lack of identifiability of some parameters. Jiménez-Hornero et al. [25] 
illustrated this point in the study of acetic acid production from ethanol 
using acetic acid bacteria cultivated in fed-batch mode in bioreactor. 

The simulations obtained with the parameters reported in Table 5 are 
presented in Fig. 2. Despite the simplifying assumptions, the model 
successfully described the main phenomena observed for all the 
considered species and at all the pH values tested. In both experiments at 
pH = 5.0, the behavior of 1,3-PDO concentrations, characterized by 
substrate consumption slowing down during the experiment, were well 
described by the model (Fig. 2.A1). Furthermore, the model successfully 
reproduced the slight 1,3-PDO accumulation of substrate observed at the 
beginning of one of the replicates (filled circles). At pH  = 4.5 and pH  =
4.0, the strictly decreasing behavior of both replicates was well simu
lated (Fig. 2. A2 and A3). The mean absolute error (MAE) in the pre
diction of 1,3-PDO was equal to 0.0057 mol L− 1, which corresponds to 
approximately 6% of 1,3-PDO variation range (0 – 0.09 mol L− 1). 

The peak reached by 3-HPA concentrations during the first hours of 
bioconversion was well predicted by the model (Fig. 2.B1, B2 and B3). 
The accumulation of 3-HPA observed at pH = 5.0 after 15 h was not 
reproduced by the model. The MAE in the prediction of 3-HPA con
centrations was equal to 0.0012 mol L− 1 while the concentrations 
ranged in most cases from 0 to 0.005 mol L− 1, corresponding to around 
24% of the variation range. 

The model successfully simulated the concentration of 3-HP accu
mulated in the broth in the three pH conditions (Fig. 2.C1, C2 and C3). 
The MAE in the acid concentration was equal to 0.033 mol L− 1 repre
senting around 4% of its variation range (0 – 0.8 mol L− 1). The biomass 
concentration was also well simulated (Fig. 2.D1, D2 and D3), with a 
MAE representing around 16% of the biomass variation range observed. 

It also appears in Fig. 2 that in spite of the parametric uncertainty 
(Table 5), the uncertainty on the model predictions was quite limited 
(grey areas in Fig. 2). This is particularly true for the most important 
model output, the produced 3-HP concentration (Fig. 2.C1, C2 and C3). 

4.2. Buffer capacity of the medium 

The titration curve obtained using the medium at the beginning of 
the bioconversion is illustrated in Fig. 3 as a semi-log plot (circles). The 
pH showed a decreasing behavior with a concavity change. For the sake 
of comparison, if the pH of an unbuffered medium is estimated using Eq. 
(21) and (24), it shows a linear decreasing trend (dashed line). 

The pH in the complex medium used in this study differs from that of 
an unbuffered medium by up to 2.5 pH units at 3-HP concentrations 
lower than 0.01 mol L− 1, and up to 1.5 pH units at 3-HP concentrations 
higher than 0.01 mol L− 1. Thus, the buffering capacity in the medium 
must be considered as pH is essential for both biological phenomena and 
subsequent acid extraction techniques. 

The pH values measured during the bioconversions as a function of 
the 3-HP concentration measured by HPLC (squares: data by de 
Fouchécour et al. [21]) showed a deviation from the experimental 
titration curve of the initial medium for total acid concentrations higher 
than 0.017 mol L− 1. This is likely linked to an evolution of the buffering 
capacity of the medium during the bioconversion experiments. The 
experimental titration data were used to estimate the parameters of a 
first buffer system (buffer 1) as described in Section 3.2.2. The resulting 
simulated data are presented in Fig. 3 (solid line). The parameters of a 
second buffer system (buffer 2) were estimated using the data obtained 
during the bioconversions reported by de Fouchécour et al. [21]. The 
simulated results are also presented in Fig. 3 (dotted line). The param
eters determined for buffer systems 1 and 2 are presented in Table 6. In 
both cases, the parameters were estimated with good accuracy (coeffi
cient of variation < 5%). 

In order to consider the evolution of buffering capacity over time, the 
buffer system 1 was considered as representative of the buffering ca
pacity of the medium at early stages of the bioconversion (when total 3- 
HP concentration was lower than 0.017 mol L− 1). The buffer system 2 
was considered as representative of the buffering capacity of the me
dium at later stages (when total 3-HP concentration was higher than 
0.017 mol L− 1). The final buffering capacity model consisted in 
switching from buffer 1 to buffer 2 once total 3-HP reached the inter
section point at 0.017 mol L− 1. This model is represented in bold lines in 
Fig. 3. 

4.3. Model validation using a new operating condition: uncontrolled pH 

As described in the previous sections, the model proposed in Section 

Fig. 3. pH as a function of total 3-HP concentrations. Red curves represent the 
final model used for predicting the pH. 

Table 6 
Parameter values for the buffer capacity model.  

Parameter 
* 

Buffer 1 
For [AH]T <

0.017 mol L− 1 

Buffer 2 
For [AH]T >

0.017 mol L− 1 

Unit 

pKbuff 6.275 ± 0.004 4.852 ± 0.003 −

[Bu]T 9.7 × 10− 3 ± 0.2 × 10− 3 3.2 × 10− 2 ± 0.1 × 10− 2 mol L− 1  

* reported as value ± standard error  
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3.1.1 successfully simulated the evolution of the different species in 
bioconversion experiments at constant pH using the feeding, sampling 
and evaporation profiles as inputs. After including the buffering capacity 
model (equations presented in Section 3.1.2 and parameter estimation 
in Section 3.2.2), the model was validated using experimental data ob
tained by conducting fed-batch bioconversions with constant contin
uous substrate supply and free pH (i.e., no pH control). Two independent 
replicates were performed to this purpose. 

In order to select the feeding flowrate, several substrate supply 
conditions were explored in simulation by varying the feeding flow rate 
in the range 0.74 × 10− 3 – 4.4 × 10− 3 L h− 1. A feeding flow rate of 0.87 
× 10− 3 L h− 1 was selected for experimental validation as it was the 
highest feeding rate allowing 1,3-PDO concentration to be maintained at 
a stationary low value (0.003 mol L− 1) while producing 3-HP at a con
stant rate, according to the model. The results of two replicate experi
ments and model predictions are presented in Fig. 4. 

Experimentally, the initial 1,3-PDO pulse injected to trigger the 
bioconversion was depleted in approximately 4 h (Fig. 4.A). This rapid 
consumption produced a quick accumulation of 3-HP in the broth 
(Fig. 4.B), with a transient accumulation of 3-HPA as intermediate 
(Fig. 4.D). In parallel, biomass showed a negligible growth phase (Fig. 4. 
C) and the pH of the medium decreased from 6.2 to about 3.7 (Fig. 4.E). 
After 12 h of bioconversion, the concentration of 1,3-PDO increased 
steadily until the end of the experiments indicating that the rate of 
addition was greater than the rate of consumption. The mass balances 
throughout the bioconversions are presented in Fig. 5. 

The new condition tested in these experiments showed a maximum 
3-HP titer of approximately 0.27 mol L− 1 and an average productivity of 
0.005 mol L− 1 h− 1. This titer means a 2.4-fold increase over that ob
tained at pH = 4.0 by de Fouchécour et al. [21]. However, the average 
productivity decreased by almost 30%. The advantage of performing 
bioconversions at free pH is that no base is consumed for pH control and 

Fig. 4. Experimental validation of the model at the new operating condition.  

P. Arana-Agudelo et al.                                                                                                                                                                                                                        



Biochemical Engineering Journal 208 (2024) 109346

10

that downstream extraction could be favored by the low pH of the 
medium. 

In the simulation results, most of the trends were correctly predicted 
by the model. The mean absolute errors (MAE) of the predictions are 
reported in Table 7. Regarding the concentration of 1,3-PDO, the initial 
decrease observed in the first 4 h was well predicted but not the accu
mulation of 1,3-PDO after 12 h. In terms of prediction performance, the 
MAE in the prediction of 1,3-PDO was equal to 0.014 mol L− 1, which 
represents 16% of the 1,3-PDO variation range during the experiments. 
As one might expect, the model was less accurate in the new conditions 
than it was in the calibration experiments. 

After the first 4 h of bioconversion, the 1,3-PDO oxidation rate 
decreased despite the constant substrate supply. This phenomenon is 
likely related to an inhibitory effect of low pH values on the oxidative 
fermentation. Even if de Fouchécour et al. [21] observed no effect in the 
pH range 4.0 – 5.0, in the validation experiment the pH decreased well 
below 4.0 (Fig. 4.E). Performing bioconversions at lower pH would 
allow to quantify its effect on the metabolic pathway yielding 3-HP and 
further improve the model. 

The model predicted satisfactorily the accumulation of 3-HP 
throughout the experiments (Fig. 4.B), including the initial rapid in
crease as well as the constant production rate observed afterwards. The 
MAE in the prediction of 3-HP concentration represented 5% of its 
variation range, which is similar to the calibration experiments. The 
slight gap observed after 40 h of bioconversion (~ 0.01 mol L− 1) could 
be linked to the decrease of 1,3-PDO oxidation rate previously 
mentioned. 

The model predicted a limited biomass growth considering pH and 3- 
HP inhibition (Fig. 4.C). For biomass concentration, the model per
formed with less accuracy than in the calibration experiments (MAE 

representing 34% of the variation range). This could be expected as the 
pH inhibition was extrapolated from the results observed in the litera
ture in the range 4.0 – 5.0. 

The initial accumulation of 3-HPA was underestimated and a gap of 
approximately 0.002 mol L− 1 was observed between the experimental 
value attained after the transient accumulation and the predicted value 
(Fig. 4.D). The MAE to the variation range ratio was equal to 25%, which 
is comparable to that observed in the calibration experiments. 

Regarding pH, the predicted values were mostly comprised between 
the observed experimental values presented in Fig. 4.E for the two 
replicate experiments. The model had a MAE of 0.072 pH units, which 
represents 2% of the observed pH variation range. Therefore, the 
strategy of shifting between two different buffer systems was effective to 
accurately predict the pH of the medium. The inclusion of buffering 
capacity and its change over time is a major feature of the proposed 
model describing organic acid production. 

4.4. Sensitivity analysis of estimated model parameters 

The Sobol indices represent the fraction of the variance of the output 
explained by a given model parameter. The main Sobol indices corre
spond to the effect of a single parameter while the total indices include 
the main effect as well as the interaction of that parameter with the 
others. The Sobol indices were used for evaluating the influence of the 
estimated parameters of the biological model and the buffering capacity 
model on the most important input of the model: the total 3-HP con
centration. The operating conditions corresponded to that identified in 
the previous section, i.e., constant substrate feeding rate and uncon
trolled pH. The 13 parameters of the biological model, and the 7 pa
rameters of the buffering capacity model were included in the sampling 
process described in Section 3.3. The average main and total indices 
over time were calculated and sorted in descending order. Only the 
parameters that showed main and total Sobol indices higher than 0.05 
were considered as influential and are presented in Fig. 6. As the main 
Sobol indices were identical to the total indices, only the main indices 
are presented. The similarity between the main and total indices sug
gests that the effect of each parameter was almost linear and no inter
action was observed between the parameters in the studied sampling 
range. 

The dissociation constant of the first buffer system (pKabuff1) was 
found to be the most influential parameter. This parameter was found to 
be essential to accurately describe the pH of the medium, which in
fluences the microbial growth, which in turn governs all bioconversion 
reactions. The importance of this parameter highlights the importance of 
considering the buffer capacity of the medium. In practice, the buffering 

Fig. 5. Mass balances throughout the bioconversions at uncontrolled pH.  

Table 7 
Mean absolute prediction errors (MAE) for the validation experiments.  

Variable MAE Variation range 

1,3-PDO concentration (mol L− 1)   0.014 0.004–0.091 

3-HPA concentration (mol L− 1)   0.002 0.0–0.008 

3-HP concentration (mol L− 1)   0.013 0.0–0.27 

Biomass concentration (mol L− 1)   0.010 0.081–0.11 

pH (-)  0.072 3.26–6.19  

Fig. 6. Time-averaged main Sobol indices of the most influential parameters, 
considering total 3-HP concentration as model output. 
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capacity attenuates the pH decrease caused by the accumulation of acid 
molecules. It could be used as a criterion to determine the amount of 
substrate and feeding rate that could be supplied without decreasing the 
medium pH to inhibitory levels due to 3-HP production. 

Some of the influential parameters are related to 1,3-PDO oxidation 
into 3-HPA, namely the maximum 3-HPA production rate (q3­HPA,max) 
and the substrate saturation constant (KS,3­HPA). Despite the relatively 
high uncertainty described before, the ratio between both parameters 
was correctly estimated, which was important to make predictions using 
the model as discussed in Section 4.1. Considering that 3-HPA is an in
termediate, the production rate of 3-HPA could be the rate-limiting step 
in the operating conditions used in the model validation (Section 2.3). 
The feeding rate of 1,3-PDO could thus be increased aiming to increase 
the 3-HPA production rate. However, the maximum 1,3-PDO feeding 
rate must be carefully chosen to avoid both 1,3-PDO and 3-HPA from 
accumulating in the medium above inhibitory levels. 

It was expected that some parameters related to the biomass growth 
would be found influential considering that biomass concentration is 
directly linked to all the biological rates. In this case, the influential 
parameters are the growth yield on 1,3-PDO (YX/1,3­PDO), the maximum 
growth rate (μmax) and the growth substrate saturation constant (KS,X). 
As mentioned in Section 4.3, the observed growth phase on 1,3-PDO was 
very limited. The high sensitivity of the biomass-related parameters 
suggests the possibility to improve the process by optimizing the pre
vious culture steps in order to increase the cell density before starting 
the 1,3-PDO feeding phase. 

The kinetic constants describing the acid-base reactions mentioned 
in Section 3.1.2 were found to have no effect on the output in the defined 
parameter space, confirming the assumption of quasi-equilibrium for 
these reactions. 

5. Conclusion 

The bioconversion of 1,3-propanediol into 3-hydroxypropionic acid 
using acetic acid bacteria was studied. A mathematical model of the 
bioconversion was built considering acid-base reactions in addition to 
biological reactions to predict the concentrations of the main species 
involved in the process as well as the pH of the medium. The biological 
parameters of the model were estimated using experimental biocon
version data obtained by de Fouchécour et al. [21] at constant pH. The 
buffering capacity of the complex broth used in this work was described 
using the model proposed by Nicolaï et al. [22]. In order to take into 
account the change of the broth composition over time, a shift between 
two different buffer systems was introduced. Buffering capacity and its 
time change is rarely considered in models describing the microbial 
production of organic acids. The developed model correctly predicted 
metabolite profiles and pH in a new set of fed-batch experiments per
formed at uncontrolled pH. Therefore, the proposed model is a valuable 
tool for bioprocess design as production kinetics can be explored using 
different operating conditions, especially those implying pH variations. 
Considering these features, this work is a key ingredient in the devel
opment of an integrated production-extraction model as both biological 
production and in-situ extraction processes strongly depend on pH. An 
integrated model will allow the selection of optimal conditions concil
iating the bioconversion and the extraction rates, which are often con
tradictory, especially with respect to pH. Since acetic acid bacteria are 
able to produce different acids from their respective alcohols with 
similar metabolic pathways [32], the presented strategy could be 
adapted for the production and in-situ extraction of multiple organic 
acids. 

CRediT authorship contribution statement 

Ioan-Cristian Trelea: Writing – review & editing, Supervision, 
Software, Methodology, Formal analysis, Conceptualization. Claire 
Saulou-Bérion: Writing – review & editing, Supervision, Methodology, 

Conceptualization. Violaine Athès: Writing – review & editing, Super
vision, Methodology, Conceptualization. Marwen Moussa: Writing – 
review & editing, Supervision, Methodology, Conceptualization. Henry- 
Eric Spinnler: Writing – review & editing, Supervision, Methodology, 
Conceptualization. Kevin Lachin: Writing – review & editing, Meth
odology, Conceptualization. Florence de Fouchécour: Writing – review 
& editing, Visualization, Validation, Software, Investigation, Formal 
analysis, Conceptualization. Pedro Arana-Agudelo: Writing – original 
draft, Visualization, Validation, Software, Methodology, Investigation, 
Formal analysis, Conceptualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

Data will be made available on request. 

Acknowledgments 

Pedro Arana-Agudelo and Florence de Fouchécour doctoral grants 
were awarded from the ABIES doctoral school of Université Paris-Saclay. 
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