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Abstract 25 

Acoustic data are an invaluable source of information for characterizing the distribution and 26 

abundance of mid-trophic level organisms (MTLOs) in the ocean. These organisms play a key 27 

role in the ecosystem as prey of top predators and as predators of lower trophic level 28 

organisms, as well as in carbon export from the surface into deeper waters. This study used 38 29 

kHz-EK60 acoustic echo sounder data from six cruises spanning 2011-2017 to explore the 30 

seasonal and spatial variability in the vertical distribution of MTLOs’ from 10-600m in the 31 

New Caledonian (South Pacific) Exclusive Economic Zone. A total of 16715 acoustic vertical 32 

profiles of acoustic backscattering strength were clustered into homogeneous groups. Two 33 

small shallow scattering layers (SSLs) between 0 and 100m, and one large deep scattering 34 

layer (DSL) at around 550m depth characterized the mean vertical distribution of MTLOs. A 35 

machine-learning model (eXtreme Gradient tree Boosting algorithm, XGBoost) was fitted to 36 

explain the acoustic profile clusters with environmental variables as predictors. Sun 37 

inclination was the most important factor in structuring the vertical profile shapes due to the 38 

diel vertical migration signal, followed by the mean oxygen value of the top 600m. 39 

Bathymetry, euphotic depth, 0-600m mean temperature and SST were the next most 40 

significant variables. Isotherm depth, surface chlorophyll-a, wind, and mean salinity had a 41 

lower influence on the shape of the vertical profiles. The model was then used to construct 42 

vertical echograms at the scale of the New Caledonian EEZ, showing an accuracy up to 87% 43 

in cross validation. Across the EEZ, the shape of vertical acoustic profiles were comparable, 44 

though layer echo intensities varied spatially with a marked north-south gradient that 45 

remained relatively constant seasonally. The vertically-averaged acoustic values were 46 

characterized by a maximum to the south of the EEZ in summer, mainly driven by high 47 

oxygen values as well as shallow euphotic depth. We also estimated a migrant proportion 48 

between day DSL and night SSL of about 78%. Our methodology offers a promising 49 

approach for analyzing the control of the environment on the vertical distribution of MTLOs 50 

for other oceanic provinces, while also providing a framework to investigate the 51 

corresponding trophic interactions between MTLOs and their predators feeding at different 52 

depths and times. Moreover, our findings stress the need to consolidate knowledge on species 53 

composition in order to optimize acoustic data interpretation. 54 

Key words: Micronekton, echo sounder, Pacific Ocean, mesopelagic zone, sound scattering 55 

layer, environment   56 
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1.  Introduction 57 

In pelagic ecosystems, mid-trophic level organisms (MTLOs), also referred to as 58 

micronekton, are composed of crustaceans, molluscs, gelatinous organisms and fish with size 59 

ranging from 1 to 20cm long (Bertrand et al., 2002; Young et al., 2015). MTLOs play an 60 

important role as intermediate components between lower trophic levels (phytoplankton and 61 

zooplankton) and predators, including commercially targeted fish species (Bertrand et al., 62 

2002; Duffy et al., 2017; Olson et al., 2014) as well as emblematic endangered marine species 63 

(Lambert et al., 2014; Miller et al., 2018). The feeding habitats and vertical behaviors of 64 

predators through the water column are very diverse (e.g. Benoit-Bird and McManus, 2012; 65 

Choy et al., 2017). Moreover, the habitat depth range of a specific predator may change 66 

spatially, as a function of prey distribution or due to physiological tolerance to environmental 67 

parameters (Houssard et al., 2017; Schaefer and Fuller, 2010, 2007). Ecosystem Based 68 

Fishery Management (EBFM) aims to develop relevant knowledge on ecological mechanisms 69 

and processes that shape such predator-prey interactions (Christensen et al., 1996; Koslow, 70 

2009). To date, most of the studies assessing the influence of prey distribution on predator 71 

distribution at regional scales have used ecosystem models (e.g. Lambert et al., 2014; Miller 72 

et al., 2018). Observations and data on the vertical distribution of prey are still lacking, 73 

although they could greatly contribute to calibrate state-of-the-art ecosystem models that 74 

inform EBFM (Fulton et al., 2005; Lehodey et al., 2010; Maury, 2010; Pauly et al., 2000; 75 

Shin and Cury, 2001). 76 

MTLOs are usually aggregated into layers, which are present in all ocean basins between the 77 

surface and 2000m depth (Opdal et al., 2008). The thickness of a single layer ranges from a 78 

few meters to tens of meters, and the layer can horizontally spread over hundreds of 79 

kilometers (Benoit-Bird et al., 2017). Layers of MTLOs residing in the epipelagic zone (0-80 

200m) are referred to as shallow scattering layers (SSLs) and those in the mesopelagic zone 81 

(200-1000m) as deep scattering layers (DSLs). The aggregation of pelagic organisms into 82 

scattering layers is a highly organized process of many individuals reacting to predation 83 

pressure as well as to environmental resources such as food availability, temperature, or 84 

oxygen concentration (Benoit-Bird et al., 2017; Cade and Benoit-Bird, 2015; Ritz et al., 85 

2011). Scattering layer characteristics (depth, echo intensity, composition and number of 86 

layers) vary geographically and seasonally (e.g. Escobar-Flores et al., 2018a). DSL depth has 87 

been linked to various environmental variables such as seawater density (Godo et al., 2012) or 88 

oxygen concentration (Bianchi et al., 2013a; Klevjer et al., 2016). Primary production and sea 89 
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temperature also affect the DSL and SSL echo intensity (Escobar-Flores et al., 2013; Irigoien 90 

et al., 2014), and DSLs are sometimes split into more than one layer comprising different 91 

species (Ariza et al., 2016a; Benoit-Bird and Au, 2004).  92 

Day DSLs and night SSLs are connected through diel vertical migration (DVM), a well-93 

known phenomenon observed at the global scale (Bianchi and Mislan, 2016; Klevjer et al., 94 

2016). recognized as the world’s largest animal migration (Hays, 2003). DVM patterns relate 95 

to population-wide movements in the water column, with ascents and descents of a large 96 

proportion of the MTLOs from the mesopelagic zone, where they remain during day time, 97 

toward the more productive epipelagic zone (0-200m)  where they feed during the night 98 

(Pearre, 2003). By migrating between surface and deep waters, MTLOs actively contribute to 99 

the downward flux of nutrients and particulate organic matter via their respiration and 100 

excretion processes (Ariza et al., 2015; Drazen and Sutton, 2017). Quantifying the proportion 101 

of MTLOs performing DVM and identifying the environmental drivers can thus contribute to 102 

a better understanding of the overall role of DVM in the global carbon cycle (Aumont et al., 103 

2018; Belcher et al., 2019).  104 

Data from scientific calibrated echo sounders  can provide a proxy of the vertical distribution 105 

of SSLs and DSLs (Kloser et al., 2002). Single-frequency acoustic data from echo sounders at 106 

38 kHz and lower frequencies can typically describe both SSLs and DSLs down to 1000m, 107 

encompassing the entire DVM. Because they vary widely in two dimensions (depth and 108 

time/distance), echograms are complex to analyze in relation to a multivariate environment. 109 

Most studies simplify information contained in the depth profile of an echogram through few 110 

metrics and analyze them through time together with environmental variables. For instance, 111 

acoustic backscatter has been studied using invariant depth-averaged vertical layers (e.g. 0-112 

200m and 200-1000m) (e.g. Bedford et al., 2015; Behagle et al., 2014; Doray et al., 2009). 113 

Other studies extracted schools or layers and studied these layers’ depth, thickness and echo 114 

intensity (Burgos and Horne, 2008; Proud et al., 2018a). These methods provide information 115 

on the layer echo intensity variability but not on the vertical structure variability. Behagle et 116 

al. (2016) and Boersch-Supan et al. (2017) classified vertical acoustic profiles but they did not 117 

test the influence of environmental parameters on their classification results.  118 

To author’s knowledge, there is not any robust method that statistically links the complete 119 

vertical distribution of scattering layers to environmental variables. We attempted to fill part 120 

of this gap by designing a method to link the vertical distribution of MTLOs to oceanographic 121 
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conditions; and using this method to predict vertical distributions in un-sampled areas with 122 

similar environmental conditions. We used acoustic vertical profiles as sampling units from 123 

six cruises, and classified them into clusters to first describe the main vertical profile modes. 124 

We then modeled, with a machine learning algorithm, clusters as a function of environmental 125 

variables to understand the main links between oceanographic factors and vertical 126 

distribution. We finally predicted vertical echograms and migrant proportion between SSL 127 

and DSL at the scale of the New Caledonian EEZ in un-sampled regions where oceanographic 128 

data were available. 129 

2. Material and Methods 130 

Our study area fell within the New Caledonian Exclusive Economic Zone (EEZ), a region of 131 

more than 1.4 million km². Recent studies have provided an overview of the physical and 132 

biological oceanographic context in the New Caledonian EEZ (Ceccarelli et al., 2013; 133 

Menkes et al., 2015). Studies specifically focusing on micronekton have explored species 134 

richness and diversity in the region, identifying more than 480 MTLO species (e.g. 135 

Grandperrin, 1975; Payri et al., 2019), as well as the spatial-temporal distributions of MTLOs 136 

averaged in the 20-120m layer (Receveur et al., submitted). We focused on the MTLOs 137 

vertical distribution in the present study.  138 

2.1. Acoustic data  139 

We gathered data from six cruises (Nectalis 1-5 referred to as N1 to N5, and Puffalis) on 140 

board the R/V Alis in the New Caledonian EEZ, covering the area between 156°E–175°E and 141 

14°S–27°S over the period 2011 to 2017 (Figure 1, Table 1). During the cruises, in situ 142 

acoustic data were recorded continuously using an EK60 echo sounder (SIMRAD Kongsberg 143 

Maritime AS, Horten, Norway) connected to four split-beam transducers at 38, 70, 120 and 144 

200 kHz. EK60 calibration was performed according to Foote et al. (1987) for each cruise. In 145 

the present study, we used 38 kHz only. The hull-mounted transducer was 4m below the 146 

surface and shallower than 6m below the transducer face was deleted from the records (data 147 

collection started at 10m below the surface). The maximum detection range was 800m for all 148 

the surveys except for N1 cruise, where the records were limited to <600m depth. For 149 

consistency, the analyses were thus limited to 600m.  150 

All raw acoustic data were processed with the open-source Matecho software (Perrot et al., 151 

2018). A first cleaning step removed ghost bottom echoes. Then, four semi-automatic 152 
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cleaning filters were applied to: (i) remove acoustic device interference (‘un-parasite’ 153 

Matecho filter), (ii) remove attenuated signals (‘white pings’ filter), (iii) remove elevated 154 

signals (‘deep spike’ filter) and (iv) reduce background noise (De Robertis and Higginbottom, 155 

2007). Details of filter parameters can be found in Behagle et al. (2016) and Perrot et al. 156 

(2018). After data cleaning, the echo-integration was done on cells of 1m-deep and 0.1nm-157 

long, providing volume backscattering strength    data               (hereafter referred to 158 

as echo intensity), the linear measure of the volume backscattering strength              159 

  
  
    and the area backscattering strength              

     , a proxy for the MTLOs’ 160 

biomass (Irigoien et al., 2014) (Maclennan et al., 2002) for each cell. We used the linear form 161 

   when arithmetic operations were necessary.  162 

Vertical profiles were smoothed using a locally polynomial quantile regression (Koenker, 163 

2004) to remove high-frequency peaks (e.g. interferences or very small schools that create 164 

peaks in an acoustic profile) that were considered non-interpretable in the present study. Each 165 

vertical profile ranging from 10 to 600m was averaged in 4m vertical bins keeping the 0.1nm 166 

horizontal resolution. Correlations between consecutive vertical profiles were high for 167 

distances ranging from 0.1 to 0.4 nm and decreased after. We then selected one profile out of 168 

four to limit autocorrelation effects. The final dataset was composed of 16715 vertical 169 

profiles. 170 

2.2. Environmental data 171 

Table A1 displays the environmental variables selected to explore the physical drivers of the 172 

MTLOs’ vertical distribution. For each vertical profile, environmental data were extracted at 173 

the dates and positions of the acoustic samples. 174 

Bathymetry data were extracted from the ZoNéCo database at a 500m spatial resolution 175 

(ZoNéCo, 2013). Sun inclination was calculated as a function of spatial position and date, 176 

with negative values for nights and positive values for days (Blanc and Wald, 2012; 177 

Michalsky, 1988). Twilight periods (i.e. dawn and dusk periods) were defined as the periods 178 

when sun inclination was in the range -10° and 10°. During these periods, as organisms 179 

actively swim up or down due to DVM, their orientations change, creating strong variability 180 

in backscatter (McGehee et al., 1998; Zedel et al., 2005), and were removed from the final 181 

dataset. Hence, migration vertical profiles are highly changeable. 182 
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2.2.1. Inter-annual surface variables 183 

Sea Surface Temperature (SST) was taken from the NOAA OI SST High Resolution Dataset 184 

at a daily resolution (Reynolds et al., 2007). The depth of the 20°C isotherm and the surface 185 

geostrophic ocean velocity amplitude were extracted from the Armor3D dataset (Guinehut et 186 

al., 2012) available at a weekly time scale. The depth of the euphotic zone was extracted from 187 

the MERCATOR GLORYS2V4 reanalysis (Garric et al., 2017) at a weekly resolution. 188 

Surface wind amplitudes were obtained from Cross-Calibrated Multi-Platform (CCMP-v2, 189 

Wentz et al., 2015) datasets at a weekly resolution. Surface chlorophyll-a was extracted from 190 

GLOBCOLOUR (Saulquin et al., 2009) at a daily resolution. All interannual variables were 191 

extracted on a ¼° spatial grid and were included as environmental covariates for modeling 192 

acoustic profiles (see section 2.3). 193 

2.2.2. Subsurface datasets 194 

In addition to surface values, Armor3D provided an ocean reanalysis of observed vertical 195 

profiles of ocean temperature (T) and salinity (S) (Guinehut et al., 2012). Armord3D was used 196 

rather than CTD field data, because CTD casts were only taken at a limited number of 197 

sampling stations (156 stations, Figure 1). However we systematically checked the 198 

relationship between CTD and co-located Armor3D data (correlation of 0.99 for temperature 199 

values and 0.96 for salinity values). We extracted the oxygen (O2) vertical distribution from 200 

the climatological dataset CARS (Ridgway et al., 2002) as inter-annual data are not available. 201 

We also checked the relationship between co-located CTD and CARS data and we found a 202 

correlation of 0.74. We used the 6-606m monthly averages of seasonal temperature, salinity 203 

and oxygen (30m vertical resolution) at a 1/2° spatial resolution as environmental variables 204 

for modeling acoustic profiles (see section 2.3). 205 

2.2.3. Water masses 206 

Water masses describe bodies of water with homogenous physical properties, and constitute a 207 

synthetic way of understanding the physical oceanography. Water masses can be defined in 208 

terms of temperature, salinity (hence density) and oxygen values and have been described in 209 

the south west Pacific (Gasparin et al., 2014; Germineaud et al., 2016). We pooled 210 

temperature, salinity and oxygen values for all depths in the top 606m as derived from 211 

Armor3D and CARS (Figure A1). We then classified data with a k-means algorithm 212 

(Hartigan and Wong, 1979) and identified five distinct water masses corresponding to those 213 
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identified by Gasparin et al. (2014) and Germineaud et al. (2016) (water masses’ full 214 

description in Figure A1 and Table A2).  The cluster results were transformed into water mass 215 

covariates by calculating, for each acoustic profile, the vertical proportion in depth occupied 216 

by the corresponding water mass in the water column.  217 

2.3. Statistical methods 218 

Figure 2 displays the schematic framework of the analyses, considering one acoustic vertical 219 

profile as the sampling unit (one ‘observation’ hereafter). We first reduced the vertical 220 

dimension by principal component analysis and then classified the acoustic profiles in 221 

homogenous groups using their principal coordinates as variables. In the last step, we fitted a 222 

machine-learning type model to link vertical profile clusters to environmental variables.  223 

2.3.1. Noise reduction and classification 224 

A Principal Component Analysis (PCA, Jolliffe, 2011) allowed us to reduce the dimensions 225 

of observations (Figure 2, left panel, step 1). Vertical acoustic profiles were then grouped 226 

using a model-based clustering (MBC) (Figure 2, left panel, step 2). As PCA brings similar 227 

observations close, we performed clustering based on the density of observations in PCA 228 

space (or similar). Each cluster was centered around points (e.g. the clusters’ center) where 229 

the point density was the highest in the PCA space (Fraley and Raftery, 2002). We maximized 230 

the Bayesian Information Criteria (BIC) (Raftery, 1995) to select the appropriate number of 231 

clusters. BIC values as a function of the number of classes were plotted, and we added the 232 

BIC values derivative to better identify discontinuities.  233 

2.3.2. Metrics on vertical profiles  234 

Acoustic metrics were calculated using    (linearized backscatter) according to Urmy et al. 235 

(2012). We calculated the mean backscatter value over the entire vertical profile (called 236 

‘density’) and a mean depth location calculated by the average sampled depths weighted by 237 

their    values (called ‘center of mass’). We calculated a proxy of the acoustic aggregation 238 

rate over the water column: a high value corresponds to high backscatter concentrated over 239 

short depth ranges in the vertical profiles (called ‘aggregation’). These metrics are detailed in 240 

Table 2 (see also Urmy et al. 2012). 241 

2.3.3. Environmental factors driving the acoustic clusters 242 
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A “machine-learning” model was fitted to link the acoustic clusters to environmental 243 

covariates (Figure 2, left panel, step 3). We used the XGBoost algorithm (eXtreme Gradient 244 

tree Boosting), which is an optimized distributed gradient boosting designed to be highly 245 

efficient, flexible and portable (Chen and Guestrin, 2016). XGBoost uses machine-learning 246 

algorithms under the Gradient Boosting framework. The basic idea is to incrementally create 247 

new sub-models that predict the residuals or errors of prior sub-models, and then merge sub-248 

models together to make the final prediction. Gradient boosting uses a gradient descent 249 

algorithm to minimize the loss when adding new models. We used cross-validation to tune 250 

parameters (Browne and Cudeck, 1989), with the proportion of well-classified observations in 251 

the validation dataset as the criterion. The model was first fitted on a training dataset (75% of 252 

randomly selected profiles) and then tested on a validation dataset (the remaining 25% of 253 

data). To prevent overfitting, XGBoost parameters were set equal to 0.3 for the learning rate η 254 

and to six maximum tree depths. Environmental variables listed in section 2.2 were included 255 

as covariates. 256 

To rank the importance of covariates, SHapley Additive exPlanation (SHAP) values were 257 

computed (Lundberg et al., 2018) for the overall model and for each cluster. SHAP values 258 

indicated how much a given covariate value could change the predicted value compared to the 259 

prediction done without this covariate (Lundberg and Lee, 2017). For instance, a high SHAP 260 

value for a given covariate value indicates a strong significance in the prediction. For a given 261 

prediction, the difference between the value predicted by the model (e.g. the set of 262 

probabilities to be in each acoustic cluster) and the predicted value without one covariate was 263 

calculated. To take into account the integration order of the remaining covariates, all possible 264 

orders of covariate inputs were tested for predictions. Then, all differences were added to 265 

calculate SHAP values. Following the same process, SHAP values were calculated for other 266 

covariates. By averaging SHAP values by covariate across all the observations, we could rank 267 

the explanatory variables in the final model.  268 

In the same way, SHAP values could be averaged by covariates across groups of observations 269 

(for example acoustic clusters) to determine the importance of each explanatory variable for 270 

those groups. To visualize the importance of variables by cluster in the predicted 271 

observations, we first normalized and centered the covariates. Then we plotted, by acoustic 272 

cluster and for each covariate, SHAP values for each predicted value associated with that 273 

covariate, with color coding for the normalized covariate value (green to yellow, see Figure 8 274 

and section 3.2 for a complete interpretation). 275 
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2.3.4. Model predictions 276 

We next used the model as a predictive tool (Figure 2, right panel) based on the climatology 277 

of all explanatory variables computed in a given spatial cell (latitude and longitude resolution 278 

of ¼°). The distribution of prediction dataset values were similar to observation dataset values 279 

(Figure A2). For each spatial cell, the model predicted the probability of belonging to each 280 

acoustic cluster (Figure 2, right panel). Two alternative approaches were considered to finally 281 

allocate one acoustic profile per cell: 1) we selected the acoustic cluster with the highest 282 

probability; and 2) we calculated each mean vertical profile by cluster, and then we averaged 283 

the mean vertical profiles of clusters weighted by their predicted probability (Figure 2, right).   284 

The second option allowed us to predict acoustic values for all EEZ cells by month, during 285 

day and night, and at each depth. We then estimated echograms for the whole EEZ and 286 

produced maps of the integrated 10-600m acoustic value by season. Finally, we quantified the 287 

proportion of migrant MTLOs (%) with:  288 

   
  
     

 

  
 ,   Eq. (1) 289 

with    representing the proportion of migrants,   
  the mean    for a given vertical layer 290 

(e.g. 10-200m) during the night in     and   
  the mean    for the same layer during the day.  291 

Statistical analyses were performed using R (Core Team, 2018) version 3.5.0. Classification 292 

was carried out using the library “mclust” (Scrucca et al., 2016) with the ‘VVV’ option. 293 

Extreme gradient boosting tree was carried out with the “xgboost” package (Chen et al., 294 

2018).  295 

3. Results 296 

The six cruises provided a dataset covering the two mains seasons as well as most of the New 297 

Caledonian EEZ. Cruises N2, N3 and N5 were carried out during the warm season 298 

(December-May), and N1 and N4 during the cold season (June-November) (Table 1). The 299 

New Caledonian EEZ was reasonably well sampled, with cruise tracks for N1 and N2 300 

covering the northern region, N3 the west, N4 the south-west, N5 the south-east, and Puffalis 301 

close to the coast (Figure 1). The full dataset encompassed more than 17500km (e.g. about 302 

9500nm), including 16715 vertical profiles each with 146 depth points in the 10-600m depth 303 

range.  304 
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3.1. Main patterns of MTLOs vertical distribution  305 

The first two axes of the PCA accounted for 64.3% of the variability and revealed two high 306 

density regions of acoustic profiles well separated on the first axis. Within these regions a 307 

secondary maximum appeared, separated on the second axis (Figure 3A). The first axis split 308 

night from day profiles (50%), and the second axis split the vertical profiles geographically: 309 

those located in the north from those located in the south of the EEZ (14.3%). The cumulative 310 

variance explained by the axes increased relatively quickly (Figure 3B). We thus kept the first 311 

11 PCA components for the MBC classification step, as these 11 dimensions (instead of the 312 

initial 146 depths) contributed to 90% of the vertical profile shapes. Based on the BIC curve 313 

and its derivative function, 10 clusters were chosen rather than two or four which are the three 314 

first peaks highlighted by the derivative curve. Two or four clusters appeared too low to 315 

correctly represent the high diversity of acoustic vertical profile shapes observed among the 316 

16715 observations (Figure 3C). Moreover, the BIC increased quickly between one and 10 317 

clusters, after which the rate of increase was smaller. Finally, 10 clusters allowed us to keep 318 

the number of clusters interpretable.   319 

Day and night profiles were almost perfectly separated into different acoustic clusters. Six 320 

clusters were mainly composed of day profiles (light grey bar on Figure 4A, referred as ‘day 321 

group’ hereafter) and four clusters were composed mainly of night profiles (dark grey bar on 322 

Figure 4A, referred as ‘night group’ hereafter). The number of acoustic profiles per cluster 323 

ranged from 277 to 2065. Cluster 10 contained less than 300 vertical profiles, while the other 324 

clusters described frequent features with more than 1000 profiles per cluster. The spatial 325 

distribution of the acoustic clusters indicated a north-south separation for both day and night 326 

groups (Figure 4B) with clusters 1, 6 (day) and 5 (night) in the north, and clusters 7 (day), 4 327 

and 8 (night) in the south of the EEZ.  328 

Among the six day clusters (Figure 5), we observed persistent detections at 20-80m, which 329 

were composed of non-migrant MTLOs staying within the upper 150m zone during the day. 330 

DSLs were located between 450 and 600m depth. Cluster 10 displayed an intermediate layer 331 

in the 350-400m range. Cluster 9 had the highest density and cluster 6 the lowest, showing a 332 

very flat profile indicative of a near empty water column (Table 3). The center of mass of the 333 

clusters varied according to the echo intensity of the SSL and DSL: the shallowest center of 334 

mass (338.2m) of cluster 2 was due to a strong SSL, while cluster 10 had the deepest mass 335 

center (408.5m) due to an intense DSL. For other day clusters, the center of mass varied 336 
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between 340 and 385m depth, indicating an almost equivalent ratio between DSL and SSL 337 

intensities. Clusters 7 and 10 were the most aggregated clusters (aggregation index greater 338 

than 1.5). Indeed, these two clusters showed a narrower DSL than the other clusters. Cluster 9 339 

showed a more gradual change in DSL intensity than other clusters (Figure 5) and a very 340 

small aggregation index (Table 3), indicating a diffuse vertical distribution through the water 341 

column. In addition, profiles of cluster 9 were mainly located at the beginning or at the end of 342 

transects (Figure 4B).  343 

The shape variability of the night vertical profiles among clusters (Figure 6) was concentrated 344 

on the epipelagic zone. Two clusters had two well-marked SSLs (clusters 4 and 8) and other 345 

clusters had one high peak only (cluster 3) (Figure 6). Clusters 4 and 8 had the highest 346 

densities (Table 3) and were found in the south (Figure 4B). By contrast, cluster 5 had the 347 

smallest densities and was mainly found in the north. The deepest center of mass was 187m 348 

for cluster 8 and the shallowest was 144m for cluster 3, which had a very intense SSL. 349 

Clusters 4 and 8 in the south of the EEZ had, on average, a deeper mass center than other 350 

night clusters. Cluster 8 was the most aggregated, and cluster 5 ranked second. Clusters 3 and 351 

4 were less aggregated.  352 

3.2. Environmental influence on the vertical distribution  353 

The relationships between acoustic clusters and environmental covariates were examined 354 

using XGBoost modelling (Figure 2, left panel, step 3). Among the 16 explanatory variables, 355 

the least important covariates were the proportion of the five water masses and ocean currents. 356 

They were removed from the final model as all six together increased the success rate of the 357 

model (i.e., the rate of the well-classified profiles from the validation dataset) by only 1%. 358 

The success rate of the most parsimonious model reached 87%. 359 

The most influential variable on the profile shape was sun inclination (Figure 7). This major 360 

effect was due to the DVM signal. The second most important variable was oxygen followed 361 

by bathymetry, 20°C isotherm depth, mean temperature over 6-606m and euphotic depth. 362 

Wind, chlorophyll-a, and SST ranked then. Mean salinity was the last one. 363 

As the sun inclination influence is obvious by comparing day and night clusters, we removed 364 

it from Figures 8 and 9 to clarify and simplify them. The SHAP values of sun inclination can 365 

be found in Figure A3. 366 
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For acoustic cluster 1, the significant covariates were bathymetry, mean temperature, euphotic 367 

depth and SST (Figure 8). The high values of mean temperature and SST had a strong 368 

influence on this cluster (green and yellow colors indicating high temperature values together 369 

with high SHAP value), as well as values of deep bathymetry. High oxygen, bathymetry, deep 370 

euphotic depth and weak wind contributed significantly to the profiles of cluster 2. For cluster 371 

6, low oxygen and shallow euphotic depth were important, as well as mixed bathymetry 372 

values. The shallowest values of bathymetry, relatively deep values of euphotic depth, low 373 

chlorophyll-a and high oxygen shaped vertical profiles of cluster 7. Profiles of cluster 9 were 374 

mainly influenced by intermediate values of sun inclination (Appendix A3) as well as low 375 

mean oxygen, bathymetry, deep euphotic depth, and strong wind. Finally, profiles of cluster 376 

10 were mostly influenced by deep 20°C isotherm depth.  377 

For the night group, oxygen level influenced all clusters except cluster 8, with low oxygen 378 

values for cluster 5, and high oxygen values for clusters 3 and 4 (Figure 9). The bathymetry 379 

shaped all clusters except cluster 9 with a large diversity of values. Deep 20°C isotherm depth 380 

acted on cluster 3. Quite warm temperatures were important for cluster 5 and extremely cold 381 

temperatures for clusters 3 and 4. The deep euphotic depth impacted cluster 8 and strong 382 

winds clusters 5 and 8. Very low chlorophyll-a concentration had a strong influence on cluster 383 

8 and relatively high chlorophyll-a concentration on cluster 5. Quite warm SST drove cluster 384 

4. Finally, mean salinity did not influence any cluster. 385 

Generally, low oxygen values influenced clusters in the north of the EEZ (clusters 1, 5, 6), 386 

and high oxygen and low chlorophyll-a were significant for clusters in the south (clusters 2, 4, 387 

7 and 8). Bathymetry and oxygen influenced almost all clusters, while the impact of other 388 

covariates was more variable among clusters. 389 

3.3. Prediction at a larger spatial scale  390 

3.3.1. Acoustic regionalization 391 

Figure 10 displays the spatial distribution of the most probable acoustic clusters by season and 392 

by day and night. Day distribution was patchier than night distribution. During the day, cluster 393 

1 dominated in the north during the warm season with a southward extension of its spatial 394 

range during the cold season. Cluster 2 occurred in the south during the two seasons. The 395 

southwest corner was partially invaded by cluster 7 during the warm season. Cluster 10 was 396 

present during the two seasons, but scattered in isolated patches in the south. At night, cluster 397 



 

14 

 

5 dominated in the north of the EEZ, and cluster 4 in the south. The cluster distribution 398 

patterns were very similar during both seasons; however, a small southward extension of 399 

cluster 5 was predicted during the warm season. Cluster 3 and 8 patches were present in the 400 

south of Bellona (see Figure 1 for location) during the warm season.   401 

3.3.2. Vertical predictions of MTLO distributions 402 

Following section 2.3.4, for each spatial cell, we calculated an average vertical acoustic 403 

profile by weighting each mean clusters’ vertical profile by the probability of cluster 404 

occurrence predicted by the model. After estimating the quality of predictions for a given 405 

transect, we predicted acoustic vertical profiles at the scale of the New Caledonian EEZ by 406 

month. Then we averaged values for the 10-600m vertical layer by season. In addition, we 407 

quantified the proportion of migrant MTLOs in the 10-200m layer using Eq. (1). 408 

For illustration, we selected the track of N4 that encompassed 1034 observations. A visual 409 

comparison of the predicted reconstructed echogram versus the observed echogram indicated 410 

that the method could reproduce the main patterns of the observed echogram (Figures 11A 411 

and 11B). Dynamics of some small layers were replicated, as in box (2) where the shallowest 412 

SSL became more intense, or in box (3) where the shallowest SSL connected with the deepest 413 

SSL. However, some other features were not well reproduced, as for box (1) or (5) where 414 

predicted values did not replicate observed changes. Finally in box (4), there was an observed 415 

intensification of the deepest SSL whereas the model predicted an intensification of the 416 

shallowest SSL. The high correlation between observed and predicted    values pooled for all 417 

depths for the N4 cruise (Figure 11C, correlation = 0.88, p-value < 0.0001) indicated again 418 

that the methodology could be used to predict echograms in non-sampled areas if the range of 419 

environmental variables was similar to sampled data.  420 

By averaging predicted acoustic values in the whole water column (10-600m), we proposed 421 

an integrated view of the spatial and seasonal variations of the MTLOs’ distribution (see 422 

Figure 12). The mean backscatter maximum always occurred in the south of the EEZ, 423 

extending toward the north during the cold season.    424 

The proportion of MTLOs migrating within the epipelagic (10-200m) during the night 425 

showed a larger part of migrant population below 20°S, especially in the southeast (Figure 426 

12B). Migrant proportion varied spatially spanning a range from 75% in the north to 85% in 427 

the south with mean values around 78%.  428 



 

15 

 

4. Discussion 429 

By analyzing six cruises of EK60 vertical profiles, we provide new insights into the 430 

spatiotemporal variability in the vertical distribution of MTLOs in the New Caledonian EEZ. 431 

We proposed a statistical framework to link MTLO vertical distributions to oceanographic 432 

conditions. This framework allowed us to predict acoustic vertical distribution with some 433 

success in un-sampled areas. Sun inclination and the mean oxygen concentration were the 434 

main factors driving the acoustic vertical profile shape. Three homogeneous acoustic based 435 

regions, which spatial extent seasonally moved, were identified in the New Caledonian EEZ: 436 

north of 20°S; south of 20°S and west of 165°E; and south of 20°S and east of 165°E. The 437 

northern mean vertical distribution was characterized by weak echo intensities of DSL and 438 

SSL and low mean oxygen values as well as warm SST mainly influenced this vertical 439 

distribution. The vertical distributions in the southwest corner showed strong DSL and SSL 440 

and deep center of gravity; high mean oxygen values and deep euphotic depth drove it. 441 

Finally, southeast corner vertical distributions revealed strong SSL, especially between 0 and 442 

50m and was impacted by shallow euphotic depth and high mean oxygen values. Finally, due 443 

to this spatial pattern of vertical distributions, there were generally more MTLOs in the south 444 

of the New Caledonian EEZ than in the north and the proportion of vertical migrants was 445 

about 75%. 446 

4.1. Methodological framework 447 

Behagle et al. (2016) performed classification of acoustic vertical profiles but they did not 448 

statistically link clusters to environmental covariates. Proud et al. (2018) developed an 449 

innovative approach and classified acoustic layers below 200m to investigate variability in the 450 

vertical distribution of MTLOs. Using a 38 kHz global dataset, they identified six spatially-451 

coherent regional clusters using estimated probability distributions of local SSL depth and of 452 

echo intensity. They mapped the clusters at a global scale and matched them with Longhurst’s 453 

provinces (Longhurst, 1995, 2007). In our work, we fitted relationships between mean MTLO 454 

vertical distribution and environmental covariates and were able to predict vertical acoustic 455 

profiles in un-sampled areas and so at a larger spatial scale than cruise tracks. 456 

Our proposed methodological framework treated the vertical acoustic profiles as the sampling 457 

unit. We thus kept all the shape information contained by the profiles; echo intensity and 458 

location of intermediate layers or moderate peaks were taken into account in the analyses. The 459 
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PCA allowed us to represent the profile data in a lower-dimensional space, reducing the 460 

degrees of freedom while keeping 90% of the variability of the raw dataset. This lower-461 

dimensional space was then grouped into 10 clusters that captured the large variabilities of 462 

vertical shapes and identify three large homogeneous regions. Clusters were then used in a 463 

machine learning algorithm, an approach still underutilized in analyses of marine data despite 464 

their efficiency (De’ath, 2007; Elith et al., 2008). These approaches are often seen as ‘black 465 

boxes’ and the interpretation of the results remains challenging. Here, we obtained a high 466 

performance level (87% in cross validation) for the XGBoost modelling. At the same time, 467 

the importance of each covariate was ranked, and we evaluated how they influenced each 468 

acoustic cluster through SHAP values that have been shown to be reliable indicators of 469 

covariate influence (compare to Gain, split count or Saabas) (Lundberg and Lee, 2017). 470 

However, the use of SHAP values did not allow us to explore the degree of the interactions 471 

among covariates.  472 

The XGBoost model predicted the probability of belonging to a given acoustic cluster based 473 

on a vector of covariate values when the range of covariate values used for the model 474 

prediction were similar to the range covered by the initial data used to build the model. Except 475 

for extremely low values of temperature, oxygen and salinity and for shallow waters, 476 

covariates ranges used for prediction were well sampled (Figure A2). The number of 477 

predicted cells with covariate vectors out of the covariate range sampled were relatively 478 

small, mainly around the Main Island, and extreme northern and southern parts of the EEZ in 479 

the cold season (Figure 10, black points). The narrow range of un-sampled covariate values 480 

even for the two widely different seasons suggests that observational sampling was sufficient 481 

for the purpose of this study. 482 

Using the predicted probabilities at a given point, we reconstructed an acoustic profile by 483 

weighting the mean cluster profiles by these probabilities for each point, leading to a complete 484 

3-D reconstruction of acoustic profiles in the EEZ. Despite that correlation between pooled 485 

observed and reconstructed backscatter values was high, the variability inside the scatter plot 486 

remained relatively high (Figure 11C). Predicted values could vary from +- 10dB for an 487 

observed value, pointing out to the limits of the model in terms of reproducing the exact 488 

variability. A change of a few dB in the backscatter values may result in large biomass 489 

changes (Proud et al., 2018b). Indeed, for layers dominated by Myctophids, a 10dB change 490 

with a 38 kHz frequency could translate into a three-fold increase in animal density (Benoit-491 
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Bird, 2009). Yet, the main strength of the model was to reproduce the MTLOs’ vertical 492 

distribution patterns in space and time rather than predict echo-intensities per se.  493 

In addition, the use of the 38kHz frequency could help in detecting organisms with a 494 

swimbladder (mostly fish) while excluding other organisms without gas-filled swimbladders 495 

(Davison et al., 2015). Foote (1980) even showed that more than 95% of the organisms’ 496 

backscatter at 38 kHz was produced by gas-filled swimbladders of fish and gas-filled 497 

pneumatophores of siphonophores. One major limitation of our study was the inability to 498 

determine if changes in layer intensity and depth position were due to changes in the quantity 499 

or in the community/aggregation composition of MTLOs. Developing a similar method 500 

including species composition would be of great interest. Some efficient algorithms already 501 

exist (e.g. Ariza et al., 2016b; Behagle et al., 2017; Kloser et al., 2016; Korneliussen et al., 502 

2008) based on two or three frequencies that allow for distinguishing among different types of 503 

organisms in echograms. Going further into such analysis would require an extensive program 504 

of in situ sampling with appropriate trawls to identify the species composition of the different 505 

layers. So far, with the in situ samplers available and given the species diversity already 506 

observed (Ceccarelli et al., 2013; Payri et al., 2019), it is unlikely that such a goal can be met 507 

in the near future in the New Caledonian region or in the Coral Sea in general. 508 

4.2. Acoustically based regionalization  509 

Studies of biogeography require methods that partition large areas into distinct regions with 510 

homogeneous biological and/or physical oceanographic conditions (e.g. Longhurst, 1995, 511 

2007). Our findings provide evidence that new statistical tools used on acoustic recordings are 512 

valuable for conducting regionalization that take into account the distribution of MTLOs in 513 

the water column. Several studies already include information on mesopelagic organisms 514 

(Sutton et al., 2017), and even SSL depth and echo intensity (Proud et al., 2017, 2018). Our 515 

methodological framework is reproducible at a global scale, and contributes to the general 516 

effort for partitioning the mesopelagic domain using acoustic information on the vertical 517 

distribution of MTLOs. Such an expansion would require the acquisition of acoustic data on a 518 

large scale and on a ‘routine’ basis, as is done for other variables on ships of opportunity. 519 

Extending the present analysis using a global dataset (e.g. Malaspina 2010 Circumnavigation 520 

Expedition, Irigoien et al., 2014; Klevjer et al., 2016) would allow for the detection of higher 521 

layer depth variability across the world’s ocean. 522 



 

18 

 

By predicting and integrating acoustic values for the whole EEZ, we offered a method to map 523 

out MTLO spatial distribution and a migrant proportion proxy between day DSL and night 524 

SSL. Our range of integrated backscatter 10-600m values was relatively small (-77 to -73dB). 525 

We assumed that this small range was because we averaged DSL and SSL. We showed 526 

previously that echo-intensity layers change differently for the SSL and for the DSL. Yet, the 527 

10-600m integrated values erased echo-intensity changes. The water column was, on average, 528 

denser in MTLOs in the southern part of the EEZ and characterized by higher oxygen 529 

concentrations. To calculate a proportion of migrants, our method assumed that mean 530 

backscatter values for the epipelagic layer during the night and the day were comparable, e.g. 531 

that MTLO community acoustic responses were similar. Because of DVM, we acknowledge 532 

that this hypothesis was strong and that results need to be considered with some caution. The 533 

75% proportion of migrants between day DSL and night SSL we estimated is similar to   the 534 

62% reported by Klevjer et al. (2016) for the South Pacific. The large proportion of migrants 535 

between the night DSL and the day SSL points out the essential role of DVM in the carbon 536 

cycle, as already demonstrated (e.g. Davison et al., 2013; Hidaka et al., 2001; Schukat et al., 537 

2013). However, our dataset is limited to the upper 600m of the water column, missing a part 538 

of the DSL. Thus, having data incorporating depth layers down to 1000m would help to 539 

clarify migration processes as well as organism identification – information that could aid in 540 

distinguishing migrant from non-migrant organisms. 541 

Very few biogeochemical models constructed to date have included DVM processes (Ariza et 542 

al., 2015). Bianchi et al. (2013b) implemented a DVM on a size-structured NPZD model 543 

(Nutrient, Phytoplankton, Zooplankton and Detritus). They reported a migrants’ proportion 544 

range from 31% (158°W-22.5°N, ALOHA station) to 63% (161°E-47°N, K2 station) between 545 

the night DSL and the day SSL. By including for the first time DVM in an end-to-end 546 

ecosystem model, Aumont et al. (2018) estimated a contribution of migratory meso- and 547 

macro-zooplankton organisms (e.g. smaller than organisms detected by our 38 kHz) to the 548 

total epipelagic biomass of about 50% around New Caledonia. Along the same lines, 549 

including proportions of migrant and non-migrant MTLOs in models would certainly improve 550 

the understanding of carbon cycling in such lower trophic ecosystem models.  551 

4.3. Environmental drivers of the MTLOs vertical distribution  552 

Physiological tolerance varies by species (Duffy et al., 2017). Hence, direct relationships 553 

between acoustic echo-intensities and environmental covariates are complex to understand 554 
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due to the high species diversity including MTLOs. In this section, we made some hypothesis 555 

based on the literature about environmental effects on MTLO dynamics without analyzing 556 

them by species.  557 

4.3.1. Role of the most significant covariates 558 

Sun inclination was by far the most important covariate influencing acoustic vertical profiles. 559 

Indeed, the DVM pattern drastically affects the shape of the vertical profiles at night and 560 

during the day. Ascents and descents of MTLOs depend strongly on light intensity, with 561 

migrating organisms generally going up to the surface at night to feed, and returning back to 562 

deep layers during the day to avoid visual predation (Benoit-Bird and Au, 2004; Hays, 2003). 563 

The oxygen concentration averaged over the 6-606m water column was the second most 564 

important covariate influencing the vertical profiles. We highlighted a positive influence of 565 

oxygen concentration on the mean echo intensity, indeed we found that vertical profiles with 566 

high mean density were influenced by high oxygen values. Previous studies demonstrated the 567 

influence on MTLOs’ residing depth. Indeed, in the South Pacific, the lower vertical 568 

expansion of daytime and nighttime SSLs is limited by the depth of the oxygen minimum 569 

(Bertrand et al., 2010), and Bianchi et al. (2013b) demonstrated at a global scale that the 570 

higher the oxygen concentration, the deeper the DSL daytime depth. Our results are in 571 

contrast with the widespread hypotheses that low oxygen concentrations provide a refuge 572 

from large visual predators and so enhance acoustic values (Bianchi et al., 2013a; Steinberg et 573 

al., 2008). As there is no oxygen minimum zone in the region, MTLOs are different from 574 

organisms present in regions with oxygen minimum zone. High oxygen at depth in New 575 

Caledonia EEZ may then help support higher aggregations of respiring organisms at depth 576 

during the day. As oxygen minimum zones are predicted to expand both spatially and 577 

vertically in the future (Keeling et al., 2010), the direct impacts on predator distribution 578 

(Stramma et al., 2012) are likely to be heightened by changes in prey distribution. 579 

Bathymetry was the third most important variable influencing vertical profile characteristics 580 

(Figure 7). The topography of the deep ocean floor is complex around New Caledonia 581 

(Gardes et al., 2014), with the presence of three ridges, numerous seamounts with a high 582 

shape diversity, one trench and some sedimentary basins. The presence of seamounts, distance 583 

to the coast, differences in the topography of the ocean floor between the north and south New 584 

Caledonian EEZ affected MTLO vertical distribution. The highest 10-600m mean predicted 585 
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acoustic values occurred in the southeast corner, which was characterized by a highly variable 586 

bathymetry (Figure 12). Shallow waters offer lower-quality habitat for mesopelagic organisms 587 

and may induce increased density in scattering layers of MTLOs in the upper layers of the 588 

water column (Escobar-Flores et al., 2018b). In addition, the southeast corner of the EEZ has 589 

a high density of seamounts that can enhance the mean backscatter values. Seamount impacts 590 

on MTLO dynamics are a function of the type of seamount (e.g. isolated or not, shape, depth, 591 

upwelling, currents) and of the organisms that aggregate around seamounts (e.g. Drazen et al., 592 

2011; Morato et al., 2010, 2008; Rogers, 2018). 593 

4.3.2. Other environmental drivers of MTLOs vertical distribution 594 

A deep 20°C isotherm strongly impacted profiles of clusters in the south during the warm 595 

season (cluster 3, Figure 10). The depth of the 20°C isotherm is a proxy of thermocline 596 

location: a deeper 20°C isotherm is associated with higher stratification and limits nutrient 597 

inputs in the euphotic surface layer (Kessler and Cravatte, 2013; Le Borgne et al., 2011). 598 

Conversely, a 20°C isotherm close to the surface boosts vertical transport of nutrients to the 599 

euphotic layer, and could potentially stimulate the trophic web through enhancing 600 

phytoplankton, zooplankton and micronekton production (Benoit-Bird and McManus, 2012; 601 

Lebourges-Dhaussy et al., 2014). We emphasized that the link to the isotherm depth was not 602 

causal (isotherm depths do not act on animals) but instead reflected different oceanographic 603 

conditions. Isotherm depth can also be considered as a proxy for the presence of eddies. 604 

Keppler et al. (2018) identified two areas in the New Caledonian EEZ with distinct eddy 605 

characteristics: a smaller number of eddies with a longer lifetime in the southern portion of 606 

the EEZ part compared to the northern part, with a clear limit at 20°S that corresponds with 607 

the spatial delimitation of Figure 10. 608 

Mean 0-600m temperature also impacted acoustic clusters. Spatial patterns of mean 609 

temperature showed a strong north-south gradient, with one front well delimited around 20°S 610 

(Menkes et al., 2015). This north-south separation coincides with the spatial distribution of 611 

the predicted acoustic clusters (Figure 10). We hypothesized that mean temperature was 612 

simply a measure of hydrographic features that likely reflected different oceanographic 613 

conditions. Therefore, mean temperature appeared to delimit large homogeneous 614 

biogeographic regions (the north from the south of the EEZ) rather than having a direct 615 

impact on organisms.  616 
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The deep euphotic zone had a strong influence on clusters with a deeper center of mass 617 

(clusters 7, 8 and 9). A deep euphotic zone indicates a deep chlorophyll maximum 618 

characterizing oligotrophic areas dominated by vertical processes with nutrients coming from 619 

deep waters. Given that three clusters showed more intense deep SSL compare to other 620 

clusters, we assume that a deep euphotic zone allowed ecosystem organization around the 621 

chlorophyll maximum with deep zooplankton maxima and, in turn, deep SSL.  622 

High values of surface chlorophyll-a concentration had a strong influence on vertical profiles, 623 

with the highest echo intensities at the surface layer (daytime cluster 2, Figure 5). We suggest 624 

that the enhancement of primary production at the surface during the day could be associated 625 

with enhanced zooplankton production, leading to an increase in MTLO density in that part of 626 

the water column. The trophic link of a positive relationship between primary production and 627 

mesopelagic organisms had been found previously (Escobar-Flores et al., 2013; Irigoien et al., 628 

2014), but at a much wider scale.   629 

Finally, we did not find any effect of the water mass proportions in the New Caledonian EEZ 630 

while previous studies (Behagle et al., 2016; Sutton and Beckley, 2017; Jungblut et al., 2017) 631 

documented this factor as significant. Water masses are often linked to biogeographical 632 

provinces (Briggs and Bowen, 2012) at a wide spatial scale. We hypothesized that the size of 633 

New Caledonian EEZ and the lack of contrasting water masses precluded the detection of a 634 

significant effect in our case. 635 

4.4. Conclusion and perspectives  636 

While acoustics provides a useful avenue for routine measurement of crucial trophic level 637 

organisms, it remains that analyses of such datasets depend on knowledge of the species 638 

giving rise to the signal. Indeed, it is crucial to increase our understanding of the actual 639 

relationships between acoustic output and true species composition and density.  So far, in our 640 

region, the lack of adequate in situ sampling is a major limitation to our understanding of the 641 

ecological processes based on acoustic data. 642 

Our findings highlight the importance of the environmental variables characterizing the 643 

structure of the water column, such as the mean oxygen, the euphotic depth (as a proxy for the 644 

vertical structure of primary production) and the 20°C isotherm depth (as a proxy for the 645 

functioning of ocean dynamics such as upwelling or down welling). Investigating the links 646 

between the 3-D oceanographic conditions and the dynamics of MTLO distributions requires 647 
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information on the physics, biogeochemistry and biology of the upper (< ~1000m) water 648 

column. Accessing 3-D high-resolution oceanographic data or models to understand complex 649 

interactions at the acoustic data acquisition scale is not yet possible. For instance, we did not 650 

find a satisfying 3-D biogeochemical model estimating the values of primary production that 651 

matched with our in situ data. Consolidating and validating coupled dynamical-652 

biogeochemical 3-D models will strongly contribute to a better comprehension of the pelagic 653 

ecosystem.  654 

Variability in scattering layer depths during day and night impacts predator-prey interactions, 655 

including the predators’ energy budget allocated to feeding. For active vertically migrating 656 

predators, the possibility to feed in shallow, warm, and rich water brings energetic savings 657 

(Hazen et al., 2015). Acoustic data are extremely helpful for analyzing predator-prey 658 

interactions on a wide scale (Bertrand et al., 2003; Koslow, 2009). Indeed, acoustics recorded 659 

continuously along vessels’ tracks allow building datasets with better coverage than trawl data 660 

or predators’ stomach content, for example. However, the area sampled along cruise tracks 661 

remains small compared to the area in which predators feed. Our model provides the 662 

possibility to fill gaps around acoustic cruise tracks while keeping all the information 663 

contained on acoustic profiles. Then, by averaging vertical predictions on a specific vertical 664 

layer (e.g. 0-30m to link to seabirds foraging compartment), we offer an innovative method to 665 

predict a proxy of prey biomass (through echo intensity) that could be used in predator niche 666 

modeling on large spatial and temporal scales (Briand et al., 2011; Lambert et al., 2014; 667 

Miller et al., 2018). 668 

Further, our method may provide a valuable contribution to assess the climate change impact 669 

on MTLOs, and consequently on pelagic ecosystems as a whole. The increase in ocean 670 

temperature, the extension of low-oxygen zones (Bindoff et al., 2007; Doney et al., 2012) as 671 

well as the possible decrease of the primary production (Bopp et al., 2013) predicted under 672 

future scenarios of environmental change will have dramatic effects on the distribution of 673 

MTLOs (i.e. layer position, abundance and biomass). Our model, including predictive 674 

oceanographic variables could help to predict changes in MTLO vertical distributions (i.e. 675 

layer position and echo intensity) for the next 100 years using climate change scenarios as 676 

Proud et al. (2017) did.   677 
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 1096 
Figure 1: Cruise tracks of the R/V Alis with EK60 echosounder (colored lines) in the New Caledonian 1097 
Exclusive Economic Zone. Black boxes show CTD stations. The background grey colors represent the 1098 
relative seabed depth (where lighter colors are shallower). Note that N1 and N2 tracks partially 1099 
overlap but N2 track has been slightly shifted to the north for visualization purposes. 1100 
 1101 
 1102 

 1103 
Figure 2: Diagram explaining the different steps of the analysis. Details of the approach are provided 1104 

in the text. 1105 
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 1106 
Figure 3: PCA results with the two first axes (panel A) and the cumulative variance explained by the 1107 
PCA dimensions (panel B). MBC classification results: the BIC (Bayesian Information Criterion) is 1108 
represented as a function of the potential number of classes in black, with its derivative curve in grey 1109 
(panel C). 1110 

 1111 

 1112 
Figure 4: Classification results with the number of day and night vertical profiles in each acoustic 1113 
cluster (panel A) and the spatial position of all vertical profiles colored by the acoustic cluster they 1114 
belong to by day (left) and by night (right) (panel B).  1115 
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 1116 

 1117 
Figure 5: Vertical profile medians for each day acoustic class. The grey ribbon is the interquartile 1118 
range.  1119 

 1120 
Figure 6: Vertical profile means for each night acoustic class. The grey ribbon is the interquartile 1121 
range.  1122 

 1123 
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 1124 
Figure 7: Mean SHAP values for the predictions by each environmental covariate (y-axis). 1125 

 1126 

 1127 
Figure 8: SHAP (SHapley Additive exPlanation) values (x-axis) by covariate (y-axis) for each day 1128 
cluster (columns). Every observation is one dot on each row. The SHAP value (x-axis) represents the 1129 
influence of a given covariate on the prediction. The dot color represents the covariate normalized 1130 
value/level: yellow for high value (high normalized SST for example) and dark blue for low value 1131 
(low normalized SST for example). The height of one patch (the violin shape) gives an indication of 1132 
the dot density. Grey rectangles by row and by column show the mean SHAP value by cluster and by 1133 
covariate. Based on these grey rectangles, dots of the four most important covariates by cluster are 1134 
plotted in brighter colors.  1135 
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 1136 
Figure 9: Same as Figure 8 but for the night classes. 1137 

 1138 

 1139 
Figure 10: Main cluster predicted for day (1

st
 row) and night (2

nd
 row) during the cold season (left 1140 

column) and the warm season (right column). Small black dots identify extrapolated points (i.e. where 1141 
predictions were made with at least one covariate value falling outside of the sampled range). White 1142 

areas represents non-predicted regions.  1143 
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 1144 
Figure 11: N4 echogram observed (panel A) and predicted (panel B). The scatter plot of predicted 1145 
values as a function of observed values with the y = x dashed line over all data of N4 (panel C). Boxes 1146 
drawn on the plots are discussed in the main text as box (1), (2), etc. 1147 

 1148 

  1149 
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Figure 12: Predictions of the Sv averaged over the day and the night and through the entire water 1150 
column (10-600m) for the cold season (left) and the warm season (right) (panel A). The ratio of 1151 
migrants (%) between the night and the day for the epipelagic layer (10-200m) (panel B).  1152 
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Table 1: Cruise details, with the cruise name, dates, the number of 0.1nm bins per cruise, and 1153 

the DOI of each cruise.  1154 

Cruise name Start End 
Number of 

0.1nm bins 
DOI 

Nectalis 1 (N1) 30/07/2011 15/08/2011 3681 10.17600/11100050 

Nectalis 2 (N2) 26/11/2011 14/12/2011 2896 10.17600/11100070 

Nectalis 3 (N3) 21/11/2014 08/12/2014 3617 10.17600/14004900 

Nectalis 4 (N4) 19/10/2015 25/10/2015 1034 10.17600/15004000 

Nectalis 5 (N5) 23/11/2016 06/12/2016 3989 10.17600/16004200 

Puffalis (PUFF) 18/03/2017 31/03/2017 1498 10.17600/17003300 

 1155 

 1156 

Table 2: Details of parameters and formulas used for metric calculations.    is the linear 1157 

measure of the volume backscattering strength (m
-1

), z is the depth (m) and all integrals are 1158 
calculated between the first depth level (10m) and the deepest depth (600m).  1159 

Name Metric Formula Parameters Unit  

Density  
Mean volume backscattering 

strength 
         

        

 
        

dB re 1 

m
-1

 

Center of mass Mean vertical localization 
          

        
 - m 

Aggregation Index of aggregation 
      

   

          
 
 - m

-1
 

 1160 

Table 3: Parameters for profiles. Details of calculations are given in Table 3. 1161 

 Day Day Night Night Night Day Day Night Day Day 

1 2 3 4 5 6 7 8 9 10 

N observations 2065 1805 1010 2919 2787 1878 1116 1538 1320 277 

Density (dB) -75.6 -75.2 -72.7 -71.7 -74.0 -76.8 -75.3 -71.4 -75.0 -75.7 

Center of mass (m) 369.3 338.2 144.3 174.7 152.7 339.6 375.0 187.0 385.2 408.5 

Aggregation (m
-1

) 1.28 1.18 2.55 1.72 1.63 1.02 1.63 1.36 0.96 1.84 

 1162 

 1163 


