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Abstract

This paper studies factor modeling for a vector of time series with long-memory

properties to investigate how outliers a�ect the identi�cation of the number of factors

and also proposes a robust method to reduce their impact. The number of factors is

estimated using an eigenvalue analysis for a non-negative de�nite matrix introduced

by Lam et al (2011). Two estimators are proposed; the �rst is based on the classical

sample covariance function, and the second uses a robust covariance function estimate.

In both cases, it is shown that the eigenvalues estimates have similar convergence

rates. Empirical simulations support both estimators for multivariate stationary long-

memory time series and show that the robust method is preferable when the data is

contaminated with additive outliers. Time series of daily log returns are used as an

example of application. In addition to abrupt observations, exchange rates exhibit

non-stationarity properties with long memory parameters greater than one. Then we

use semi-parametric long memory estimators to estimate the fractional parameters

of the series. The number of factors was estimated using the classical and robust

approaches. Due to the in�uence of the abrupt observations, these tools suggested

a di�erent number of factors to model the data. The robust method suggested two

factors, while the classical approach indicated only one factor.

Keywords. Eigenvalues, factor analysis, long-memory, reduced rank, robustness.
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1 Introduction

Multivariate statistical techniques are standard tools for analyzing high-dimensional data.
In this context, factor analysis (FA) is one of the most widely used methods to explain
a considerable number k of series by a small number r of unobservable factors, to im-
prove forecasting, and to capture cross-sectional dependence, among others. A standard
assumption in FA is that the observations are not time-dependent, which is unrealistic in
most application areas. The problem of simplifying multivariate time series structures
dates back to the 1980s when computational advances were minimal to deal with large
time-dependent data sets. For example, Geweke (1977) and Geweke and Singleton (1981)
have adapted FA in the frequency-domain, see also (Priestley et al, 1974; Brillinger, 1981).
Velu et al (1986) have discussed the asymptotic distribution of reduced rank matrix es-
timators in the multivariate auto-regressive model. Other data reduction methods were
proposed in the 1980s see, for example, a review in (Fernández-Macho, 1997) and for more
recent developments, see (Christou, 2020). Several recent surveys have been dedicated to
dynamic factors models, including stationary and non-stationary times series processes in
di�erent areas of applications such as environmental, health, and �nancial sciences see, for
example, (Eichler et al, 2011; Lam et al, 2011; Toman, 2014; Bai and Wang, 2016; Chen
et al, 2020; Fan et al, 2021; Lin et al, 2022; Bai and Zheng, 2023) to mention a few.
Peña and Box (1987) have proposed a simple model to identify hidden factors in multi-
variate short-memory processes. This model is widely used to deal with the identi�cation
of the number of factors, estimation, and dimension-reduction of high-dimensional time
series. Lam et al (2011) and Lam and Yao (2012) have discussed estimation of the latent
factors and a dimension-reduction approach for short-memory processes. They have intro-
duced a nonnegative de�nite matrix that accommodates information on the covariances
of the process for di�erent lags. As an alternative method for estimating the number of
factors suggested by Lam et al (2011), Reisen et al (2019) have proposed an approach
for short-memory processes which is robust against additive outliers and heavy tail dis-
tributions. These authors have established asymptotic properties of the estimator of the
number of factors and have discussed the method's usefulness in air pollution data. Bai
and Zheng (2023) discussed the robust method introduced by Reisen et al (2019). The
authors also suggested an algorithm for constructing bootstrap prediction intervals for the
high-dimensional time series.

Motivated by the importance of dimension reduction in large data sets, this paper gen-
eralizes the recent works on FA by allowing the process to have long-memory properties
and additive outliers, phenomena quite common in many areas of applications. The num-
ber of factors is estimated in terms of an eigenvalue analysis for the nonnegative de�nite
matrix introduced by Lam et al (2011). Two estimators are proposed; one is based on
the classical sample covariance function, and the other on a robust covariance function
estimate. It is proved that the convergence rates of the eigenvalues are the same in the
classical and robust approach. Since outliers are common in many areas, the methods are
empirically investigated in a long-memory framework with and without outliers. Finite
sample performances support the use of the approaches in practical problems. The robust
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method is strongly recommended when the data is contaminated with additive outliers.
Similarly to Lam and Yao (2012), the estimates of the number of factors improve as the
dimension k increases, a phenomenon coined as the �blessing of dimensionality�. To show
the usefulness of the proposed methodology in the dimension reduction problem, this paper
analyses the daily returns of the six following foreign exchange rates against U.S. Dollar.
The series display high-level observations and exhibits the non-stationary phenomenon of
long memory. These features found in the data set are also important in the context of the
methodology proposed here since, so far, the application in dimension reduction factor in
the literature has not considered time series with the non-stationary long memory case and
additive outliers. This paper is organized as follows. Section 2 discusses the model and
the estimators of the rank-reduction and their asymptotic properties. Section 3 displays a
simulation study to verify the �nite sample performance of the methods under the scenarios
of contaminated and non-contaminated multivariate time series. The real data application
is presented in Section 4. A conclusion is given in Section 5 and Section 6 contains the
proofs.

2 The dynamic factor model with long-memory

2.1 Model

Let Yt = (Y1,t, Y2,t, . . . , Yk,t)
′, t ∈ Z, be a zero-mean k-dimensional second-order stationary

time series generated by

Yt = PXt + εt, (1)

where Xt is an unobserved zero-mean r-dimensional stationary time series of common
factors (r ≤ k), P is a k × r matrix of parameters of rank r, and εt is a k-dimensional
white-noise sequence with full-rank covariance matrix Σε. Thus, all the dynamic structure
comes through the common factorsXt. Model (1) was introduced by Peña and Box (1987)
and it has been applied to many economic data see, for example, the review in (Lam and
Yao, 2012). This model is relevant to reduce the dimensionality when r < k, i.e., a large
number k of series can be explained by a small number r of factors. We assume that the
following assumptions hold :

(A1) Xt and εs are uncorrelated for any (t, s) ∈ Z2, and P ′P = Ir, where Ir denotes the
r × r identity matrix.

(A2) Yt is a Gaussian process satisfying

γij(h) ∼ Cijh
−(Di+Dj)/2, as h→ +∞,

for all i, j ∈ {1, . . . , k}, where γij(h) = Cov(Yi,t, Yj,t+h), Cij ∈ R, (Di, Dj) ∈ (0, 1)2.
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In (A1), condition P ′P = Ir ensures identi�ability in (1), see (Peña and Box, 1987) and
(Lam and Yao, 2012) for further details. Assumption (A2) means that Yt is a stationary
long-range dependent process see, for example, (Rooch et al, 2019). It follows from (1)
and (A1) that

ΓY (h) = E[YtY
′
t+h] =

{
PΓX(0)P ′ + Σε when h = 0,

PΓX(h)P ′ when h 6= 0.
(2)

A parametric class of processes satisfying (A2) is the stationary Vector Autoregressive
Fractionally Integrated Moving Average (VARFIMA) process with orders (p, d1, . . . , dk, q)
in which Di = 1 − 2di see, for example, (Chung, 2002, Lemma 2). This model is de�ned
by the di�erence equations

φ(B)Zt = θ(B)ηt, (3)

Zi,t = (1−B)diYi,t (4)

for i = 1, . . . , k, where ηt is a Gaussian zero-mean multivariate white noise process, B is
the backward operator, i.e., BXt = Xt−1 for any process Xt. For any d ∈ R, the time
series (1−B)dXt is de�ned by

(1−B)dXt =
∞∑
k=0

bkXt−k,

where

bk =
k∏
j=1

j − 1− d
j

=
Γ(k − d)

Γ(k + 1)Γ(−d)

are the coe�cients in the Taylor series for (1−z)d when |z| < 1 and Γ(x) =
∫∞
0
tx−1e−tdt is

the Gamma function. It is assumed that p and q are non negative integers and 0 < di < 1/2
for i = 1, . . . , k. The matrix-valued polynomials φ(·) and θ(·) satisfy that det(φ(z)) 6= 0
and det(θ(z)) 6= 0 for all z ∈ C such that |z| ≤ 1. These two conditions are known as
the causality and invertibility properties, respectively. Additional conditions have to be
imposed to obtain an identi�able model, see e.g. (Brockwell and Davis, 2009, page 431) and
(Reinsel, 2003, section 2.3). When all di's are zero, Yt reduces to a VARMA process and
has a short-memory correlation structure in the sense that the sequence of matrices ΓY (h)
for h ∈ Z is summable. Otherwise, Yt satis�es (A2) and has a long-memory behaviour, see
(Chung, 2002).

One of the main tasks in factor analysis is to estimate the number of factors r in (1).
Under Assumption (A1), for any prescribed positive integer h0, r is the number of nonzero
eigenvalues of

M =

h0∑
h=1

ΓY (h)ΓY (h)′, (5)
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and the r-dimensional linear space spanned by the columns of P is spanned by the eigen-
vectors of M with nonzero eigenvalues, see (Lam and Yao, 2012). Observe that M is a
symmetric and non-negative de�nite matrix regardless of the property of ΓY (h). Moreover,
the use of ΓY (h)ΓY (h)′ instead of ΓY (h)′ in the de�nition (5) ofM avoids the cancellation
of the autocovariance from di�erent lags and allows the use of an estimator of ΓY (h) that
is not necessarily non-negative de�nite. This is the case of the estimator proposed here. As
remarked by Lam and Yao (2012), the use of (5) in factorial analysis can be very helpful
especially when the sample size is small. Lam et al (2011) reported that the estimation of
the linear space spanned by the columns of P and r is not sensitive to the choice of h0.
This issue is also investigated here through simulations.

Performing an eigenvalue analysis for M is easier than using the asymmetric matrix
ΓY (h). Therefore, (5) becomes very useful in practical problems where ΓY (h) is replaced

by an estimate Γ̂Y (h) to compute

M̂ =

h0∑
h=1

Γ̂Y (h)Γ̂Y (h)′ (6)

and to estimate the number of factors r by

r̂ = argmin
1≤i≤R

λ̂i+1/λ̂i, (7)

where r < R < k is a constant and λ̂1 ≥ . . . ≥ λ̂k are the eigenvalues of M̂ , see (Lam

et al, 2011). Lam and Yao (2012) derived the asymptotic properties of the λ̂i's under
some assumptions and gave some practical recommendations for selecting R. Based on the
fact that atypical observations (additive outliers) are quite common in time series, Reisen
et al (2019) proposed to estimate r by (7) for short-range dependent processes where

the λ̂i's are the eigenvalues of an estimate of M where ΓY (h) is replaced by the robust
sample ACF function introduced by Ma and Genton (2000), which is the robust ACF
approach considered here and discussed in the next section. The theoretical properties of
this robust ACF estimator have been studied by Lévy-Leduc et al (2011a) and Lévy-Leduc
et al (2011b).

2.2 Estimation

Here, we propose estimates of r based on the eigenvalues computed from two estimates
of M for long-memory processes. The �rst estimate is based on the eigenvalues obtained
from the sample autocovariance matrix Γ̂Y (h), and the second estimate is built from the

eigenvalues computed from the sample autocovariance matrix Γ̂QY (h) based on the scale
estimator Qn(.).

For a given sample Y1:n = (Y1, . . . ,Yn) of Yt, let

γ̂i,j(h) =
1

n

n−h∑
t=1

(Yi,t − Ȳi)(Yj,t+h − Ȳj), (8)
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where Ȳi =
∑n

t=1 Yi,t/n and Ȳj =
∑n

t=1 Yj,t/n.

Proposition 1. Assume that (A2) holds. Let h be a �xed positive integer and Γ̂Y (h) =
(γ̂i,j(h))1≤i,j≤k, where γ̂i,j(h) is de�ned in (8). Then,

(i) If, for all i in {1, . . . , k}, Di > 1/2,

√
n sup

1≤j≤k

∣∣∣λ̂j − λj∣∣∣ = Op(1), as n→∞,

(ii) If, there exists i0 in {1, . . . , k} such that Di0 < 1/2,

nDi0 sup
1≤j≤k

∣∣∣λ̂j − λj∣∣∣ = Op(1), as n→∞,

where (λ̂j)1≤j≤k and (λj)1≤j≤k denote respectively the eigenvalues of
(∑h0

h=1 Γ̂Y (h)Γ̂Y (h)′
)

and
(∑h0

h=1 ΓY (h)ΓY (h)′
)
, ΓY (h) = (γi,j(h))1≤i,j≤k, and h0 is a �xed positive integer.

Proof of Proposition 1. The proof follows directly from Lemmas 1, 2 and 4 in the Ap-
pendix.

Given the set of observation X1, . . . , Xn from a Gaussian univariate stationary process
Xt, the Qn(.) estimator of the standard deviation of X1 proposed by Rousseeuw and Croux
(1993) is the τth order statistic de�ned by

Qn(X) = c {|Xi −Xj|; i < j}(τ), i, j = 1, . . . , n, (9)

where c = 2.2191 is a constant, τ = b(
(
n
2

)
+ 2)/4c + 1 and bxc is the largest integer

smaller than x. Following Ma and Genton (2000), for a sample (Y1, . . . ,Yn), the alternative
autocovariance estimator of γi,j(h) = Cov(Yi,t, Yj,t+h) for all i, j = 1, . . . , k, is given by

γ̂Qi,j(h) =
1

4

[
Q2
n−h(Yi,1:n−h + Yj,h+1:n)−Q2

n−h(Yi,1:n−h − Yj,h+1:n)
]
, (10)

where Yi,1:n−h = (Yi,1, . . . , Yi,n−h) and Yj,h+1:n = (Yj,h+1, . . . , Yj,n). Let Γ̂QY (h) be the matrix

with entries γ̂Qi,j(h). Note that, γ̂Qi,j(h), for each h ≥ 0, does not necessarily have the

non-negative de�nite property, nevertheless, M̂Q de�ned by

M̂Q =

h0∑
h=1

Γ̂QY (h)Γ̂QY (h)′ (11)

has this property and the estimator r̂Q of r is obtained from (7) where the λ̂i's are replaced

by the eigenvalues λ̂Qi 's of M̂
Q.
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Proposition 2. Let h be a �xed positive integer and Γ̂QY (h) =
(
γ̂Qi,j(h)

)
1≤i,j≤k

, where

γ̂Qi,j(h) is de�ned in (10). Assume that (A2) holds, then

(i) If, for all i in {1, . . . , k}, Di > 1/2,

√
n sup

1≤j≤k

∣∣∣λ̂Qj − λj∣∣∣ = Op(1), as n→∞,

(ii) If, there exists i0 in {1, . . . , k} such that Di0 < 1/2,

nDi0 sup
1≤j≤k

∣∣∣λ̂Qj − λj∣∣∣ = Op(1), as n→∞,

where (λ̂Qj )1≤j≤k and (λj)1≤j≤k denote respectively the eigenvalues of
(∑h0

h=1 Γ̂
Q
Y (h)Γ̂QY (h)′

)
and

(∑h0
h=1 ΓY (h)ΓY (h)′

)
, ΓY (h) = (γi,j(h))1≤i,j≤k, and h0 is a �xed positive integer.

Proof of Proposition 2. The proof follows directly from Lemmas 1, 2 and 3 in the Ap-
pendix.

Proposition 3. Assume that (A2) holds. Let (λ̂j)1≤j≤k, (λ̂Qj )1≤j≤k and denote respectively

the eigenvalues of
(∑h0

h=1 Γ̂Y (h)Γ̂Y (h)′
)
,
(∑h0

h=1 Γ̂
Q
Y (h)Γ̂QY (h)′

)
and

(∑h0
h=1 ΓY (h)ΓY (h)′

)
,

where h0 is a �xed positive integer and Γ̂Y (h), Γ̂QY (h) and ΓY (h) are de�ned in Proposi-
tions 1 and 2. Let r̂ and r̂Q be de�ned by

r̂ = argmin
1≤i≤R

λ̂i+1/λ̂i and r̂Q = argmin
1≤i≤R

λ̂Qi+1/λ̂
Q
i ,

where r < R < k is a constant. Then, r̂ and r̂Q are consistent estimators of r.

Proof of Proposition 3. By Propositions 1 and 2, (λ̂i)1≤i≤k and (λ̂Qi )1≤i≤k are consistent

estimators of (λi)1≤i≤k. Thus, the ratios (λ̂i+1/λ̂i)1≤i<k and (λ̂Qi+1/λ̂
Q
i )1≤i<k are consistent

estimators of (λi+1/λi)1≤i<k, with the convention 0/0 = 0. Since, with this convention,

r = argmin
1≤i≤R

λi+1/λi,

the conclusion follows by using the uniform convergence proved in Proposition 1.

Propositions 1 and 2 show that the eigenvalues of the two estimators of matrixM have
the same convergence rates governed by the fractional parameter Di. Proposition 3 shows
that the two estimators of r are consistent. Note that, as is well-known, Γ̂Y (h) is sensitive

to outliers whereas, in general, Γ̂QY (h) is almost una�ected. This feature suggests that the
estimator r̂Q is a choice to estimate r for long-memory time series with additive outliers.
This issue is addressed in the simulation study.
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3 Monte Carlo simulations

This section discusses the empirical performances of r̂ and r̂Q under the scenarios of un-
contaminated and contaminated long-memory time series with additive outliers. We set
r = 3 in (1) and we generate factors Xt, t = 1, . . . , n, from VARFIMA model with order
(1, d1, d2, d3, 0), namely

φ(B)Xt = ηt,

Xi,t = (1−B)diXi,t, i = 1, . . . , 3,

where the coe�cient matrix φ is diagonal with 0.6, -0.5, and 0.3 as the main diagonal
elements, ηt are independent zero-mean Gaussian vectors with identity covariance matrix,
and (d1, d2, d3) = (0.1, 0.2, 0.1), (0.3, 0.2, 0.4) which corresponds to low and strong positive
correlations, respectively. These choices are intentional in the sense of considering series
with parameter vectors satisfying the two regions of the asymptotic properties of the esti-
mators discussed in Proposition 1 and 2. The sample sizes are n = 100, 200, 400, 800, 1600,
k = 0.2n, 0.5n, 0.8n, 1.2n, and h0 = 1, 3. The elements of P in (1) are realizations of
independent random variables with the uniform distribution on [−1, 1] and the random
variables εt are independent zero-mean Gaussian vectors with identity covariance matrix.
A similar simulation process for P and εt was considered by Lam and Yao (2012). The
Monte Carlo study is based on 1000 replications. The contaminated data is generated as
in (Reisen et al, 2019). Only the �rst component X1,t of Xt is contaminated by additive
outliers with the probability of occurrence p = 0.05 and magnitude ω = 15.

The frequencies of occurrence of r̂ = 3 and r̂Q = 3 over the 1000 replications are re-
ported in Tables 1 and 2 in the uncontaminated long-memory time series, and Table 3 dis-
plays the contaminated and uncontaminated cases. In these tables, h0 = 1 and (d1, d2, d3) =
(0.3, 0.2, 0.4). Similar results are obtained when h0 = 3 and (d1, d2, d3) = (0.1, 0.2, 0.1).
The results in Table 1 show that r̂ performs better as n and k increase. Also, for each
�xed n, r̂ performs better as k increases (�blessing of dimensionality�). However, for large
n (n ≥ 800), the estimator r̂ reaches 100% accuracy.

These results are similar to the ones in (Lam and Yao, 2012, Table 1). Table 2 leads
to similar conclusions, although r̂Q slightly underperforms r̂ for n ≤ 400. Similar to the
performance of r̂, r̂Q reaches 100% accuracy for n ≥ 800. Since �nancial data generally
have many large number of observations, both estimators can be used to identify the
number of factors.

The picture of the performance of r̂ changes dramatically in the context of multivariate
time series with additive outliers. The superiority of r̂Q over r̂ appears in Table 3 where
r̂Q shows to be very resistant against additive outliers whereas r̂ is totally a�ected, as was
expected. Table 3 also displays the results for p = 0 (uncontaminated data) to show how
the frequencies of occurrences are distributed across r̂-values. In order to verify the e�ect
of the percentage and magnitude of outliers on the estimates of the number of factors r,
additional simulations were carried out with di�erent values of p and ω. Tables 4 and 5
display the performance of r̂ and r̂Q when p = 0.01, 0.10, ω = 15 and p = 0.05 and ω = 10,
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respectively. Other cases are available upon request. The estimates displayed in these
tables lead to similar conclusions as in the previous cases, i.e., r̂ is much more a�ected by
the outliers than r̂Q.

The number of nonzero eigenvalues r of M is de�ned by (5) and this is independent

of the choice of h0 > 0. However, in practice when M is estimated by M̂ or M̂Q,
it is recommended to choose a small value of h0 since the strongest correlations are, in
general, at small values of the time lag h, and for large h, the estimate of ΓY (h) is not
very accurate see, also, (Lam and Yao, 2012). In Tables 6 and 7 we report the relative
frequencies for r̂ = 3 and r̂Q = 3 when h0 = 1 and h0 = 3 for n = 100, 200, 400, k = 0.8n
and (d1, d2, d3) = (0.3, 0.2, 0.4), (0.1, 0.2, 0.1), respectively.

From both tables, we observe that for n = 400, quite a standard sample size in real
problems, the choice of h0 does not greatly a�ect the estimates. On the other hand, we
can see two interesting features when n = 100, 200. In all cases, h0 = 3 suggests that the
relative frequency underestimates the true value more signi�cantly than for h0 = 1. This
may be justi�ed by fact the estimates of ΓY (h) are not very much accurate in the long-
memory series for not large n. In this scenario, the magnitude of the fractional parameters
also in�uences the estimation. In the case of Table 7, the empirical rates are higher than the
ones from Table 6, which is an expected result according to the rates of convergence of the
estimators given in Proposition 1 and 2. Thus, this empirical investigation corroborates the
use of h0 = 1 in the estimation of the numbers of factors and, for large n, both estimation
methods r̂Q and r̂ perform similarly in the long-memory time series, independently of
the magnitude of the long-memory parameters. The scenario changes dramatically when
additive outliers are suspected in the data. In this situation, the robust approach proposed
here is strongly recommended.

To complete this empirical investigation, Figures 1 and 2 show the box-plots of the ratios
λ̂j+1/λ̂j and λ̂Qj+1/λ̂

Q
j when h0 = 1, n = 100, 400, k = 0.8n, (d1, d2, d3) = (0.3, 0.2, 0.4).

Similar to (Lam and Yao, 2012) and (Reisen et al, 2019)'s �ndings for short-memory
processes, the ratios are also close to 1 when j > r in the case of long-memory time series.
As expected from Proposition 3, the estimates becomes more accurate as n increases, that
is, the consistency property of the estimators.

To clarify the e�ect of additive outliers on the sample ACF, we generated an ARFIMA
model with d = 0.3 and n = 200 without and with outliers (p = 0.05, ω = 15). The sample
ACFs of the uncontaminated and contaminated data are in Figures 3 and 4, respectively.
Figure 3 shows that in the absence of outliers, the robust ACF presents similar behavior as
the classical one. However, the performance of the classical estimator changes signi�cantly
when outliers are introduced in the series (Figure 4). This estimator lacks its robustness,
while the robust one displays similar behavior to the uncontaminated case.

Finally, this paper's results discussed theoretically and empirically contribute to using
the Qn scale estimator in the dimension reduction factor approach for high-dimensional
time series with long memory, with and without outliers. More generally, the robust esti-
mation of eigenvalues based on the Qn estimator can also be applied in other multivariate
techniques in the context of long-memory time series with and without outliers.
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Table 1: Relative frequencies for r̂ = 3 when h0 = 1, (d1, d2, d3) = (0.3, 0.2, 0.4) (uncon-
taminated long-memory time series)

n 100 200 400 800 1600
k = 0.2n 0.507 0.796 0.967 1 1
k = 0.5n 0.720 0.904 0.991 1 1
k = 0.8n 0.768 0.927 0.984 1 1
k = 1.2n 0.822 0.940 0.995 1 1

Table 2: Relative frequencies for r̂Q = 3 when h0 = 1, (d1, d2, d3) = (0.3, 0.2, 0.4) (uncon-
taminated long-memory time series).

n 100 200 400 800 1600
k = 0.2n 0.351 0.711 0.900 1 1
k = 0.5n 0.554 0.874 0.959 1 1
k = 0.8n 0.649 0.898 0.966 1 1
k = 1.2n 0.727 0.918 0.975 1 1

Table 3: Relative frequencies for r̂ and r̂Q when n = 200, h0 = 1, (d1, d2, d3) = (0.3, 0.2, 0.4)
(contaminated and uncontaminated long-memory time series).

p = 0 p = 0.05 and ω = 15 p = 0 p = 0.05 and ω = 15
r̂ = 1 r̂ = 2 r̂ = 3 r̂ = 1 r̂ = 2 r̂ = 3 r̂Q = 1 r̂Q = 2 r̂Q = 3 r̂Q = 1 r̂Q = 2 r̂Q = 3

k = 0.2n 0.028 0.176 0.796 0.151 0.312 0.502 0.040 0.249 0.711 0.054 0.271 0.675
k = 0.5n 0.003 0.093 0.904 0.085 0.250 0.600 0.005 0.121 0.874 0.013 0.143 0.844
k = 0.8n 0.001 0.072 0.927 0.056 0.234 0.614 0.001 0.072 0.898 0.003 0.127 0.870
k = 1.2n 0.001 0.059 0.940 0.056 0.226 0.588 0.002 0.080 0.918 0.003 0.118 0.879

Table 4: Relative frequencies for r̂ and r̂Q when n = 200, h0 = 1, (d1, d2, d3) =
(0.3, 0.2, 0.4), p = 0.01, p = 0.10 and ω = 15 (contaminated long-memory time series).

p = 0.01 and 15 p = 0.10 and ω = 15
r̂ = 1 r̂ = 2 r̂ = 3 r̂Q = 1 r̂Q = 2 r̂Q r̂ = 1 r̂ = 2 r̂ = 3 r̂Q = 1 r̂Q = 2 r̂Q = 3

k = 0.2n 0.008 0.212 0.776 0.016 0.272 0.732 0.246 0.336 0.368 0.068 0.344 0.588
k = 0.5n 0.016 0.140 0.840 0.008 0.092 0.900 0.232 0.292 0.412 0.024 0.204 0.780
k = 0.8n 0.008 0.080 0.900 0.008 0.090 0.902 0.176 0.196 0.512 0.016 0.184 0.805
k = 1.2n 0.004 0.076 0.915 0.000 0.080 0.925 0.148 0.124 0.494 0.010 0.160 0.830

Table 5: Relative frequencies for r̂ and r̂Q when k = 0.8n, n = 200, h0 = 1, (d1, d2, d3) =
(0.3, 0.2, 0.4), p = 0.05 and ω = 10 (contaminated long-memory time series).

p = 0.05 and ω = 10
r̂ = 1 r̂ = 2 r̂ = 3 r̂Q = 1 r̂Q = 2 r̂Q = 3

k = 0.8n 0.024 0.110 0.840 0.000 0.100 0.900

Remark 1. The e�ect of the percentage and magnitude of outliers on the autocovariance
and autocorrelation functions, among other statistical functions of time series, is discussed
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Table 6: Relative frequency estimates for dimensional reduction for k = 0.8n, h0 = 1 and
h0 = 3, d1 = 0.3, d2 = 0.2, d3 = 0.4

h0 = 1 h0 = 3
n r̂ = 3 r̂Q = 3 r̂ = 3 r̂Q = 3
100 0.768 0.649 0.435 0.370
200 0.927 0.898 0.630 0.555
400 0.984 0.979 0.800 0.750

Table 7: Relative frequency estimates for dimensional reduction for k = 0.8n, h0 = 1 and
h0 = 3, considering d1 = 0.1, d2 = 0.2, d3 = 0.1

h0 = 1 h0 = 3
n r̂ = 3 r̂Q = 3 r̂ = 3 r̂Q = 3
100 0.790 0.740 0.500 0.450
200 0.985 0.960 0.760 0.695
400 1 1 0.960 0.930
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(a) n = 100, k = 0.8n
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(b) n = 400, k = 0.8n

Figure 1: Box-plots of λ̂j+1/λ̂j when h0 = 1, r = 3, (d1, d2, d3) = (0.3, 0.2, 0.4).

technically and empirically in Molinares et al (2009), Lévy-Leduc et al (2011b), Reisen et al
(2020) among others. Cotta et al (2023) extended these works to the multivariate case.
From the results displayed in Tables 4 and 5 and the ones discussed by these authors, it
appears that the percentage and magnitude of additive outliers are the main characteristics
responsible for the e�ect of these observations on the sampling functions mentioned above.
Since the Factorial Analysis, among other multivariate statistical tools, depends on the
autocovariance and autocorrelation structures of stationary time series models, the impact
of outliers on these functions is translated in some way to the other statistical quantities
which are derived from them, such as r̂ and r̂Q discussed here.
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(b) n = 400, k = 0.8n

Figure 2: Box-plots of λ̂Qj+1/λ̂
Q
j when h0 = 1, r = 3, (d1, d2, d3) = (0.3, 0.2, 0.4).

(a) (b)

Figure 3: Classical (a) and robust (b) ACFs from the serie with d = 0.3, n = 200, without
outliers.

4 Real data example. FA for foreign exchange rates

In this section, we analyse the daily returns of the six following foreign exchange rates
against U.S. Dollar: Australian Dollar (AUD), Canadian Dollar (CAD), British Pound
(GBP), Norwegian kroner (NOK), Swedish Kroner (SEK), and Singapore (SGD). All the
series are observed from January 2010 to December 2019 (n = 2608). We use adjusted
daily opening values (end-of-session quotations).

Firstly, we estimate the fractional parameters for each series, assuming that they are
long-memory processes. The estimates and their standard deviations are displayed in
Table 8 where d̂GPH is the standard semi-parametric GPH estimator and d̂RGPH is its robust
version, see (Molinares et al, 2009). Following these authors, the number of observations in
the regression equation (the bandwidth) was set to m = nα with α = 0.5; similar estimates
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(a) (b)

Figure 4: Classical (a) and robust (b) ACFs from the series with d = 0.3, n = 200, with
outliers (p = 0.05, ω = 15).

were obtained using α = 0.7, 0.8. These estimators were computed using the package
tsqn in R, see (Cotta et al, 2017). Both estimators strongly suggest that each exchange
rate series is non-stationary, being either a random walk (d = 1) or a non-stationary
long-memory process with d > 1. This phenomenon is quite common with �nancial time
series. For each exchange rate, the standard and the robust estimators are di�erent and
d̂RGPH > d̂GPH, the former having a smaller standard deviation (s.d). This empirical feature
indicates that there are possibly atypical observations that caused additive outlier e�ects
on the estimates of dGPH.

Table 8: Estimates dGPH and dRGPH with the standard deviations (s.d) in parenthesis for
the exchange rates

Series d̂GPH d̂RGPH

AUD 1.130 (0.101) 1.257 (0.061)
CAD 1.043 (0.078) 1.186 (0.055)
GBP 0.987 (0.093) 1.087 (0.053)
NOK 0.996 (0.079) 1.182 (0.056)
SEK 1.125 (0.101) 1.256 (0.067)
SGD 1.036 (0.085) 1.097 (0.057)

Since each exchange rate series is non-stationary, the di�erence in the logarithm of each
series was taken, that is for each series Zt, we de�ne the log returns by Yt = ln(Zt)−ln(Zt−1).
Figure 4 plots the log returns of the exchange rates and exhibits some observations with
extreme values compared to the average level. As well-known, the sample mean, the
sample variance and autocovariance function are very sensitive to extreme values in the
sense that these type of observations increase the sample variance and reduce the sample
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autocorrelation and, consequently, lead to a reduction of the estimate of the long-memory
parameter. The e�ect of additive outliers on the long-memory estimators is well-addressed
in the literature see, for instance, (Molinares et al, 2009). For example, in the case of
log returns of SEK, the sample autocorrelation estimates for the lags h = 1, 3, 5, 10, using
(8) and (10) are −0.051, −0.003, −0.009, −0.0002 and −0.073, 0.033, 0.0152, −0.009,
respectively.

Figure 5: Log returns of the exchange rates.

The long-memory parameter estimators of the log returns of the exchange rates and
their standard deviations are displayed in Table 9. The hypothesis test H0 : d = 0 versus
H1 : d 6= 0 was tested using test statistics built from d̂GPH and d̂RGPH and by using the
standard normal approximation coming from the central limit theorems established by
Reisen et al (2017). The cases where H0 has been rejected are with the symbol (*) in
Table 9. We can see from this table that the null hypothesis of the test is rejected for
almost all time series when the test statistic based on the robust estimator is used, which
is not the case when the test statistic is based on the GPH estimator. As previously,
the bandwidths in the regression equations of the estimators d̂GPH and d̂RGPH were set to
m = n1/2. As in Table 8, d̂RGPH is quite di�erent from d̂GPH, and the former generally
shows more signi�cant estimates. This fact gives strong evidence of the presence of additive
outliers in the data, since this kind of observation decreases the correlation structure of
the data and, consequently, the sample ACF is completely crushed and the standard long-
memory estimator underestimates the true parameter (Molinares et al, 2009).

The above results indicate that the standard and robust estimators of r may present
di�erent conclusions in identifying the number of the factors, i.e. it is expected that the
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Table 9: Values of d̂GPH and d̂RGPH with their standard deviations in parenthesis for the
log returns of the exchange rates. The values with (*) corresponds to the rejection of the
hypothesis test H0 : d = 0 versus H1 : d 6= 0 at the signi�cance level of 5% of N (0, 1)

where the test statistics are based either on d̂GPH or d̂RGPH.

Series d̂GPH d̂RGPH

AUD 0.073 (0.101) 0.024 (0.012)*
CAD 0.061 (0.109) 0.021 (0.015)
GBP -0.090 (0.085) 0.064 (0.021)*
NOK 0.049 (0.102) 0.079 (0.010)*
SEK 0.091 (0.117) 0.113 (0.011)*
SGD 0.079 (0.095) 0.147 (0.012)*

number of factors obtained by the classical method will tend to be smaller than the robust
one. This issue is discussed as follows.

We estimate r by r̂ and r̂Q taking h0 = 1 in (6) and (11), respectively. Similar results

were obtained with h0 = 3. The eigenvalues λ̂1 ≥ · · · ≥ λ̂6 of M̂ and their ratios λ̂j+1/λ̂j
are displayed in Figure 6. The robust versions obtained from M̂Q are shown in Figure 7.
Figure 6b gives r̂ = 1 while Figure 7b gives r̂Q = 2. Then, the standard and robust FA do
not select the same number of factors. The estimates of the fractional parameters indicate
the presence of additive outliers e�ects. These a�ect the estimates of the eigenvalues and,
consequently, the estimates of the number of factors, as discussed in the Simulation Section.

Since the results using the autocovariance matrices may be a�ected by the distinct
variability of the returns, the estimates of r were also performed by replacing the covariance
matrices in (6) and (11) by the corresponding autocorrelation matrices. The estimates for
the number of factors were the same.

(a) (b)

Figure 6: Eigenvalues λ̂j of M̂ and their ratios λ̂j+1/λ̂j.

To check whether or not the abrupt observations appearing in the data (Figure 4)
a�ect the estimated number of factors, the series were modi�ed by replacing the abrupt
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(a) (b)

Figure 7: Eigenvalues λ̂Qj of M̂Q and their ratios λ̂Qj+1/λ̂
Q
j .

observations by their sample mean. The ratios are given in Figures 8 and 9. From these
we can see that the classical method (Figure 8) gives the same rates as the robust (Figure
9) one. This simple example corroborates the fact that r̂ lacks robustness toward additive
outliers in the original data.

(a) (b)

Figure 8: Eigenvalues λ̂j of M̂ and their ratios λ̂j+1/λ̂j, for real data without abrupt
observations.

The FA can be used for forecasting purpose. Indeed, this is much simpler to use (1) than
�tting a multivariate stationary time series model with dimension k to Yt. For instance,
the h-step ahead linear forecast Ŷ

(h)
n+h of Yn can be obtained by Ŷ

(h)
n+h = P̂ X̂

(h)
n+h, where

the columns of the estimated factor loading matrix P̂ are the r̂ orthonormal eigenvectors
of M̂Q and X̂

(h)
n+h is the h-step ahead linear forecast of Xn, based on the estimated past

values X̂1, . . . , X̂n, see (Lam et al, 2011).
Furthermore, according to Hallin and Li²ka (2007), factor models with large dimen-

sions are attracting increasing attention in economics, emphasizing �nance and macro-
econometric applications. They argue that since the classical multivariate time series tech-
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(a) (b)

Figure 9: Eigenvalues λ̂Qj of M̂Q and their ratios λ̂Qj+1/λ̂
Q
j , for real data without abrupt

observations.

niques are helpless, factor models have a natural role in economic applications with large
databases. Determining the number of factors is a critical step in this context. For exam-
ple, under the assumption of the APT theory given in (Ross, 1976), there are common risk
factors across assets. The classical method indicated one common factor in the exchange
rate data, while the robust method gave two factors. Thus, investors may view market risks
incorrectly based on the classic model. Measuring and managing �nancial market risks is
critical for market participants. Investors, especially traders, know of possible losses due
to market �uctuations.

5 Conclusion

This paper extends the results on FA given by Reisen et al (2019) by allowing the time se-
ries to be a long-memory process. Asymptotic properties of the eigenvalues of the standard
and robust covariance matrices estimates were established. The �nite sample size inves-
tigation indicated that both estimators of the number of factors perform similarly in the
uncontaminated data scenario. In contrast, the robust estimator is strongly recommended
when the data contain additive outliers. In this context, classical methodology leads to
a spurious choice of the number of factors. Thus, based on the technical and empirical
results, the proposed robust estimator of the number of factors is suggested here to be
applied in the context of long-memory time series with or without additive outliers. An
application to exchange rates series was discussed and revealed that the robust approach
suggested the number of factors equals two while the standard method indicated only one.
The in�uence of outliers observations can justify this. As future work, one could consider
robust alternative approaches to estimating ΓY (h) in (5), such as the one based on in the
frequency domain, recently proposed by Lévy-Leduc et al (2022), and on ranking-based
multivariate statistical tools, e.g, (He et al, 2022) and references therein.
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6 Appendix: Technical lemmas

Lemmas 1 and 2 were stated and proved in Reisen et al (2019) but are recalled here for
the reader convenience.

Lemma 1. Let Ân be a sequence of p× p symmetric matrices and A a p× p symmetric
matrix such that un(Ân−A) = Op(1), where un is a sequence of positive numbers tending
to in�nity as n tends to in�nity, then

un sup
1≤j≤p

|λj(Â)− λj(A)| = Op(1), as n→∞,

where (λj(Â))1≤j≤p and (λj(A))1≤j≤p are the eigenvalues of Ân and A, respectively.

Lemma 2. Let Ân(h) be a sequence of p×p symmetric matrices and A(h) a p×p symmetric

matrix such that un(Ân(h)−A(h)) = Op(1), for each �xed h ∈ {1, . . . , hmax}, where un is
a sequence of positive numbers tending to in�nity as n tends to in�nity, then

un

(
hmax∑
h=1

Ân(h)Ân(h)′ −
hmax∑
h=1

A(h)A(h)′

)
= Op(1),

as n tends to in�nity.

Lemma 3. Let h be a non negative integer and i and j two integers in {1, . . . , k}. Assume
that (A2) holds, then the autocovariance estimator γ̂Qi,j(h) de�ned in (10) satis�es the
following limit theorems as n tends to in�nity.

(i) If, for all i in {1, . . . , k}, Di > 1/2,

√
n(γ̂Qi,j(h)− γij(h))

d−→ N (0, σ̃2
i,j(h)), as n→∞,

where

σ̃2
i,j(h) = [ψ(Yi,1, Yj,1+h)

2] + 2
∑
k≥1

E[ψ(Yi,1, Yj,1+h)ψ(Yi,k+1, Yj,k+1+h)],

where ψ is

ψ(x, y) =
1

2
(γi,i(0) + γj,j(0) + 2γi,j(h)) IF

(
x+ y√

γi,i(0) + γj,j(0) + 2γi,j(h)
, Q,Φ

)

− 1

2
(γi,i(0) + γj,j(0)− 2γi,j(h)) IF

(
x− y√

γi,i(0) + γj,j(0)− 2γi,j(h)
, Q,Φ

)
, (12)

and IF is de�ned in (Lévy-Leduc et al, 2011b, Equation (20)).
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(ii) If, there exists i0 in {1, . . . , k} such that Di0 < 1/2,

nDi0
∧Dj(γ̂Qi0,j(h)− γi0,j(h)) = OP (1), as n→∞.

Proof of Lemma 3. Observe that the autocovariance γ
(+)
i,j (`) of the process (Yi,t+Yj,t+h)t≥1

is equal to

γ
(+)
i,j (`) = Cov(Yi,t + Yj,t+h, Yi,t+` + Yj,t+h+`) = γi,i(`) + γi,j(h+ `) + γi,j(`− h) + γj,j(`).

By (A2) and by using a Taylor expansion, γ
(+)
i,j (`) is proportional to `Di∧Dj . Hence, the

process (Yi,t + Yj,t+h)t≥1 satis�es (Lévy-Leduc et al, 2011b, Assumption (A2)) with D =

Di ∧Dj. Since the autocovariance γ
(−)
i,j (`) of the process (Yi,t − Yj,t+h)t≥1 is equal to

γ
(−)
i,j (`) = Cov(Yi,t − Yj,t+h, Yi,t+` − Yj,t+h+`) = γi,i(`)− γi,j(h+ `)− γi,j(`− h) + γj,j(`),

by following the same lines, the process (Yi,t − Yj,t+h)t≥1 also satis�es (Lévy-Leduc et al,
2011b, Assumption (A2)) with D = Di ∧ Dj. In the case (i), the proof follows the same
lines as the ones of the proof of (i) in (Lévy-Leduc et al, 2011b, Theorem 4). In the case
(ii), by applying the Delta method to (Lévy-Leduc et al, 2011b, Equation (74)), we get

nDi0
∧Dj

(
Qn−h(Yi0,1:n−h + Yj,h+1:n)2 − Var(Yi0,t + Yj,t+h)

)
= Op(1).

Similarly, we have that

nDi0
∧Dj

(
Qn−h(Yi0,1:n−h − Yj,h+1:n)2 − Var(Yi0,t − Yj,t+h)

)
= Op(1),

which gives the result.

Lemma 4. Let h be a non negative integer and i and j two integers in {1, . . . , k}. As-
sume that (A2) holds, then the autocovariance estimator γ̂i,j(h) de�ned in (8) satis�es the
following limit theorems as n tends to in�nity.

(i) If, for all i in {1, . . . , k}, Di > 1/2,

√
n(γ̂i,j(h)− γij(h))

d−→ N (0, σ̌2
i,j(h)), as n→∞,

where

σ̌2
i,j(h) = E

[
(Yi,1Yj,h+1 − γi,j(h))2

]
+ 2

∑
k≥1

E [(Yi,1Yj,h+1 − γi,j(h)) (Yi,1+kYj,1+h+k − γi,j(h))] .

(ii) If, there exists i0 in {1, . . . , k} such that Di0 < 1/2,

nDi0
∧Dj(γ̂i0,j(h)− γi0,j(h)) = OP (1), as n→∞.
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Proof of Lemma 4. (i) Note that

γ̂i,j(h) =
1

n

n−h∑
t=1

Yi,tYj,t+h − ȲiȲj.

By Theorem 5.1 of Taqqu (1975),

Ȳi = OP (n−Di/2) and Ȳj = OP (n−Dj/2).

Let Yt = (Yi,t, Yj,t+h) and f : (x, y) 7→ xy then, by Theorem 4 of Arcones (1994), we
get that

1√
n

n−h∑
t=1

(f(Yt)− E(f(Yt))) =
1√
n

n−h∑
t=1

(Yi,tYj,t+h − γij(h))
d−→ N (0, σ̌2

i,j(h)) (13)

since f is of Hermite rank 2, r(1,2)(h) = E[Yi,tYj,t+h] = γi,j(h), r(1,1)(h) = E[Yi,tYi,t+h] =
γi,i(h), r(2,2)(h) = E[Yj,tYj,t+h] = γj,j(h) and Di > 1/2, for all i. In (13),

σ̌2
i,j(h) = E

[
(Yi,1Yj,h+1 − γi,j(h))2

]
+ 2

∑
k≥1

E [(Yi,1Yj,h+1 − γi,j(h)) (Yi,1+kYj,1+h+k − γi,j(h))] .

(ii) Observe that

γ̂i,j(h) =
1

4

(
σ̂2
n−h,Yi,1:n−h+Yj,h+1:n

− σ̂2
n−h,Yi,1:n−h−Yj,h+1:n

)
(14)

where

σ̂2
n−h,Yi,1:n−h+Yj,h+1:n

=: σ̂2
+,i,j =

1

n

n−h∑
t=1

(Yi,t + Yj,t+h)
2 − (Ȳi + Ȳj)

2

with Ȳi =
1

n

n∑
t=1

Yi,t and Ȳj =
1

n

n∑
t=1

Yj,t

and

σ̂2
n−h,Yi,1:n−h−Yj,h+1:n

=: σ̂2
−,i,j =

1

n

n−h∑
t=1

(Yi,t − Yj,t+h)2 − (Ȳi − Ȳj)2.

By using the same arguments as those used in the proof of Lemma 3, we get that
(Yi,t + Yj,t+h)t≥1 and (Yi,t − Yj,t+h)t≥1 satisfy (Lévy-Leduc et al, 2011b, Assumption
(A2)) with D = Di ∧ Dj. Since Di0 < 1/2, Di0 ∧ Dj < 1/2 for all j in {1, . . . , k}.
Thus, (Yi0,t +Yj,t+h)t≥1 and (Yi0,t−Yj,t+h)t≥1 satisfy Assumption (A2) with D < 1/2.
Hence, by (Lévy-Leduc et al, 2011b, Proposition 3(b)) and the Delta method,

nDi0
∧Dj

(
σ̂2
+,i0,j

− Var(Yi0,t + Yj,t+h)
)

= Op(1), as n→∞
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and
nDi0

∧Dj
(
σ̂2
−,i0,j − Var(Yi0,t − Yj,t+h)

)
= Op(1), as n→∞,

which concludes the proof by (14).
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