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Modeling the Effects of Assimilable Nitrogen Addition on Fermentation 

in Oenological Conditions 

François Beaudeau12, Cesar Arturo Aceves Lara13, Josephine Godilllot45, Jean-Roch Mouret56, Ioan-

Cristian Trelea78, Carine Bideaux19 

Abstract 

Alcoholic fermentation in oenological conditions is a biological process carried out under significant physiological 

constraints: deficiency of nitrogen and others nutriments (vitamins, lipids …) and different stresses (pH and osmotic). In 

literature, few models were proposed to describe oenological fermentations. They are focused on initial conditions and did 

not integrate nitrogen addition during the fermentation process which is a widespread practice. In this work, two dynamic 

models of oenological fermentation are proposed to predict the effects of nitrogen addition at two different timings: at the 

beginning of the process and during the fermentation experiment. They were validated and compared against existing 

models showing an accurately fit to experimental data for CO2 release and CO2 production rate.   
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Nomenclature  

State variables: 

 X  Biomass in 109cells/L 

 S Sugar in g/L 

 E Ethanol in g/L 

 CO2 CO2 produced in g/L 

 NST Sugar transporter in gN/(109cells) 

 N Nitrogen in g/L 

 Nintra Intracellular nitrogen in g/(109cells) 

 A Cell activity (dimensionless) 

Rates: 

 rC  rate of production or consumption of product C (X: biomass, S: sugar, N: nitrogen, E: ethanol, CO2: 

carbon dioxide, Nintra:intracellular nitrogen and NST: sugar transporter) in g/(L.h). 

 ri
*  rate of equation i in the model 2 in mol/(L.h). 

Molar masses: 

 MS  molar mass of sugar in gS/molS 

 ME  molar mass of ethanol in gE/molE 

 MX  biomass mass per carbon mole in gX/CmolX 

 MCO2  molar mass of carbon dioxyde in gCO2/molCO2 

 MN  molar mass of nitrogen in gN/molN 

Model 1 parameters: 

 k1 maximum specific growth rate in h-1 

 k2 maximum specific rate of sugar consumption in (109cell. gN.h)-1 

 KS affinity constant in gS/L 

 KSI inhibition constant in (L/gE)αS 

 αS exponent of ethanol inhibition of sugar consumption, dimensionless 

 YE/S  conversion yield of sugar to ethanol in gS/gE 

 YCO2/S  conversion yield of sugar to CO2 in gS/gCO2 

 k3 maximum specific rate of nitrogen consumption in (109cell.h)-1 

 KN affinity constant in gN/L 

 KNI inhibition constant in (L/gE)αN 

 αN exponent of ethanol inhibition of nitrogen consumption, dimensionless 

 Q0 minimum intracellular nitrogen concentration for biomass production in gN/(109cell) 

 Emax critical ethanol concentration in gE/L 

 knst maximum specific production rate of sugar transporter in gN /(109cell.h) 

 kdnst maximum specific degradation rate of sugar transporter in gN/(109cell.h) 

 Knst affinity constant of sugar transporter in gN/(109cell) 

 Ynst nitrogen yield of sugar transporter in gN /gN 

 Q0nst minimal intracellular nitrogen content for sugar transporter production in gN/(109cell) 

 α1 nitrogen yield in cell in gN/(109cell) 

 κ cell activity loss rate in h-1 

 

Model 2 parameters: 

 kX maximum specific growth rate (CmolX.h)-1 

 Nintra0 constant of growth limitation by intracellular nitrogen in gN/(109cell) 

 KS1 affinity constant for sugar in gS/L 

 kE maximum specific ethanol production rate in molE/(CmolX.h) 

 KS2 affinity constant for sugar in gS/L 

 Elim1 constant of ethanol production inhibition by ethanol in gE/L 

 α1 exponent of ethanol inhibition of ethanol production, dimensionless 

 Kst sugar transporter limitation constant in gN/L 
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 kN maximum specific nitrogen consumption rate molN/(CmolX.h) 

 KN1 affinity constant for nitrogen in gN/L 

 g1 number of moles of sugar consumed per Cmole of biomass produced in molS/CmolX 

 g2 number of moles of nitrogen consumed per Cmole of biomass produced in molN/CmolX 

 g3 number of moles of CO2 produced per Cmole of biomass produced in molCO2/CmolX 

 kNST maximum specific sugar transporter production rate in molN/(L.h) 

 Elim2 constant of sugar transporter production inhibition by ethanol in gE/L 

 α2 exponent of ethanol inhibition of sugar transporteur production, dimensionless 

 Nintra1 constant of sugar transporter limitation by intracellular nitrogen in gN/(109cell) 

 κ cell activity loss rate in h-1 

 gS conversion yield of sugar into ethanol in molE/molS 

 𝑎  number of cells per biomass gram in 109cell/g 

 

1 Introduction 

Oenological fermentation is a well-known biological process in which yeasts, mainly Saccharomyces cerevisiae strains, 

convert hexoses (glucose and fructose) principally to ethanol and carbon dioxide, secondarily to biomass and glycerol and 

weakly to metabolites produced in low concentrations with major impact on wines organoleptic properties. Oenological 

fermentation is a process which has several limitations whose main one is deficiency in nitrogen. In industrial conditions, 

nitrogen is totally consumed in the first two days of fermentation whose “normal” duration is one to two weeks [1]. However 

nitrogen is an essential nutrient for yeast metabolism and growth during oenological fermentation [2, 3] and its deficiency can 

induce sluggish or stuck fermentations [4]. Several studies have been conducted to understand and quantify nitrogen 

deficiency: Bisson [5] related nitrogen deficiency to stuck and sluggish fermentations, Crépin et al [6] studied the sequential 

uptake of nitrogen sources by yeasts and Carrau et al [7] studies the impact of nitrogen deficiency on aroma compounds. 

Nitrogen addition during fermentation increases reaction kinetics but this increase depends on addition timing [8]. That is 

why European legislation allows nitrogen addition at the beginning and during wine oenological fermentation [9]. 

David et al [10]  shows that residual growth is observed after the total consumption of nitrogen present initially in the medium 

which would suggest that the yeasts have a nitrogen reserve to continue their growth. Brou et al [11]  shows that intracellular 

nitrogen concentration decreases to a minimum during fermentation. It is therefore important to consider the intracellular 

nitrogen concentration in the yeasts. 

The data from David et al [10] shows also that a regrowth of biomass is possible after nitrogen addition and that this regrowth 

is all the stronger the earlier the nitrogen is added. Indeed, yeast physiological state declines during fermentation due to several 

deficiency and inhibitions such as inhibition by ethanol. Thus, the increase of ethanol concentration during fermentation 

affects physiological state of yeast cells: activities of nitrogen transporters [12, 13] and sugar transporters [14] are decreasing 

when the ethanol concentration increases. Moreover, a study shows a rapid decrease of cell activity after ethanol addition in 

the medium [15]. 

Several mathematical models were proposed to simulate fermentation in oenological conditions [16-22]. They consider time 

evolutions of concentrations for biomass, sugar, ethanol, carbon dioxide and some of them for nitrogen and glycerol but few 

models consider the relation between yeast growth and nitrogen concentration: 

 Cramer’s model [23] considers nitrogen limitation in the biomass growth with a Monod-type equation and a non-

growth associated conversion of glucose into ethanol. It considers too a cell death rate proportional to ethanol 

concentration. 

 Malherbe’s model [8] describes the biomass production as a logistic law with a maximum attainable biomass 

concentration dependent on the initial nitrogen concentration. The authors introduce in their model a state variable 

representing sugar transporters involved in the sugar consumption rate equation. Moreover, the ethanol inhibition is 

considered in the equations of sugar and nitrogen consumption rates. Ethanol and CO2 are produced from sugar in 

an overall yield (1 gram of sugar is converted into 2.17 grams of ethanol and 2.17 grams of CO2). 

 Brou’s model [11] is based on an intracellular nitrogen compartment divided between the minimum nitrogen 

necessary to carry out the vital functions of the cells and a storage compartment, which is the only nitrogen available 

for biomass growth. It considers ethanol inhibition on metabolism of yeasts (production of biomass, ethanol and 

glycerol) as well as the cell death rate function of ethanol concentration. 
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However, these models were not developed nor calibrated for fermentations with nitrogen addition during the fermentation 

process. Cramer’s and Brou’s models can allow regrowth of biomass after nitrogen add. Malherbe’s model could simulate 

nitrogen addition with a complicated algorithm: model is simulated using initial conditions and it is stopped before  nitrogen 

addition instant and new simulation is started with the new initial conditions. This is a difficult task if we try to apply the 

model for online optimization purposes. 

 

In this work, two models derived from Malherbe and Brou’s models are proposed to allow the simulation of nitrogen addition 

during fermentation without stopping the simulation at nitrogen addition instant (section 3). These models have been calibrated 

on experimental data from fermentations with different initial nitrogen concentrations and different nitrogen amount addition 

at an add timing corresponding to 20g/L of CO2 release allowing biomass regrowth (section 4). A sensitivity analysis of the 

two models is presented in section 5. Then, the two models have been validated and compared to Malherbe’s and Brou’s 

models on experimental data from others fermentations with various initial nitrogen conditions and nitrogen addition at 20 

and 35g/L produced CO2 (section 6). 

 

2 Materials and Methods 

2.1 Yeast strain 

The fermentations, which are used in this study, are performed with the commercial strain of Saccharomyces cerevisiae Lalvin 

EC-1118 (Lallemand SA, Montreal, Canada). Fermentation tanks are inoculated with 100 mg/L active dry yeast, i. e. 109 

cells/L, which are rehydrated for 30 minutes at 37°C in a 50 g/L glucose solution. 

 

2.2 Fermentation media 

The fermentations are carried out in synthetic musts exhibiting the characteristics of a standard grape juice [24]. The sugar 

concentration of all musts is 180g/L evenly split between glucose and fructose and the pH is at 3.3. Three initial concentrations 

of assimilable nitrogen (ammonium chloride and mixture of amino acids) are used: 70, 140 and 210 mgN/L, corresponding 

respectively to MS70, MS140 and MS210. The three media present the same proportions of the different nitrogen sources 

[25]. The concentrations of others nutrients are the same as in [25]. 

 

2.3 Fermentation conditions 

The fermentation are carried out in 1.2 L glass fermenters with 1 L of medium regulated at 24°C. CO2 release is accurately 

measured from an automatic online monitoring of weight loss [26]. 

Nitrogen addition is carried out with three concentrations: 50, 100 and 150 mgN/L in the form of mineral nitrogen (di-

ammonium phosphate) and different timings: at 20 g/L produced CO2 for calibration fermentations and at 20 g/L and 35g/L 

produced CO2 for validation fermentations. Nitrogen additions are performed automatically by means of a pump [27]. 

 

2.4 Cell population 

The total cell population is measured using a Beckman Coulter counter (Model Z2, Beckman-Coulter, Margency, France) 

fitted with a 100 µm aperture probe. 

 

2.5 Measurement of Assimilable Nitrogen 

Ammonium concentration is measured enzymatically (R-Biopharm, Darmstadt, Germany). The free amino acid 

concentrations are measured by cation exchange chromatography with post-column ninhydrin derivatization (Biochrom 30, 

Biochrom, Cambridge, United Kingdom) as presented by Crépin et al [6] . 

 

2.6 Fermentation conditions of data used for models’ calibration and validation 

The conditions of the cultures used for the calibration and the validation of the models are presented in Table 1. 
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Table 1 Experimental conditions of calibration fermentations 

Fermentations Initial nitrogen 

(mg/L) 

Added nitrogen 

(mg/L) 

CO2 produced at nitrogen 

addition (g/L) 

time at nitrogen 

addition (h)  

C
al

ib
ra

ti
o

n
 

 

MS70+100 70 100 20 71.412 

MS140+50 140 50 20 37.51 

MS140+150 140 150 20 37.52 

MS210+100 210 100 20 33.72 

V
al

id
at

io
n

 

MS70+100 70 100 20 67.2 

MS140+50 140 50 20 34.94 

MS140+150 140 150 20 35.97 

MS210+100 210 100 20 29.85 

MS140+100 140 100 35 57.88 

 

 

3 Models formulation 

Two structured models were developed based on nitrogen-limited biomass growth to simulate nitrogen addition without 

discontinuities, one based on Malherbe’s model and another on Brou’s model. These new models allow to simulate the 

fermentation variables: biomass (X in 109cell/L), sugar (S in g/L), nitrogen (N in g/L) and ethanol (E in g/L), the cumulative 

production of carbon dioxide (CO2 in g/L) and also the dynamic of state variables representative of yeast physiological state 

which are intracellular nitrogen (Nintra in g/109cell), sugar transporter (NST in gN/109cell) and cell activity (A dimensionless). 

3.1 Introduction of intracellular nitrogen and cell activity 

As reported in the literature, a residual growth is observed after the end of nitrogen consumption present in the medium [10]. 

So, as in the Brou’s model, an intracellular nitrogen compartment (Nintra) is considered in the models. The intracellular nitrogen 

is formed by entry of nitrogen into the yeast and is used for biomass growth and sugar carrier production as shown in the 

Erreur ! Source du renvoi introuvable.. As in the Malherbe’s model, the sugar transporters (NST) are considered. They are 

synthetized from intracellular nitrogen. The sugar transporters are involved in the sugar equation and depict the sugar affinity 

and the ethanol inhibition of sugar transporter on sugar consumption. 
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Figure 1 Diagram of nitrogen forms 

As it is also known that the physiological state of yeasts declines during the fermentation  [12-15]  , the term of cell activity 

was introduced in the models to consider enzymatic activity decrease due to nitrogen deficiency and ethanol production. Its 

evolution is described in equation (1). 

𝑑𝐴

𝑑𝑡
=  µ (1 − 𝐴) − 𝜅 𝐴 (1) 

µ (h-1) is the specific growth rate and 𝜅 (h-1) a constant. 

 

 

3.2 Mass balance 

The bioreactor is assumed to be infinitely mixed with a constant volume without any transfer limitation. Then the temporal 

evolution of variables is only linked to the biological kinetics. Based on these assumptions, unsteady-state mass balances for 

cells, sugar, nitrogen, ethanol, CO2, intracellular nitrogen and sugar transporter are given by Eqs (2)-(8): 

 

 

𝑑𝑋

𝑑𝑡
= 𝑟𝑋 (2) 

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (3) 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (4) 

𝑑𝐸

𝑑𝑡
= 𝑟𝐸 (5) 

𝑑𝐶𝑂2

𝑑𝑡
= 𝑟𝐶𝑂2 (6) 

𝑑𝑁𝑖𝑛𝑡𝑟𝑎

𝑑𝑡
= 𝑟𝑁𝑖𝑛𝑡𝑟𝑎

−
𝑁𝑖𝑛𝑡𝑟𝑎

𝑋

𝑑𝑋

𝑑𝑡
(7) 

𝑑𝑁𝑆𝑇

𝑑𝑡
= 𝑟𝑁𝑆𝑇

−
𝑁𝑆𝑇

𝑋

𝑑𝑋

𝑑𝑡
(8) 

With rX, rE and rCO2 the production rate of respectively biomass, ethanol and CO2 and rS and rN the consumption rate 

respectively of sugar and nitrogen, rNintra and rNST the net rate of respectively Nintra NST. The term−
𝑁𝑆𝑇

𝑋

𝑑𝑋

𝑑𝑡
 and −

𝑁𝑖𝑛𝑡𝑟𝑎

𝑋

𝑑𝑋

𝑑𝑡
 are 

the term of dilution of respectively sugar transporter and intracellular nitrogen due to biomass growth. 
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3.3 Model 1 derived from Malherbe’s model 

Malherbe’s model [8] has to be modified to integrate effect of nitrogen addition and potential regrowth of biomass after 

nitrogen addition as biomass depends only on initial nitrogen in this model. Model 1 includes 18 parameters against 16 for 

the Malherbe’s model. 

 

The sugar consumption rate [8] is expressed by: 

𝑟𝑆 = − 𝜈𝑆𝑇(𝑆, 𝐸)𝑁𝑆𝑇X (9) 

In which 𝜈𝑆𝑇(𝑆, 𝐸) represent the activity of a sugar transporter (facilitated mechanism diffusion) with ethanol inhibition: 

ν𝑆𝑇(𝑆, E) =  
𝑘2𝑆

𝑆 +  𝐾𝑠 +  𝐾𝑆1𝑆𝐸α𝑆
(10) 

With k2 the maximum specific rate in gS/( gN.109cells.h), KS the affinity constant in gS/L, KSI the inhibition constant in (L/gE)αS 

and αS dimensionless. 

Assuming a constant yield of CO2 released and ethanol produced during fermentation, the ethanol and CO2 productions rates 

are described by Eq(11) and (12): 

𝑟𝐸 = −
1

𝑌𝐸
𝑆

𝑟𝑆 (11) 

𝑟𝐶𝑂2
= −

1

𝑌𝐶𝑂2
𝑆

𝑟𝑆 (12) 

YE/S and YCO2/S are the conversion yields respectively of sugar to ethanol and of sugar to CO2. they are set to 2.17 [8]. 

It is assumed that the sugar transporter synthesis depends on intracellular nitrogen and that sugar transporters can be degraded. 

The net rate of sugar transporter is defined by: 

𝑟𝑁𝑆𝑇
= 𝑘𝑛𝑠𝑡 (1 −

𝑄0𝑛𝑠𝑡

𝑁𝑖𝑛𝑡𝑟𝑎

) − 𝑘𝑑𝑛𝑠𝑡

𝑁𝑆𝑇

𝐾𝑁𝑆𝑇 + 𝑁𝑆𝑇

(13) 

In which knst is the maximum specific production rate in gN/(109cell.h), Q0nsst is the minimal intracellular nitrogen content for 

sugar transporter production in gN/(109cell), KNST is the affinity constant  in gN/109cell and kdnst is the maximum specific 

degradation rate in gN/(109cell.h). 

 

The specific rate of nitrogen consumption of Malherbe’s model is modified by introducing the notion of cell activity: 

𝑟𝑁 = −𝜇𝑁(𝑁, 𝐸). 𝑋. 𝐴 (14) 

μN (gN/(109 cell.h) correspond to specific nitrogen consumption rate which is limited by nitrogen and inhibited by ethanol. It 

is defined by: 
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μ𝑁(𝑁, 𝐸) =  
𝑘3𝑁

𝑁 +  𝐾𝑁 +  𝐾𝑁𝐼𝑁𝐸α𝑁
(15) 

With k3 the maximum specific consumption rate in gN/(109cell.h-1), KN the affinity constant in gN/L, KNI the inhibition constant  

and αN dimensionless. 

For the net production rate of intracellular nitrogen (eq 16). Three phenomena are considered: the consumption of nitrogen by 

yeast cell, the biomass production and the production and degradation of sugar transporters. 

𝑟𝑁𝑖𝑛𝑡𝑟𝑎
=  𝜇𝑁(𝑁, 𝐸) − 𝛼1𝑟𝑋 −

1

𝑌𝑛𝑠𝑡

(𝑘𝑛𝑠𝑡 (1 −
𝑄0𝑛𝑠𝑡

𝑁𝑖𝑛𝑡𝑟𝑎

) − 𝑘𝑑𝑛𝑠𝑡) (16) 

With α1 the nitrogen yield in cell in gN/(109cell), Ynst the nitrogen yield of sugar transporter in gN/gN.  

The biomass production rate (eq 17) is function of intracellular nitrogen concentration and cell activity to consider, 

respectively, the residual growth after nitrogen depletion in the medium and the lower capacity of the yeast to regrow after 

nitrogen addition for a longer period of nitrogen depletion. It considers also a linear inhibition by ethanol:  

𝑟𝑋 = 𝑘1(𝑇)𝑋 (1 −
𝑄0

𝑁𝑖𝑛𝑡𝑟𝑎

) (1 −
𝐸

𝐸𝑚𝑎𝑥

) 𝐴 (17) 

In which k1(T) is the maximum specific growth rate depending on temperature (h-1): 𝑘1(𝑇) = 𝛼𝑘1𝑇 − 𝛽𝑘1 , that relation comes 

from the Malherbe model [8], 𝑄0 the minimum intracellular nitrogen content of biomass for biomass growth in gN/(109cell) 

and Emax the critical ethanol concentration for biomass growth in gE/L. 

 

3.4 Model 2 derived from Brou’s model 

3.4.1 Stoichiometric equations 

Model 2 is based on four stoichiometric reactions (expressed in mol) that represent the major phenomena considered in this 

model of oenological fermentation i.e.  biomass production (r1
*), ethanol production (r2

*), nitrogen consumption (r3
*) and 

sugar transporter production (r4
*): 

 (r1
*) 𝑔1𝐶6𝐻12𝑂6 + 𝑔2𝑁𝑖𝑛𝑡𝑟𝑎 →  𝐶𝐻1.741𝑂0.632𝑁0.097 + 𝑔3𝐶𝑂2 + 𝑔4𝐻2𝑂 

 (r2
*) 𝐶6𝐻12𝑂6 →  𝑔𝑆 𝐶2𝐻6𝑂 + 𝑔𝑆 𝐶𝑂2  

 (r3
*)  𝑁 → 𝑁𝑖𝑛𝑡𝑟𝑎 

 (r4
*) 𝑁𝑖𝑛𝑡𝑟𝑎 →  𝑁𝑆𝑇 

Reaction rates 𝑟𝑖
∗ are in mol/(L.h). The stoichiometric coefficients g3 and g4 can be deduced from g1 and g2. gS is the yield of 

conversion of sugar into ethanol and CO2. gS is slightly lower than 2 mol/mol, the theoretical yield of ethanol production, 

because sugar is also converted into other metabolites like glycerol and aromas. The biomass composition is taken from [11]. 

3.4.2 Model equations 

The model 2 includes 19 parameters against 18 for the Brou’s model. The rates of consumption or production of each species 

can be expressed as a weighted sum of the four stoichiometric equation rates (eq 18 to 24). All these rates are expressed in 

g/(L.h) except for biomass whose rate is expressed in 109 cell/(L.h) considering the molar mass of each species: 
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 Sugar: 

𝑟𝑆 = −(𝑟2
∗ + 𝑔1𝑟1

∗) 𝑀𝑆 (18)  

 Ethanol: 

𝑟𝐸 = 𝑔𝑆 𝑟2
∗ 𝑀𝐸 (19)  

 CO2: 

𝑟𝐶𝑂2
= (𝑔𝑆 𝑟2

∗ + 𝑔3𝑟1
∗) 𝑀𝐶𝑂2 (20)  

 Biomass: 

𝑟𝑋 =  𝑟1
∗𝑎 𝑀𝑋 (21) 

 Nitrogen: 

𝑟𝑁 = − 𝑟3
∗𝑀𝑁 (22)  

 Intracellular nitrogen: 

𝑟𝑁𝑖𝑛𝑡𝑟𝑎
= (𝑟3

∗ − 𝑔2𝑟1
∗ − 𝑟4

∗)𝑀𝑁 (23) 

 Sugar transporter : 

𝑟𝑁𝑆𝑇
= 𝑟4

∗𝑀𝑁 (24) 

With MX, MS, ME, MCO2 and MN the molar mass, respectively, of biomass, sugar, ethanol, CO2 and nitrogen in g/mol and 𝑎  
the number of cells per biomass gram in 109cell/g. 

3.4.3 Reactions rates 

We define Xn the biomass concentration in C-molX/L by the equation:  

𝑋𝑛 =
𝑋

𝑎𝑀𝑋

(25) 

with X the biomass concentration in 109cell/L. The value of 𝑎  and MX are those of Brou’s model [11]: 37.6 109cell/g and 

25.0689g/C-mol respectively. 

 

First stoichiometric equation rate (Yeast growth rate (𝑟1
∗)) is limited by intracellular nitrogen (Nintra) and by sugar (S). It 

depends of biomass (Xn) and cell activity (A) and can be expressed by the equation 26: 

𝑟1
∗ = 𝑘𝑋𝑋𝑛 (

𝑁𝑖𝑛𝑡𝑟𝑎

𝑁𝑖𝑛𝑡𝑟𝑎 + 𝑁𝑖𝑛𝑡𝑟𝑎0

) (
𝑆

𝐾𝑆1 + 𝑆
) 𝐴 (26) 

With kX the maximum specific growth rate in h-1, KS1 the affinity constant for substrate in gS/L and Nintra0 the constant of 

growth limitation by intracellular nitrogen in gN/L. 

Ethanol production rate (𝑟2
∗) is inhibited by ethanol (E) and is limited by sugar (S) and sugar transporter (NST):  

𝑟2
∗ = 𝑘𝐸𝑋𝑛 (

𝑆

𝑆 + 𝐾𝑆2

) (1 −
𝐸

𝐸𝑙𝑖𝑚1

)
𝛼1

(
𝑁𝑆𝑇

𝑁𝑆𝑇 + 𝐾𝑆𝑇

) (27) 

With kE the maximum specific ethanol production rate in molE.molX.h-1, KS2 the affinity constant for sugar in gS/L, Elim1 the 

critical concentration of ethanol in gE/L for which there is no more ethanol production and KST the constant of ethanol 

production limitation by sugar transporter in gN/109cell. 

 

Nitrogen absorption rate (𝑟3
∗) is limited by nitrogen (N) and depends of biomass (Xn) and cell activity (A): 

𝑟3
∗ = 𝑘𝑁𝑋𝑛 (

𝑁

𝑁 + 𝐾𝑁1

) 𝐴 (28) 

With kN the maximum specific nitrogen absorption rate in molN.molX.h-1, KN the affinity constant for nitrogen in gN/L. 

Sugar transporter rate (𝑟4
∗) is inhibited by ethanol (E) and limited by intracellular nitrogen (Nintra): 

𝑟4
∗ = 𝑘𝑁𝑆𝑇𝑋𝑛 (1 −

𝐸

𝐸𝑙𝑖𝑚2

)
𝛼2

(
𝑁𝑖𝑛𝑡𝑟𝑎

𝑁𝑖𝑛𝑡𝑟𝑎 + 𝑁𝑖𝑛𝑡𝑟𝑎1

) (29) 

With kNST the maximum specific sugar transporter rate in molN.molX.h-1, Elim2 the critical concentration of ethanol in gE/L and 

Nintra1 the constant of sugar transporter limitation by intracellular nitrogen. 

 

 

Equations of the two models developed are summarized in Table 2.
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Table 2 Two models equations 

Variable Model 1 Model 2 

Biomass 𝑑𝑋

𝑑𝑡
= 𝑘1(𝑇)𝑋 (1 −

𝑄0

𝑁𝑖𝑛𝑡𝑟𝑎
) (1 −

𝐸

𝐸𝑚𝑎𝑥
) 𝐴 

With 𝑘1(𝑇) = 𝛼𝑘1𝑇 − 𝛽𝑘1 

𝑑𝑋

𝑑𝑡
=  𝑘𝑋𝑋𝑛 (

𝑁𝑖𝑛𝑡𝑟𝑎

𝑁𝑖𝑛𝑡𝑟𝑎 + 𝑁𝑖𝑛𝑡𝑟𝑎0
) (

𝑆

𝐾𝑆1 + 𝑆
) 𝐴𝑎 𝑀𝑋 

Sugar 𝑑𝑆

𝑑𝑡
= − 𝜈𝑆𝑇(𝑆, 𝐸)𝑁𝑆𝑇X 

With  ν𝑆𝑇(𝑆, E) =  
𝑘2𝑆

𝑆+ 𝐾𝑠+ 𝐾𝑆1𝑆𝐸α𝑆
 

𝑑𝑆

𝑑𝑡
= − (𝑘𝐸𝑋𝑛 (

𝑆

𝑆 + 𝐾𝑆2
) (1 −

𝐸

𝐸𝑙𝑖𝑚1
)

𝛼1

(
𝑁𝑆𝑇

𝑁𝑆𝑇 + 𝐾𝑆𝑇
)

+ 𝑔1𝑘𝑋𝑋𝑛 (
𝑁𝑖𝑛𝑡𝑟𝑎

𝑁𝑖𝑛𝑡𝑟𝑎 + 𝑁𝑖𝑛𝑡𝑟𝑎0
) (

𝑆

𝐾𝑆1 + 𝑆
) 𝐴) 𝑀𝑆 

Ethanol 𝑑𝐸

𝑑𝑡
= −

1

𝑌𝐸/𝑆

𝑑𝑆

𝑑𝑡
 

𝑑𝐸

𝑑𝑡
= 𝑔𝑆  𝑘𝐸𝑋𝑛 (

𝑆

𝑆 + 𝐾𝑆2
) (1 −

𝐸

𝐸𝑙𝑖𝑚1
)

𝛼1

(
𝑁𝑆𝑇

𝑁𝑆𝑇 + 𝐾𝑆𝑇
) 𝑀𝐸 

CO2 𝑑𝐶𝑂2

𝑑𝑡
= −

1

𝑌𝐶𝑂2/𝑆

𝑑𝑆

𝑑𝑡
 

𝑑𝐶𝑂2

𝑑𝑡
= (𝑔𝑆 𝑘𝐸𝑋𝑛 (

𝑆

𝑆 + 𝐾𝑆2
) (1 −

𝐸

𝐸𝑙𝑖𝑚1
)

𝛼1

(
𝑁𝑆𝑇

𝑁𝑆𝑇 + 𝐾𝑆𝑇
)

+ 𝑔3𝑘𝑋𝑋𝑛 (
𝑁𝑖𝑛𝑡𝑟𝑎

𝑁𝑖𝑛𝑡𝑟𝑎 + 𝑁𝑖𝑛𝑡𝑟𝑎0
) (

𝑆

𝐾𝑆1 + 𝑆
) 𝐴) 𝑀𝐶𝑂2 

Nitrogen 𝑑𝑁

𝑑𝑡
= −𝑋𝜇𝑁(𝑁, 𝐸)𝐴 

With μ𝑁(𝑁, 𝐸) =  
𝑘3𝑁

𝑁+ 𝐾𝑁+ 𝐾𝑁𝐼𝑁𝐸α𝑁
 

𝑑𝑁

𝑑𝑡
= − 𝑘𝑁𝑋𝑛 (

𝑁

𝑁 + 𝐾𝑁1
) 𝐴𝑀𝑁 

Intracellular 

nitrogen 

𝑑𝑁𝑖𝑛𝑡𝑟𝑎

𝑑𝑡
=  𝜇𝑁(𝑁, 𝐸) − (

𝛼1

𝑋
+

𝑁𝑖𝑛𝑡𝑟𝑎

𝑋
)

𝑑𝑋

𝑑𝑡

−
1

𝑌𝑛𝑠𝑡
(𝑘𝑛𝑠𝑡 (1 −

𝑄0𝑛𝑠𝑡

𝑁𝑖𝑛𝑡𝑟𝑎
) − 𝑘𝑑𝑛𝑠𝑡) 

 

𝑑𝑁𝑖𝑛𝑡𝑟𝑎

𝑑𝑡
= (𝑘𝑁𝑋𝑛 (

𝑁

𝑁 + 𝐾𝑁1
) 𝐴 − 𝑔2𝑘𝑋𝑋𝑛 (

𝑁𝑖𝑛𝑡𝑟𝑎

𝑁𝑖𝑛𝑡𝑟𝑎 + 𝑁𝑖𝑛𝑡𝑟𝑎0
) (

𝑆

𝐾𝑆1 + 𝑆
) 𝐴

− 𝑘𝑁𝑆𝑇𝑋𝑛 (1 −
𝐸

𝐸𝑙𝑖𝑚2
)

𝛼2

(
𝑁𝑖𝑛𝑡𝑟𝑎

𝑁𝑖𝑛𝑡𝑟𝑎 + 𝑁𝑖𝑛𝑡𝑟𝑎1
)) 𝑀𝑁 

Sugar 

transporter 

𝑑𝑁𝑆𝑇

𝑑𝑡
= 𝑘𝑛𝑠𝑡 (1 −

𝑄0𝑛𝑠𝑡

𝑁𝑖𝑛𝑡𝑟𝑎
) − 𝑘𝑑𝑛𝑠𝑡

𝑁𝑆𝑇

𝐾𝑁𝑆𝑇 + 𝑁𝑆𝑇

−
𝑁𝑆𝑇

𝑋

𝑑𝑋

𝑑𝑡
 

𝑑𝑁𝑆𝑇

𝑑𝑡
= 𝑘𝑁𝑆𝑇𝑋𝑛 (1 −

𝐸

𝐸𝑙𝑖𝑚2
)

𝛼2

(
𝑁𝑖𝑛𝑡𝑟𝑎

𝑁𝑖𝑛𝑡𝑟𝑎 + 𝑁𝑖𝑛𝑡𝑟𝑎1
) 𝑀𝑁 

Cell activity 𝑑𝐴

𝑑𝑡
=  

1

𝑋

𝑑𝑋

𝑑𝑡
 (1 − 𝐴) − 𝜅 𝐴 

𝑑𝐴

𝑑𝑡
=  

1

𝑋

𝑑𝑋

𝑑𝑡
 (1 − 𝐴) − 𝜅 𝐴 
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3.6 Computing 

Matlab R2017b software was used for calibration and simulation of the models: ode15s function [28] to solve differential 

equations and pattern search and Rosenbrock algorithms to calibrated models. 

3.7  Statistical analysis 

Models quality was analysed with experimental data using the Normed Root Mean Square Error (NMRSE) [29] and the 

Akaike Information Criterion (AIC) [30]. The NRMSE is defined as: 

𝑁𝑅𝑀𝑆𝐸 =
√∑ (𝑥𝑖 − 𝑦𝑖)2𝑇

𝑖=1

𝑛
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

(30)
 

With 𝑛 the number of experimental data, 𝑥𝑖 the experimental data corresponding to time ti, 𝑦𝑖 the data simulated by model for 

the same time ti, 𝑦𝑚𝑖𝑛and 𝑦𝑚𝑎𝑥the minimum and maximum data values. 

the NRMSE is used for several variables, with the following formula: 

𝑁𝑅𝑀𝑆𝐸𝑡𝑜𝑡 =
∑ 𝑁𝑅𝑀𝑆𝐸𝑖√𝑛𝑖

𝑚
𝑖=1

√∑ 𝑛𝑖
𝑚
𝑖=1

(31) 

m is the total number of variables, NRMSEi are the NRMSE value for the ith variable and ni is the number of values of the ith 

variable. 

The AIC is defined by: 

𝐴𝐼𝐶 = 2𝑝 + 𝑛(𝑙𝑛(2𝜋) + 𝑙𝑛(𝑆𝑆𝐸) − 𝑙𝑛(𝑛) + 1 ) (32) 

With 𝑝 the number of parameters, 𝑛 the n number of experimental data and 𝑆𝑆𝐸 the Sum Square Error. 

The SSE is defined by: 

𝑆𝑆𝐸 = ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

(33) 

With 𝑛 the number of experimental data, 𝑥𝑖 the experimental data corresponding to time ti, 𝑦𝑖 the data simulated by model for 

the same time ti.. 

3.8  Sensibility analysis 

The robustness of the models 1 and 2 to its parameters has been studied using the sensitivity coefficient 𝜎𝑦
Δ𝑝

  (Eq 32) for the 

variable y and the parameter p [31]. 

𝜎𝑦
𝛥𝑝

= ∫
𝑦(𝑝 + 𝛥𝑝, 𝑡) − 𝑦(𝑝, 𝑡)

𝑦(𝑝, 𝑡)

𝑡𝑓

0

𝑑𝑡 (34) 

With tf the final fermentation time, y(p,t) the simulated value of the variable y at the time t and for the vector of optimized 

parameters and Δp the modification of a parameter. 

 

4 Models calibration 

4.1 Parameters calibration 

The two models are calibrated using the four fermentations presented in Table 1 of paragraph 2.6. Each fermentation present 

between 10 and 18 data of nitrogen and of biomass and about 460 data of CO2 (one data each 20 minutes). 
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The Table 3 shows Model 1  and model 2 calibrated parameters, and the confidence intervals for these parameters. It could 

be seen that calibrated Model 1 have values close to those reported in the literature [8]. 

 

The confidence intervals are small for almost all parameters of both models, which means that the parameters values are 

reliable. For the Model 1, only three parameters (KS, knst and Knst) present a great confidence interval compared to their values. 

For the Model 2, only the parameter α2 present a great confidence interval compared to its value.  

 

Table 3 Model 1 and 2 and Malherbe's model parameters 

Parameters Model 1 Malherbe’s model 

[8] 

 Parameters Model 2 

k1 𝛼𝑘1𝑇 − 𝛽𝑘1 𝛼𝑘1𝑇 − 𝛽𝑘1  kX 0.4036±0.0113 

αk1 0.0287 0.0287  Nintra0 (9.059±0.0000).E-6 

βk1 0.3 0.3762  KS1 1.565±0.0358 

k2 0.0386±0.00038 0.035  kE 0.2215±0.0047 

KS 20.67±18.3341 15  KS2 1.955±0.0624 

KSI 0.006299±0.00087 0.012  Elim1 100.2±1.1988 

αS 0.9355±0.2671 1.25  α1 0.7505±0.0205 

YE/S 2.17 2.17  Kst 0.0007528±0.0000 

YCO2/S 2.17 2.17  kN 0.03373±0.0004 

k3 0.001033±0.0001 0.001  KN1 0.008628±0.0003 

KN 0.04105±0.0147 0.03  g1 0.2018±0.0034 

KNI 0.02635±0.0096 0.035  g2 0.1243±0.0027 

αN 1.195±0.295 1.5  g3 6g1-1 

Q0 0.0001347±0.000 -  kNST (7.661±0.0046).E-5 

Emax 94.67±8.1371 -  Elim2 90.55±2.6018 

knst 1.0024±0.5750 -  α2 (4.71±2.857) 

kdnst 1.987±0.5 -  Nintra1 0.0005719±0.0000 

Knst 10.76±7.1421 -  κ 0.35002±0.0015 

Ynst 694.8±118.2153 -  gS 1.909±0.0035 

Q0nst 0.0001334±0.000 -    

α1 0.0004795±0.0001 -    

κ 0.03±0.0057 -    

 

 

4.2    Models comparison  

The Figure  shows the comparison of the two calibrated models’ simulation with experimental data and simulation of Brou’s 

and Malherbe’s models. The Brou’s and Malherbe’s models were calibrated with the same data as models 1 and 2 to better 

compare them. Graphically, models 1 and 2 fit experimental data well and simulate slightly better experimental data than 

Brou’s and Malherbe’s models. Models 1 and 2 fit less on MS70+100 than for other fermentations on CO2 production Brou's 

model underestimates the final CO2 production for the four fermentations. The Malherbe’s model simulates well the CO2 

production for two fermentations (MS70+100 and MS140+50). However, Malherbe’s model simulates badly the CO2 

production after nitrogen addition for the other two fermentations (MS140+150 and MS210+100), where added nitrogen is 

important. Models 1 and 2 fit the CO2 production rate better before nitrogen addition than after nitrogen addition especially 

for maximum value of CO2 production rate. Model 1 seems to be slightly better than model 2 for CO2 production and for CO2 

production rate. Model 1 and 2 simulate better CO2 production rate than Malherbe’s and Brou’s models after nitrogen addition. 

Model 1 and 2 simulate well nitrogen consumption during the first part of fermentation unlike the Malherbe’s model but, after 

nitrogen addition, the simulated consumption is faster than experimental data. Brou’s model simulates also the nitrogen 

consumption too quickly after the nitrogen addition.  

Models 1 and 2 seem to have equivalent performance on nitrogen. Concerning simulation of biomass dynamics, Model 1 

underestimates the biomass production rate while model 2 tends to overestimate this rate after nitrogen addition. Both models 

overestimate maximum biomass produced for MS210+100 and for MS70+100 but estimate well maximum biomass produced 
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for MS140+50 and MS140+150. Brou’s model overestimates the biomass whereas Malherbe’s model underestimates the 

biomass production. 

 

 
Figure 2 Dynamic evolution of biomass, nitrogen, CO2 and CO2 production rate  for the experimental data (in red) and data simulated by 
models 1 (in black), model 2 (in blue), Malherbe’s model (in pink) and Brou’s model (in green) for the four calibration fermentatations 

 

The Table 4 shows the NRMSE values for each variable for all fermentations for Models 1 and 2. 

Model 1 is slightly better than model 2 for the whole fermentations and for the whole variables (NRMSE values of 0.208 for 

model 1 and 0.241 for model 2 cf. Table 4) and for each variable. Model 1 better describes kinetic evolution of experimental 

data than model 2 for nitrogen for the four fermentation and for biomass for three fermentations (not for MS140+50). 

Regarding the NRMSE for CO2, rCO2 and for the whole variables for MS140+150 and for MS70+100, Model 1 is closer to 

the data than the model 2 while model 2 is slightly better for MS210+100 and for MS140+50. 
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Table 4 NRMSE values applied to each variable for each fermentation, to all of the variables for each fermentation, to each variable for 

all of the fermentations and to all of the variables for all of the fermentations and for Models 1 and 2. 

Model Fermentations CO2 in g/L rCO2 in g/(L.h) Biomass in 109 cell/L Nitrogen in 

g/L 

All variables 

Model 1 MS210+100 0.0320 0.0773 0.199 0.112 0.121 

MS140+150 0.00838 0.0587 0.109 0.251 0.123 

MS140+50 0.0158 0.0548 0.0867 0.0990 0.0901 

MS70+100 0.0222 0.0826 0.208 0.213 0.120 

All fermentations 0.0391 0.137 0.292 0.331 0.208 

Model 2 

MS210+100 0.0192 0.0494 0.245 0.126 0.101 

MS140+150 0.0204 0.0902 0.156 0.254 0.138 

MS140+50 0. 00556 0.0459 0.0773 0.117 0.0836 

MS70+100 0.0757 0.195 0.103 0.155 0.219 

All fermentations 0.0464 0.161 0.357 0.349 0.241 

 

According to the AIC values (Table 5), Models 1 and 2 are better than Malherbe’s and Brou’s Models with higher nitrogen 

addition: for instance, for MS+150 the AIC value for Brou’s Model and Malherbe’s Model are approximately two times the 

value for Model 1 and for Model 2. Models 1 and 2 are slightly better than Brou’s and Malherbe’s Models for fermentations 

with a lower nitrogen addition. Models 1 and 2, Malherbe’s and Brou’s Models are equivalents for the biomass and for 

nitrogen. Models 1 and 2 present better performance than Brou’s and Malherbe’s Model for CO2 production rate. 
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Table 5 AIC values applied to each variable for each fermentation and for  Models 1, 2, of Brou and of Malherbe. 

Model Fermentations CO2 in g/L rCO2 in g/(L.h) Biomass in 109 cell/L Nitrogen in g/L 

Model 1 MS210+100 2234 -437 254 272 

MS140+150 1012 -718 242 274 

MS140+50 1597 -1000 233 273 

MS70+100 1948 -1020 104 184 

Model 2 

MS210+100 1761 -834 262 274 

MS140+150 1839 -301 250 276 

MS140+50 637 -1159 233 275 

MS70+100 2653 -409 136 186 

Brou’s Model 

MS210+100 3147 -142 237 268 

MS140+150 3027 -59 241 270 

MS140+50 3082 245 240 269 

MS70+100 3037 433 124 180 

Malherbe’s Model 

MS210+100 1736 -416 240 272 

MS140+150 3230 446 220 274 

MS140+50 1486 -462 220 27 

MS70+100 3250 295 129 184 

 

5 Model sensitivity 

Sensitivity analysis was done to find parameters that play the main role in the models. Moreover, as the model will be used 

for online optimization, the model sensitivity to parameter variations must be studied. In this work the sensitivity coefficients 

are calculated for biomass, nitrogen, CO2 and rCO2 and for a modification of each parameter value between -10% and 10% 

with a step of 0.5%. For the model 1, the sensitivity analysis was not applied to parameter k1 because this parameter depends 
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on temperature and we use only one temperature. For the model 2, the sensitivity analysis was not applied to the parameter 

g3 because this parameter is calculated from the parameter g1 (𝑔3 = 6𝑔1 − 1). 

Figure 3 and Erreur ! Source du renvoi introuvable. represent the sensitivity coefficients calculated for CO2 release and for 

each parameters of model 1 and 2 respectively. Model 1 is sensitive to variations of four parameters (k2, Nintra0, Q0nst, Ynst). 

Model 2 is sensitive to variations of three parameters (k2, k3 and g2) and diverges for some modifications of two parameters 

(Elim2 and gS). Model 1 seems to be less sensitive than model 2 because model 2 diverges for some modifications of two 

parameters values (Elim2 and gS). 

 

For the model 1, nitrogen is the most sensitive variable to changes in parameters as for all parameters the sensitivity coefficient 

takes an absolute value of more than 1 for at least one variation of the parameter. Increasing Q0 or decreasing Q0nst result in 

the greatest variation of the sensitivity coefficient for nitrogen. 

Biomass is not very sensitive to the variation of the parameters: only two parameters modifications leads to a sensitivity 

coefficient of more than 1 in absolute value: Q0 and Q0nst.  

The CO2 production rate rCO2 is not sensitive to the modification of the value of most of the parameters except for the 

diminution of k2, Q0 and Ynst that can lead respectively to a sensitivity coefficient of -8.88, -4.21 and -2.90 for a diminution 

of 10% of the three parameters values. 

CO2 is the variable least sensitive to variations in parameters values: for only five parameters, the value modification can lead 

to a sensitivity coefficient more than 0.1 in absolute value but none of them induce a sensitivity coefficient more than 1 in 

absolute value. 

For the model 2, increasing gS by more than 7% or decreasing Elim2 by more than 6.5% lead to the divergence of model 2. As 

for model 1, nitrogen is very sensitive to parameters value modification: most of the modification lead to a sensitivity 

coefficient more than 1 in absolute value. Nitrogen is most sensitive to modification of g2: sensitivity coefficient can be more 

than 100.  

Biomass is not very sensitive to parameters value modification: no modification leads to a sensitivity coefficient of more than 

1 in absolute value.  

Concerning rCO2, the modifications of 6 parameters lead to a sensitivity coefficient more than 1 in absolute value especially 

the modification of k2, Elim2 and g2 that lead to a sensitivity coefficient more than 20 in absolute value.  

CO2 is not sensitive to the modification of any parameters: no parameters value modification lead to a sensitivity coefficient 

more than 0.5 in absolute value. 

 

 

 
Figure 3 Sensitivity coefficients for each model 1 parameters and for CO2 release 
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Figure 4 Sensitivity coefficients for each model 2 parameters and for CO2 release 

6 Models validation 

Models 1 and 2 are validated and compared with Malherbe’s [8] and Brou’s [11] models recalibrated with the same calibration 

data as models 1 and 2 on data from 5 fermentations with nitrogen addition. The fermentations are made with three initial 

nitrogen concentrations (70, 140 and 210 mg/L), three added nitrogen concentrations (50, 100 and 150 mg/L) and two timing 

of nitrogen addition (20 and 35 g/L of CO2).  

Erreur ! Source du renvoi introuvable. shows data generated by the four models and experimental data for the five 

calibration fermentations. Graphically Malherbe’s model simulates well the maximal biomass concentration and Brou’s 

model overestimate maximal biomass concentration before nitrogen addition. Malherbe’s model does not predict biomass 

regrowth because its biomass equation does not take into account a nitrogen add. Brou’s model simulates a biomass regrowth 

after nitrogen addition but overestimates strongly the biomass production. Model 2 predicted well the maximal biomass after 

the first part of the biomass growth whereas model 1 simulates too slowly biomass production in the first part of biomass 

growth. After nitrogen addition model 2 is closer to the experimental biomass measure than the model 1.  

Malherbe’s model estimates well CO2 production for three fermentations (MS140+50 and MS210+100 with a nitrogen 

addition at 20 g/L of CO2 released and MS140+100 with a nitrogen addition at 35 g/L CO2 released) but estimates poorly the 

CO2 production for MS70+100 with a nitrogen addition at 20 g/L of CO2 released during the whole fermentation and 

MS140+150 with a nitrogen addition at 20 g/L of CO2 released after nitrogen addition. Brou’s model estimates well CO2 

production before nitrogen addition but underestimates CO2 production after nitrogen addition and the final CO2 production. 

Models 1 and 2 simulate well CO2 production all around the fermentation but they slightly overproduce CO2 after nitrogen 

addition.   

Malherbe’s model does not predict very well the CO2 production rate before the nitrogen addition. Malherbe’s model 

overestimates the Vmax. Brou’s model simulates poorly the CO2 production rate for the five fermentations. The nitrogen 

addition has no effect on CO2 production rate simulated by Brou’s and Malherbe’s models. Models 1 and 2 simulate well CO2 

production rate during the whole fermentation. Models 1 and 2 predict well the CO2 production rate during the whole 

fermentations. Models 1 and 2 predict well the Vmax value during the first phase of growth and the time at which Vmax are 

reached before and after nitrogen addition but during the second growth phase after nitrogen addition, Vmax is less well 

estimated than before nitrogen add by models 1 and 2.  

Globally models 1 and 2 simulate the five validation fermentations of calibration better than Malherbe’s and Brou’s models. 

Models 1 and 2 simulate very well the fermentation with a nitrogen add at 35 g/L of CO2 released and can be extended to 

fermentations with different nitrogen adds timings.  



18 

 
Figure 5 Dynamic evolution for CO2 production, biomass production and CO2 production rate for the experimental data (in red) and data 
simulated by models 1 (in black), 2 (in blue), Malherbe’s model (in green) and Brou’s model (in magenta). The first line represents the 
CO2 production, the second line the biomass production and the third line the CO2 production rate.  

 

 

The NRMSE values for CO2, CO2 production rate and biomass for each fermentation are presented in Table 6. Models 1 and 

2 simulate well CO2 production (NRMSE values go respectively from 0.0186 to 0.0474 and from 0.0287 to 0.0465). They fit 

better to experimental data than Malherbe’s and Brou’s models (NRMSE values from 0.0299 to 0.637 and from 0.0519 to 

115 for Malherbe’s and Brou’s Models respectively). Models 1 and 2 fit better to experimental data than Malherbe’s and 

Brou’s models for models for the CO2 production rate with NRMSE for models 1 and 2 (NRMSE values go respectively from 

0.0399 to 0.110 and from 0.0398 to 0.109) lower than those obtained for Malherbe’s and Brou’s Model (NRMSE values from 

0.116 to 0.208 and from 0.143 to 0.335 for Malherbe’s model and Brou’s Models respectively). 

The biomass is badly simulated by models 1 and 2 (NRMSE values go respectively from 0.119 to 0.479 and from 0.0707 to 

0.362), as Malherbe’s and Brou’s Models. The nitrogen addition at 35g/L of CO2 release does not change the models 1 and 2 

performances: the NRMSE values are not upper than the NRMSE values for a nitrogen add at 20g/L of CO2 release. Models 

1 and 2 are validated on CO2, rCO2 and biomass (two measures) data from 5 fermentations with nitrogen addition for two 

different fermentation progress. They allow to simulate a nitrogen addition at 35g/L of CO2 released despite being calibrated 

on fermentation with nitrogen addition at 20g/L of released CO2. Models 1 and 2 present a better adequation to experimental 

data than Brou’s and Malherbe’s model. Model 1 are slightly better than model 2 for CO2 production (NRMSE average value 

respectively of 0.0365 and 0.0404) whereas model 2 are slightly better for rCO2 and biomass than model 1 (NRMSE average 

value respectively of 0.0804 and 0.0756 for CO2 production rate and of 0.235 and 0.371 for biomass). 
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Table 6 NRMSE calculated for CO2, CO2 production rate and biomass for models 1 and 2,  Brou and Malherbe 

Fermentation NRMSE 

N0 

mg/L 

CO2aj 

g/L 

Naj  

mg/L 

CO2 rCO2 Biomass 

Model 1 Model 2 Brou Malherbe Model 1 Model 2 Brou Malherbe Model 1 Model 2 Brou Malherbe 

70 20 100 0.0372 0.0465 0.107 0.066 0.0399 0.0398 0.267 0.208 0.119 0.0707 0.626 0.306 

140 20 50 0.0271 0.0393 0.099 0.0474 0.0961 0.109 0.280 0.164 0.479 0.267 0.926 0.121 

140 20 150 0.0474 0.0352 0.0519 0.637 0.106 0.0859 0.166 0.181 0.443 0.293 0.463 0.172 

140 35 100 0.0186 0.0287 0.115 0.0502 0.0499 0.0499 0.354 0.202 0.358 0.181 0.648 0.193 

210 20 100 0.0522 0.0381 0.0742 0.0300 0.110 0.0936 0.143 0.116 0.458 0.362 0.455 0.202 

According to AIC values, Models 1 and 2 predict better than Brou’s and Malherbe’s Models the CO2 production rate: the AIC 

values goes from -766 to -90.1 for Model 1, from -630 to -215 for Model 2, from 123 to 638 for Brou’s Model and from -44.0 

to 239 for Malherbe’s Model. 

Models 1 and 2 are better than Brou’s Model for all fermentations and than Malherbe’s Model to predict CO2 for almost all 

fermentations: Malherbe’s Model is better than Models 1 and 2 for MS210+100 with a nitrogen addition at 20 g/L of CO2 

released. 

 

Table 7 AIC values calculated for CO2, CO2 production rate and biomass for models 1 and 2, of Brou and of Malherbe 

Fermentation AIC 

N0 

mg/L 

CO2aj 

g/L 

Naj  

mg/L 

CO2 rCO2 Biomass 

Model 1 Model 2 Brou Malherbe Model 1 Model 2 Brou Malherbe Model 1 Model 2 Brou Malherbe 

70 20 100 3180 3458 4481 3888 -766 -630 466 153 52,0 52,5 57,9 55,1 

140 20 50 2200 2565 3468 2663 -528 -404 511 -8,71 57,1 56,1 59,0 50,9 

140 20 150 1991 1785 2056 2196 -134 -282 181 239 57,5 58,0 57,3 53,4 

140 35 100 1509 1860 2967 2301 -609 -385 638 183 56,4 56,1 58,4 53,5 

210 20 100 2339 2087 2619 1891 -90,1 -215 123 -44,0 58,1 58,8 57,3 54,1 
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7 Conclusions 

Two models of fermentation in oenological conditions were proposed in this work. They are based on a storage compartment 

of nitrogen in yeast cells and simulate the macroscopic temporal evolution of biomass, sugar, ethanol, carbon dioxide, 

nitrogen, intra-cellular nitrogen and cell activity by differential equations. They consider effect of nitrogen addition during 

fermentation on growth and production kinetics of CO2 and ethanol. The two models are robust for most parameters and have 

been validated on experimental data with good fitting on CO2 release and production rate. 

Even though both developed models have good performance on the validation fermentations, Model 1 is slightly better than 

Model 2 on CO2 and CO2 production rate (NRMSE average value respectively of 0.0365 and 0.0404) whereas model 2 are 

slightly better for CO2 production rate and biomass than model 1 (NRMSE average value respectively of 0.0804 and 0.0756 

for CO2 production rate and of 0.235 and 0.371 for biomass. The Models 1 and 2 present better performance than Malherbe’s 

and Brou’s Models according to AIC values even if they have been calibrated with the same data as models 1 and 2. In 

addition, Model 1 is less sensitive than Model 2 to changes in parameters. 
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