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Highlights  13 

• Analytical Hierarchy Process proves a flexible method to assess vulnerability and risk 14 

• Risk experience, wildland-urban interface and tree traits drive vulnerability 15 

• Considering socio-economic drivers and several assets broadens the analysis 16 

• Stakeholders confirmed the relevance of participative assessments using MCDA 17 

• We identify vulnerable locations not yet subject to hazard 18 

 19 

Abstract 20 

The Mediterranean region is routinely affected by forest fires, with adverse consequences on 21 

ecological, infrastructural, and socioeconomic assets. In a context of climate change, it is 22 
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crucial for fire prevention and suppression to be able to identify locations where assets are most 23 

at risk, due to environmental, physical or socio-economic reasons. Besides, this knowledge 24 

needs to be developed conjunctly with operational services and field experts to ensure their 25 

application. So far, fire risk research has largely focused on fire behavior, effects, and model 26 

simulation. In this article, we show how the concept of vulnerability can provide a flexible and 27 

relevant framework for assessing fire risk and be evaluated using a spatial multicriteria decision 28 

analysis method (MCDA) - the Analytical Hierarchy Process (AHP)- based on both 29 

quantitative data and expert judgment gathered through a participative approach. We focus on 30 

South-Eastern France, a region characterized by high economic and environmental stakes and 31 

heavily affected by wildfires. We develop a series of spatialized indicators using ecological, 32 

land-use and sociodemographic data which we aggregate to produce vulnerability maps for 33 

three categories of assets: population, ecosystems and infrastructures. An ex-post workshop 34 

was organized with field experts to put both the approach and results into discussion. Results 35 

reveal significant differences in indicators’ perceived contributions to risk and vulnerability 36 

and enable appraising the contribution of sociodemographic factors, often overlooked in the 37 

literature. We also reveal differences in spatial patterns across both vulnerability 38 

subcomponents and exposed assets, helping identify primary and secondary vulnerability 39 

hotspots and underlying drivers. Consideration of multiple subcomponents of risk and 40 

vulnerability may help local decision makers prioritize how and where measures should be 41 

implemented, while the use of MCDA favors experience and knowledge sharing and among 42 

stakeholders while providing a basis of discussion. 43 
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1. Introduction 46 

Human societies derive benefits from well-functioning ecosystems through the services they 47 

provide (Diaz et al., 2019). Hazards such as storms, fires and pest outbreaks are natural 48 

ecosystem features whose regimes (i.e. patterns of occurrence and intensity) are expected to be 49 

affected by global changes (IPCC, 2021; Seidl et al., 2017). Wildfires, or forest fires, are one 50 

of the commonest disturbances to affect vegetated ecosystems (Bowman et al., 2020) and can 51 

negatively affect environmental, socio-economic, and infrastructural assets (Gill et al., 2013; 52 

J. C. Liu et al., 2015). Their occurrence and behavior have environmental determinants such as 53 

weather and fuel moisture, as well as anthropogenic determinants such as land-use patterns and 54 

the presence of nearby activities (Bowman et al., 2020; Ganteaume et al., 2013). Most of these 55 

are dependent on the local context, e.g. wildfires are known to be prevalent in locations with 56 

high wildland-urban interface (Radeloff et al., 2018). As a result, there is a need to discuss and 57 

prepare fire risk management policy locally with stakeholders, especially in regions where 58 

wildfire regimes are expected to worsen, such as the Mediterranean (Dupuy et al., 2020; Pimont 59 

et al., 2022). 60 

As a field of study, wildfire risk assessment is concerned with the integrative evaluation of fire 61 

likelihood and impacts (Oliveira et al., 2021). Wildfire risk is often defined as the resultant of 62 

three characteristics: fire occurrence and behavior - their resultant being fire likelihood, i.e. the 63 

probability that a fire will happen - and fire effects on values-at-risk (Finney, 2005; Thompson 64 

et al., 2013). The evaluation of fire risk and its components have been made possible by the 65 

development of sophisticated wildfire simulators alongside fire effects models (Costafreda-66 

Aumedes et al., 2017; O’Brien et al., 2018; Xi et al., 2019). Despite the existence of this 67 

“technical” definition of wildfire risk, a large part of the literature either uses unclear 68 

definitions or puts a strong emphasis on fire hazard, i.e. the physical phenomenon, through 69 



metrics such as burn probability and fire intensity (Johnston et al., 2020), ignoring the impact 70 

on values-at-risk. 71 

The natural hazards literature, especially that related to climate change (e.g. Füssel & Klein, 72 

2006; Metzger et al., 2006) adopts a broader definition of risk as “the potential for 73 

consequences where something of value is at stake and where the outcome is uncertain” (IPCC, 74 

2019). Within this framework, vulnerability refers to “the propensity or predisposition to be 75 

adversely affected by a hazard, including sensitivity or susceptibility to harm and lack of 76 

capacity to cope and adapt”. Applications of this framework, despite shifting contours, share 77 

a common point in the consideration of four key aspects: hazard, exposure of assets, their 78 

susceptibility (or sensitivity) and adaptive capacity (also, coping capacity or resilience) (Comte 79 

et al., 2019). Despite their similarities, this latter conceptualization is more encompassing than 80 

the traditional view of wildfire risk due to the clear distinction made between exposure of assets 81 

and hazard likelihood, the explicit inclusion of adaptive capacity and the consideration of social 82 

and economic dynamics. Besides, clearer boundaries are set to vulnerability, while the term 83 

can be found in the fire risk literature with a meaning akin to sensitivity (Johnston et al., 2020; 84 

Liu et al., 2012). While some recent studies have adopted this broader view (Ghorbanzadeh et 85 

al., 2019; Lecina-Diaz, Martínez-Vilalta, Alvarez, Vayreda, et al., 2021; Oliveira et al., 2018, 86 

2020; Thorne et al., 2010), the general framework has only recently been formally adapted to 87 

the case of forest-related natural hazards (Lecina-Diaz, Martínez-Vilalta, Alvarez, Banqué, et 88 

al., 2021; Oliveira et al., 2018; Vaillant et al., 2016). 89 

Many fire risk assessments use model simulations, raising questions of model integration, the 90 

use of a common (often monetary) metric, and, given model complexity, the difficulty to 91 

transfer knowledge to local decision makers. Model-based assessments also tend to overlook 92 

or simplify human and social dimensions, even though recent advances have been made 93 



regarding e.g. citizen involvement and behavioral aspects (Johnston et al., 2020; Oliveira et al., 94 

2021). This can be addressed with multiple-criteria decision analysis (MCDA), which relates 95 

to an ensemble of methods that propose a structured and formal framework for assessing 96 

complex problems considering several dimensions. MCDA methods can integrate data of 97 

mixed natures, including expert knowledge, and foster collaborative decision making by 98 

providing focus to discussions. MCDA is particularly well-suited for natural resources 99 

management issues, especially at local scales (Mendoza & Martins, 2006). Their further 100 

integration into Geographic Information Systems (GIS) enables the combination of spatial data 101 

and value judgements to create visual information supporting decision making. GIS-MCDA 102 

methodologies have proven to be powerful, comprehensive and convenient tools in 103 

environmental planning when spatial drivers are significant (Malczewski, 2007; Malczewski 104 

& Rinner, 2015), including applications to hazard risk assessment for e.g. floods, earthquakes 105 

and explosions (Duzgun et al., 2011; Fernandez et al., 2015; Ghajari et al., 2017; Le Cozannet 106 

et al., 2013; Nyimbili et al., 2018; Pham et al., 2021). Owing to the emphasis on the physical 107 

phenomenon and model simulation, similar examples are scarcer in the fire risk literature. 108 

Ghorbanzadeh et al. (2019) use GIS-MCDA to assess social and infrastructural vulnerability 109 

based on census, land-use and economic data. They subsequently demonstrate the coupling of 110 

vulnerability maps to hazard maps generated with machine learning models to assess overall 111 

fire risk. Oliveira et al. (2020) focus on risk to populations and jointly assess hazard exposure 112 

and vulnerability using a fire spread simulator and a clustering algorithm on sociodemographic 113 

and geographic data. They also show how their model could be used to inform policy planning 114 

by evaluating overall risk under various scenarios of land management policy. Another 115 

example is given by Thompson et al. (2013), which consider several exposed assets and expert 116 

knowledge in their assessment of vulnerability.  117 



In this article, our objective is to perform an encompassing assessment of fire risk based on the 118 

vulnerability concept, using field knowledge from experts with direct experience with wildfires 119 

and considering three assets of different natures important at the territorial scale: population, 120 

ecosystems and infrastructures. A secondary objective is to explore and confirm the potential 121 

of a MCDA participative approach to foster discussion between experts that do not usually 122 

engage in dialogue, in a field where model-based evaluations by academics constitutes the main 123 

research methodology. As a result, our approach is exploratory and is not a predictive 124 

assessment: the research process is as important as results, which are themselves (e.g. maps) 125 

tools to foster discussion and the emergence of collaborative knowledge. 126 

Vulnerability is decomposed into a hierarchical problem and its subcomponents – exposure, 127 

sensitivity and adaptive capacity – are assessed by integrating quantitative land-use, economic 128 

and sociodemographic data as well as expert knowledge and simulation results using the 129 

Analytic Hierarchy Process (Saaty, 2004), a MCDA method based on stakeholder participation 130 

and expert judgment. This approach of vulnerability is furthermore combined with probabilistic 131 

modelling of fire activity (Pimont et al. 2021) to assess fire hazard, hence resulting in an 132 

integrated multidisciplinary approach to wildfire risk. We focus on South-Eastern France, a 133 

fire prone area with contrasted land-use patterns which influence fire activities (Castel-Clavera 134 

et al., 2022) and where fire regimes are expected to worsen through significant intensification 135 

of fire activities, an expansion of the fire-prone region and a lengthening of the summer fire 136 

season (Pimont et al. 2022).  137 

We aim to develop a methodology suited to our biophysical and institutional context and to 138 

provide synthetic, visual and interpretable results at the meso scale. The availability of such 139 

resources can have implications for local stakeholders engaged in fire risk management, 140 

helping them identify vulnerability hotspots and underlying drivers, and to select measures to 141 



be implemented locally. These latter aspects were discussed in an ex-post workshop with field 142 

experts. 143 

2. Material and methods 144 

2.1. General framework 145 

2.1.1. Presentation of the study area 146 

We focus on South-Eastern France (Fig. 1), namely the area known as Prométhée after the fire 147 

observation database covering it (https://www.promethee.com/). The region is mostly 148 

Mediterranean but displays varied topographic conditions with coastal plains, the Rhône river 149 

valley and several mountainous areas (e.g. the Alps1). It also includes the mountainous and 150 

highly forested Corsica island. Forests cover 30% of land area, agriculture 49% and artificial 151 

land uses 5% (Figure 1). Fires in the area are very numerous and an average of 9000 ha have 152 

burned yearly over in the period 2011-2021, representing 80% of the national total. Most fires 153 

occur over the summer (May-October) and are largely human-caused, voluntarily or 154 

accidentally. They tend to occur close to population centers, in areas with high wildland-urban 155 

or wildland-agriculture interfaces, and in locations with touristic frequentation (Ganteaume et 156 

al., 2013; Ruffault & Mouillot, 2017). Over the decades to come, fire danger is expected to 157 

increase significantly owing to increases in temperatures and changes in precipitation patterns 158 

(Dupuy et al., 2020; Fargeon et al., 2020). Climate change could induce an increase in the 159 

number of large fires (>100ha) by up to +180% for a +4°C warming, a doubling of fire-prone 160 

areas and a large symmetrical lengthening of the summer fire season (Pimont et al. 2022). 161 

Stakes in terms of exposed assets are high. There are over 9 million inhabitants in the area 162 

(14% of France’s population), most of which are located in the lowlands, which also includes 163 

large economic and industrial centers. The region comprises 5 national parks and more than 15 164 

                                                
1 An annotated map of the study area is provided in Appendix B. 
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regional parks with valuable habitats, as well as numerous reserves. Owing to the mountainous 165 

nature of many locations, in addition to classical ecosystem services (e.g. wood production, 166 

carbon storage), forests also provide important regulation services (e.g. erosion and flood 167 

control), as well as aesthetic and cultural services due to touristic frequentation, which is very 168 

high in the summer along the coast and in the mountains. These Land-Use and Land-Cover 169 

factors affect spatial patterns of fire activity (Castel-Clavera et al., 2022). 170 

 171 

Figure 1 – Location and land-use in the study area. “Other” land-uses include wetlands, 172 

water bodies and open spaces with little to no vegetation in the Corine Landcover 173 

Classification. 174 

2.1.2. Conceptual framework on vulnerability 175 



We conceptualize fire risk and vulnerability following frameworks developed by Lecina-Diaz 176 

et al. (2021) and Oliveira et al. (2018) for forest disturbances and forest fires respectively 177 

(Figure 2). Risk and vulnerability are defined with regards to exposed assets (or values-at-risk) 178 

that contribute to wellbeing in societies and may be damaged. Exposure is defined as the 179 

presence of valuable assets before the hazard occurs. Sensitivity refers to the asset’s 180 

susceptibility to sustain damage during or immediately after the hazard’s occurrence. Adaptive 181 

capacity (AC) is defined as the asset’s ability to cope with damage that has been sustained and 182 

to recover after the hazard has occurred. Both sensitivity and AC depend on intrinsic factors 183 

(e.g. bark thickness, housing density) and extrinsic factors (e.g. silvicultural practices, financial 184 

resources). Vulnerability then refers to the assets’ propensity to be adversely affected by the 185 

hazard, to cope and recover from it, and is the resultant of exposure, sensitivity and AC. In 186 

turn, risk is defined as the potential for negative consequences for an asset due to a hazard that 187 

may occur. It is the resultant of vulnerability and hazard, which refers to the physical fire 188 

phenomenon (occurrence and behavior).  189 

 190 



Figure 2 - Risk and vulnerability framework used in the assessment, adapted from Oliveira 191 

et al. (2018) and Lecina-Diaz et al. (2021) 192 

2.1.3. The Analytical hierarchy process 193 

The Analytical Hierarchy Process (AHP, Saaty 2004) is a weighted additive MCDA method 194 

based on problem decomposition and the subsequent aggregation of indicators, where weights 195 

are attributed to individual indicators through a binary comparison process involving expert 196 

judgment. Within a GIS environment, AHP is used to compute weights attributed to layers of 197 

spatial data representing criteria and to produce synthetic maps (Malczewski & Rinner, 2015).  198 

For each indicator pair, relative preference is quantified by experts using the verbal scale by 199 

Saaty (2004), to which an underlying 1-9 scale is associated2. Scores are then compiled in a 200 

matrix of order n, where 𝑐𝑗𝑘 is the pairwise comparison score between factors j and k, and n is 201 

the number of factors. The matrix is reciprocal and scores on the diagonal are equal to 1, hence 202 

only 𝑛 ∗ (𝑛 − 1) 2⁄  comparisons are required. The relative importance of factors, or weights, 203 

are given by the principal eigenvector of the matrix. These are computed as 𝑤𝑘 = ∑ 𝑐𝑗𝑘
∗𝑛

𝑘=1 𝑛⁄ , 204 

where 𝑤𝑘 are the computed weights for factors and 𝑐𝑗𝑘
∗  are the matrix’s coefficients normalized 205 

over columns. A consistency ratio CR is computed to assess the level of inconsistency in expert 206 

judgments. It is computed as (𝜆𝑚𝑎𝑥 − 𝑛) (𝑅𝐼 ∗ (𝑛 − 1))⁄ , where 𝜆𝑚𝑎𝑥 is the maximum 207 

eigenvalue of the matrix and RI, or random index, is the consistency ratio of randomly 208 

generated matrices. 209 

Aggregation of individual judgements is performed using the geometric mean as it preserves 210 

the AHP axioms and matrices’ properties and dampens the effects of extreme judgements. 211 

Given a large enough sample size, consistency of the aggregated matrix will tend towards 1, 212 

                                                
2 See Appendix A. 



e.g. a 20 sample size is enough to reach 90% consistency for matrices of order 3 or more (Aull-213 

Hyde et al., 2006; Bernasconi et al., 2013). Once weights are computed, a score for the 214 

objective higher up in the hierarchy (e.g. sensitivity of population) is calculated using weighted 215 

summation. Within the GIS environment, scores are calculated by combining weights with 216 

layers of spatial data for each indicator and location.  217 

2.2. Application to fire vulnerability 218 

2.2.1. Problem decomposition and choice of indicators 219 

We adopt a hierarchy with three levels (Fig. 2). The first level comprises the two concepts 220 

assessed in the study: risk and vulnerability. The second level corresponds to subcomponents 221 

of the two concepts: hazard, exposure, sensitivity and adaptive capacity (AC). The third level 222 

refers to factors, i.e. reasons why an asset may be more or less vulnerable, and indicators, i.e. 223 

variables developed to quantify factors. Factors are therefore defined by a rationale (e.g. a place 224 

that is easily accessible to firefighters is less sensitive), while indicators are measurable and 225 

characterized by values (e.g. distance to the nearest fire station).  226 

Hazard 227 

Hazard refers to the likelihood of fires, including both occurrence probability and fire spread. 228 

At the regional scale, fire activity can be represented through emergent propertie, in particular 229 

burned areas. Hazard was quantified using simulations with Firelihood, a probabilistic fire 230 

activity model developed for Southern France and estimated in a Bayesian framework using 231 

the Fire Weather Index (Van Wagner, 1987) and forest area as predictors (Pimont et al., 2021). 232 

It represents fire activity as a Poisson point process and comprises two sub-models: one 233 

determining fire occurrence probability and one determining fire sizes for fires larger than 1ha. 234 

The sequential use of the two enables the simulation of fire occurrences and their subsequent 235 



spread, yielding a spatialized account of burned areas at the 8km pixel and daily scales. We 236 

used the mean annual burned area computed from a set of 1000 stochastic replications as the 237 

indicator for fire hazard. 238 

Vulnerability 239 

For exposure, one indicator was developed per asset: population density, land-use share of 240 

forest ecosystems and infrastructural building density. For sensitivity and adaptive capacity, 241 

the choice of factors and indicators was based on a review of the specialized literature. Factors 242 

also needed to be relevant at the regional study scale and quantifiable at the 1km pixel scale 243 

sing publicly available data. For this reason, factors such as building materials were discarded 244 

while date of construction was preferred. We give a brief overview of the reasoning behind 245 

such choices below (Table 1). 246 

Three factors for population’s sensitivity relate to ease of evacuation (Table 1): the presence of 247 

collective housing and the presence of large or single-adult households, who are harder to 248 

evacuate, and the presence of young and elderly people who may require assistance. 249 

Unemployment level and household wealth were selected as they relate to access to resources, 250 

highlighted, contributing to social vulnerability (Emrich et al., n.d.; Geomatics et al., 2017; 251 

Nguyen et al., 2017). Geographic isolation contributes to increased sensitivity by making 252 

evacuation more complex while also relating to lower access to resources (services). Several 253 

of these also relate to ease of defending the property (e.g. harder with children, easier when 254 

better equipped). Factors for population’s AC relate to their ability to recover over the medium 255 

term by having access to various forms of community-level support (e.g. financial, social), 256 

information and health services. Recent experience of fire events is also considered to 257 

contribute to better AC (Edgeley et al., n.d.; Paveglio et al., 2009).  258 



Three factors for ecosystem sensitivity were based on firefighting services’ capacity to monitor, 259 

access and defend the area. Two other factors were based on forests’ intrinsic characteristics: 260 

fuel load, known to favor fire activity and intensity, and the intrinsic sensitivity of tree species. 261 

Three factors for AC were based on extrinsic features, two of which are shared with other assets 262 

(risk experience and city-level financial resources). Besides, we considered public forests to 263 

have better AC given their active monitoring and management by authorities, while private 264 

forest owners, especially in fragmented and remote areas, can be absentee (Lindner et al., 265 

2010). Two factors account for ecological features: tree species’ intrinsic AC and fire return 266 

interval, estimated from the Firelihood model (Pimont et al., 2021). 267 

Factors for the sensitivity of infrastructures relate to the buildings’ capacity to withstand 268 

damage (recent buildings are designed for better evacuation and resistance), to ease of access 269 

for firefighting services as well as to the presence of sensitive industrial compounds nearby 270 

that may aggravate potential damages. We also took into account the presence of wildland-271 

urban interface, i.e. intermingled vegetation and urban land-uses, which is known to favor fire 272 

activity (Ganteaume & Jappiot, 2013; Radeloff et al., 2018). Factors for the AC of 273 

infrastructures largely relate to the coping capacity of their owners, occupants and of local 274 

authorities, and we use the same factors as for populations, except access to health services and 275 

social isolation, which are specific to people. 276 

2.2.2. Computation and aggregation 277 

All indicators were computed on GIS software QGIS (https://qgis.org) at the scale of 1km wide 278 

pixels. They were computed from publicly available sociodemographic, economic and land-279 

use data from the Geographic National Institute (IGN), the National Institute for Statistics and 280 

Economic Analysis (INSEE), the French Observatory of Territories, and the French Forest 281 

Agency (ONF) databases. Most were natively at the pixel size (no treatment) or at larger pixel 282 

https://qgis.org/


and municipality scales and were downscaled to 1km pixel size. Cover shares for land-use data 283 

were computed using QGIS’s overlay and buffer tools, and distances using the nearest neighbor 284 

tool. Fuel load was directly taken from the raster map by the EU Joint Research Center 285 

(Avitabile & Camia, 2018) and computed with the raster calculator. Intrinsic sensitivity had 286 

been previously assessed for dominant tree species of the national high-resolution forest cover 287 

database (BD Forêt) by experts of the French Forest Agency (ONF) and was kindly provided 288 

as a raster map for this study.   289 



Component Factor Indicator Weight CR 

Asset 1 - Population 

Exposure Resident population Population density (people/km²) * 1 - 

Sensitivity 

Geographic isolation Average access time to intermediate-level-services (min) • 0,42 

1.40% 

Age People under 10 and over 65 years old (%) * 0,18 

Housing type Households in collective housing (%) * 0,14 

Household composition Households with only one adult or 3 or more children (%) * 0,12 

Unemployment Unemployed people (%) * 0,07 

Household wealth Winsorised household wealth (€) * 0,06 

AC 

Risk experience Burned area over the past 10 years (ha, www.promethee.com) 0,30 

1,90% 

Financial resources Fiscal potential per inhabitant at city level (€) • 0,19 

Access to health Localised potential accessibility to doctors• 0,12 

Social isolation People either unemployed or over 75 years old (%) • 0,14 

Geographic isolation Average access time to intermediate-level-services (min) • 0,14 

Education level People with higher education (%) • 0,11 

Asset 2 - Ecosystems 

Exposure Presence of forests Pixel area covered by forests (%) † 1 - 

Sensitivity 

Instrinsic sensitivity Pixel area with sensitivity classes 4-5 (%, ONF) 0,29 

1.90% 

Fuel load Biomass per hectare (Mt/ha, JRC Avitabile et al. 2020) 0,23 

Surveillance Pixel area covered by surveillance and patrol zones (%, ONF) 0,22 

Denfendability Pixel area within 200m of roads and water points (%, ONF) 0,19 

Firefighting access Distance to nearest station (km) † 0,07 

AC 

Intrinsic adaptive capacity Pixel area with adaptive capacity classes 4-5 (%, ONF) 0,43 

0,80% Fire return interval 

Fire return interval (years, firelihood model simulations Pimont 

et al. 2021) 
0,29 

Risk experience Burned area over the past 10 years (ha, www.promethee.com) 0,10 

Financial resources Fiscal potential per inhabitant at city level (€) • 0.10 



Property regime Pixel area of publicly owned forests (%, www.data.gouv.fr) 0,07 

Asset 3 - Infrastructure 

Exposure Presence of buildings 

Pixel area covered by commercial, residential and industrial 

buildings (%) † 
1 - 

Sensitivity 

Wildland-Urban Interface 

(WUI) 

Pixel area within 200m of both forest and urban land-uses (%, 

CORINE Landcover) 
0.50 

0.50% 
Building use 

Distance to closest Classified Installation of Environmental 

Protection ICPE (km, www.data.gouv.fr) 
0,24 

Firefighting access Distance to nearest station (km) † 0,18 

Age of building Number of buildings built before 1990 (%)* 0,08 

AC 

Financial resources Fiscal potential per inhabitant at city level (€) • 0,54 

2,10% 

Risk experience Burned area over the past 10 years (ha, www.promethee.com) 0,23 

Education level People with higher education (%) • 0,12 

Geographic isolation Average access time to intermediate-level-services (min) • 0,11 

Fire Hazard 

Hazard Mean annual burned area 
Mean annual burned area (ha) over 1000 simulations with the 

fire model Firelihood (Pimont et al. 2021). 
1 - 

  290 



Table 1 – List of factors and indicators for risk and vulnerability components: exposure, 291 

sensitivity and adaptive capacity (AC). Indicators are presented by order of decreasing 292 

importance following the Analytical Hierarchy Process. Data was retrieved from publicly 293 

available databases from INSEE (*), Observatoire des Territoires (°) and IGN (+), unless 294 

indicated otherwise. 295 

Indicators use different units and scales and were standardized before summation using the 296 

score range procedure, yielding unitless values between 0 and 1 (Malczewski, 1999). Most 297 

were right-skewed and were winsorized between their 95% and 100% quantiles prior to 298 

standardization. This procedure ensures that post-aggregation results use a large range of 299 

values, facilitating map interpretation by experts in workshops. It amounts to assuming that the 300 

contribution of any given indicator to vulnerability becomes marginal for very high values at 301 

the right end of the distribution (e.g., that an extremely wealthy community is as vulnerable as 302 

a very wealthy community). 303 

After the weighted summation of indicators, vulnerability was obtained by multiplication of 304 

exposure, sensitivity and AC. Risk was computed by multiplying vulnerability with hazard. All 305 

metrics computed were represented on maps using the Jenks natural breaks algorithm, a 306 

clustering procedure which minimizes variance within classes and maximizes variance across 307 

classes and is particularly well suited for representing data on choropleth maps. 308 

2.3. Expert selection, interviews and discussion workshop 309 

Given, the objective of bridging the gap between science and field knowledge, experts were 310 

primarily drawn from local agencies working with wildfires and selected based on experience 311 

rather than academic background. We interviewed policy officers from the French agencies of 312 

the environment and agriculture and members of firefighting forces. We also included scientists 313 

conducting research on fire risk. 48 experts were contacted and 22 agreed to be interviewed 314 



(Table 2). Interviews lasted between 1 and 2 hours each and, given restrictions due to the Covid 315 

pandemic, were conducted through videoconference. The project’s general objective and 316 

methods were explained to interviewees, examples of pairwise comparisons were given for 317 

training, and factors were explained beforehand.  318 

Institution Contacted Interviewed 

French forest agency 6 4 

Firefighting and prevention 9 5 

Public agencies 22 9 

Scientists 7 3 

Private sector 4 1 

Total 48 22 

Table 2 – Breakdown of experts interviewed. 319 

The last step of the process was the organization of a workshop with the same pool of experts. 320 

As mapping constitutes a modified representation of a spatial phenomenon (Malczewski & 321 

Rinner, 2015; Palsky, 2013), resulting conclusions must be discussed by stakeholders to ensure 322 

results appropriation and to contribute to local risk management. this constitutes an ex-post 323 

validation of result where maps are considered as visualization and dialogue tools. We 324 

specifically discussed the geographical implications of results through a three steps process: 325 

(1) redefining key concepts, (2) collective appropriation of results, issue identification and (3) 326 

discussion on key messages and limitations for decision makers and practitioners. Inspired by 327 

participatory research approaches in a pandemic context (Hall et al., 2021), workshops were 328 



conducted using the online collaborative workspace MURAL (https://www.mural.co/). This 329 

allowed participants to freely navigate through the maps and tables in an interactive manner 330 

while discussing results and writing down personal observations. 331 

3. Results 332 

3.1. AHP results and aggregation 333 

AHP results show that experts considered geographic isolation to be the main factor 334 

contributing to population’s sensitivity (42% weight) while all three factors related to ease of 335 

evacuation had intermediate weights (12-18%, total 43%). Access to resources (wealth, 336 

unemployment) was judged not to be as important (6-7%). Results for AC display moderate 337 

contributions for all factors (11-30%), among which past experience with fire hazard was 338 

judged most important (30%), followed by financial resources (19%). Experts judged that 339 

ecosystem sensitivity was primarily dependent on intrinsic forest characteristics - intrinsic tree 340 

sensitivity (29%) and fuel load (23%). As for factors related to firefighting, surveillance (22%) 341 

and defendability (19%) were deemed more important than ease of access (7%). AC was judged 342 

to be mainly determined by ecological factors, namely tree species’ intrinsic adaptive capacity 343 

(43%) and fire return interval (29%), while socio-economic factors were deemed less relevant 344 

(7-10%). All matrices showed high levels of consistency with consistency indices below 5%. 345 

For infrastructures, sensitivity was judged by experts to be overwhelmingly dominated by the 346 

presence of WUI (50%). The presence of firefighting access, a mitigating factor, and that of 347 

sensitive industrial sites nearby, an aggravating factor, were also deemed important (18% and 348 

24% respectively), while building age, an intrinsic characteristic, was not (8%). AC was judged 349 

to be mostly determined by financial resources (54%) and experience of risk (23%). 350 

3.2. Vulnerability maps for individual assets 351 

3.2.1. Population 352 

https://www.mural.co/


Densely populated urban areas are mostly located along the coast and in the Rhône valley (Fig. 353 

3a). In mountainous areas (e.g. the Alps), the most exposed areas are concentrated in valleys, 354 

while exposure is more homogeneous in the plains. Sparsely populated areas such as Corsica 355 

are little exposed. Sensitivity (Fig 4) is higher in the North-East and North-West of the study 356 

area as well as in Corsica. This corresponds to the most remote locations (largely mountainous), 357 

which are characterized by a high share of people with reduced mobility (esp. elderly) and the 358 

most distant to public and rescue services. Given the relatively low importance given to access 359 

to financial resources by experts, the South-West area, despite high unemployment and low 360 

wealth, appears as moderately sensitive. On the other hand, local clusters of intermediate 361 

sensitivity appear in well-connected urban centers (e.g. Narbonne, Marseille) owing in part to 362 

the high proportion of shared housing and large households3. 363 

 364 

Figure 3 - Maps of exposure for the three assets studied: population (a), ecosystems (b) and 365 

infrastructures (c). Red areas indicate strong contribution to vulnerability (i.e. high 366 

exposure, cf. Table 1). 367 

AC mostly follows the spatial patterns of risk experience and financial resources, with high 368 

values (i.e. low contribution to vulnerability, blue-green on maps) on cities on the eastern coast 369 

where both indicators display high values. Urban areas along the Rhône valley and the south-370 

western coast display slightly lower AC due to only financial potential or risk experience being 371 

                                                
3 Maps for individual indicators’ contribution of vulnerability components are available as an Electronic 
Supplementary Material on the journal’s website. 



very strong respectively. Large urban areas (i.e. Marseille, Montpellier) display among the 372 

highest values for AC and are also characterized by high levels of education and access to 373 

health services. Lowest AC is found in the mountainous hinterland, where not only risk 374 

experience and financial resources are low, but also access to services, while social isolation is 375 

stronger. Despite low levels of social isolation and relatively high financial resources, the 376 

Northern Rhône and Alpine valleys display intermediate AC owing to the low importance 377 

given by experts to the factor, their low levels of risk experience and, for the latter, lower access 378 

to services. 379 

Owing to low exposure despite high sensitivity and low AC, vulnerability is low or null in the 380 

hinterland and mountainous areas. On the contrary, urban areas along the Rhône valley and the 381 

coast, while strongly exposed, show limited vulnerability due to low sensitivity and higher AC. 382 

Areas where populations are most vulnerable are located at the margin between large urban 383 

centers and the hinterland, around secondary cities and along the Alps valleys, where sensitivity 384 

is high, AC low and exposure at an intermediate level. Figure 5 displays differences in 385 

vulnerability when using AHP weights instead of equal weights. Using expert knowledge 386 

increases vulnerability in remote areas (strong isolation), and decreases it along major 387 

population axes, to a limited extent. 388 



 389 

Figure 4 - Maps of sensitivity, adaptive capacity and vulnerability for the three assets studied: 390 

population (a, d and g), ecosystems (b, e and h) and infrastructures (c, f and i). Red areas 391 

indicate strong contribution to vulnerability (i.e. high sensitivity, low AC). Larger maps with 392 

higher resolution can be found in electronic supplementary materials. 393 

3.2.2. Ecosystems 394 

Ecosystem exposure matches the “forest and natural” type of land-use and therefore is highest 395 

in hilly and mountainous areas located further away from urban centers, agricultural land and 396 

vineyards. 397 

Sensitivity is highest in areas that are both less surveilled and have high fuel loads, e.g. remote 398 

mountainous locations to the North-East and North-West, but also in surveilled locations with 399 

high fuel load and a strong presence of intrinsically sensitive forests, e.g., the Ardèche, 400 



Cévennes and Vercors areas. Many areas with high intrinsic sensitivity, especially along the 401 

coast and its immediate hinterland, display moderate sensitivity values owing to lower levels 402 

of fuel load, surveillance of the area and proximity to fire stations. The moderating influence 403 

of defensible areas can be witnessed locally, e.g. in Corsica where their presence results in 404 

sensitivity values one or two classes lower than in similar, non-defensible locations. AC 405 

follows the general patterns of forests’ intrinsic AC, even though some of these display low to 406 

moderate levels of AC owing to the influence of fire return interval, e.g. along the South-407 

Western coast. Risk experience and financial resources intervene as aggravating or moderating 408 

factors locally.  409 

Vulnerability is determined for low values by exposure, i.e., areas with little to no forests, 410 

including locations with low AC or high sensitivity (e.g. Rhône Valley). The highest values for 411 

vulnerability are found in elevated mountainous areas at the margins of the study area, where 412 

both exposure and sensitivity are strong while AC displays low to intermediate values. Hilly to 413 

mountainous areas along the Rhône river and along the South-Eastern coast display 414 

intermediate to high vulnerability due to a conjunction of AC and sensitivity. Within these 415 

areas, vulnerability hotspots (e.g. within the Ardèche and Cévennes) are driven by locally high 416 

values for sensitivity rather than low AC. The use of AHP weights leads to null or moderate 417 

decreases in assessed vulnerability in many locations, and moderate to strong increases in 418 

remaining locations, owing to complex interplays between indicators. 419 

 420 



Figure 5 – Difference in vulnerability when using AHP weights compared to using equal 421 

weights for indicators. A value above a 1 means a higher vulnerability when using AHP 422 

weights (e.g. 1.5 means +50%). 423 

3.2.3. Infrastructures 424 

Exposure of infrastructures displays spatial patterns similar to that of population, i.e. high 425 

values along urban axes and a large share of pixels with null to very low values. However, it 426 

appears less concentrated as infrastructures may be encountered in rural areas despite low 427 

population rates for historical reasons (de-industrialization, rural exodus). 428 

Sensitivity is highest along the Rhône valley and around the cities of Marseille and Nice, where 429 

it is driven by the presence of significant WUI, especially for the latter. Other locations with 430 

high sensitivity correspond to those close to industrial sites and located further away from fire 431 

stations (e.g. Ardèche, South-Western Alps, Western Languedoc). These locations also display 432 

a very high share of older buildings. Low sensitivity values are found locally in relatively 433 

isolated locations across the study area, where exposure is low. 434 

AC is highest in southern Rhône Valley and along the South-Eastern coast owing to a 435 

conjunction of abundant financial resources and, to a lesser degree, high risk experience and 436 

education (Montpellier, Marseille). Low to intermediate AC values are found in rural areas 437 

with low financial resources. In such locations, high risk experience can be a moderating factor 438 

(e.g. Cévennes, Corsica) and low access to services an aggravating factor (e.g. southern Alps). 439 

AHP weights contribute to increasing assessed vulnerability in two types of locations: first 440 

around large urban centers of the South-Eastern coast (high WUI), second around sensitive 441 

industrial sites to the West of the Rhône valley, where financial resources are also lower while 442 

WUI is high. 443 



3.3. Hazard and risk 444 

Figure 6 (a) displays average burned areas from 1000 simulations with the Firelihood model as 445 

a metric for hazard. We observe hazard to be highest to the South of the study area, especially 446 

along the coast, in the Southern Rhône valley, the Cevennes area and Corsica, while 447 

mountainous locations are much less concerned. 448 

 449 

Figure 6 - Maps for (a) hazard (Firelihood model simulations), (b) population risk, (c) 450 

ecosystems risk and (d) infrastructures risk. Red areas indicate high risk. 451 

Risk maps show that once hazard is considered, some areas display low risk levels despite 452 

being vulnerable owing to lower hazard levels. For ecosystems, this is the case of the 453 

mountainous Alps (north-east) and Pyrenees areas (south-west), and also in Aubrac (north-454 

west, mostly due to sensitivity). While these locations tend not to be highly vulnerable for 455 



population and infrastructures due to their relative isolation, this moderating influence of 456 

hazard is striking for ecosystems. In the end, ecosystems risk is highest in the Ardèche and 457 

especially Cevennes and South-Eastern coastal areas. Corsica displays high levels of both 458 

vulnerability and risk for ecosystems. 459 

Similarly, due to low hazard levels, the center of urban areas (e.g., the cities of Montpellier and 460 

Perpignan) have low levels of risk. While vulnerability tends to already be null or low for such 461 

locations for ecosystems (no exposure) and infrastructures (no industrial site), the moderating 462 

influence on risk is higher for populations. 463 

  464 



4. Discussion 465 

4.1. Spatial patterns of vulnerability and risk and policy response 466 

Our study provides a basis for discussing with stakeholders how to identify vulnerable regions, 467 

causative factors, and prioritize prevention and suppression measures. Besides, the separate 468 

consideration of population, ecosystems and infrastructures helps planning differentiated 469 

responses according to the importance given to each asset. A map-based approach may also 470 

improve how choices are made spatially and help choosing appropriate measures in different 471 

locations. 472 

For example, while locations with highest vulnerability levels correspond to those already 473 

known to public authorities (e.g., coastline, Languedoc and Cevennes), our work suggests the 474 

existence of secondary vulnerability hotspots, often very localized, specific to one asset and 475 

caused by a limited number of factors. Besides, some areas also call for particular attention, 476 

such as Corsica, which appears to be very exposed but with a low adaptive capacity despite 477 

populations’ strong experience of risk. This is a first step in identifying where more detailed 478 

assessments should be carried out with local services, or where specific policies (e.g. risk 479 

prevention) may be the preferred course of action 480 

Results also showed that risk was moderate-to-low in some locations with high vulnerability 481 

but low hazard values. Given that fire regimes are expected to aggravate and reach new areas 482 

(Pimont et al., 2022, Dupuy et al., 2020), the assessment of exposure, sensitivity, adaptive 483 

capacity and their underlying factors in such locations is needed. Areas without past experience 484 

will become exposed, which represents a challenge for the implementation of public policies 485 

adapted not only to the characteristics of the territory but also to those of the populations.  486 

4.2. Stakeholder participation and feedback 487 



Our work also highlights the potential advantages of using expert knowledge in vulnerability 488 

studies applied to wildfire risk. Indeed, using the AHP aggregation also enabled us to get a 489 

quantified understanding of how sociodemographic and economic factors (e.g., risk 490 

experience, isolation), often overlooked in integrated assessments but known to be important 491 

in the specialized literature, compare to commonly found land-use, ecological and physical 492 

factors. 493 

The method itself was highly appreciated by stakeholders, who emphasized the importance of 494 

including field-experts in applied research. Feedback stressed benefits both from a scientific 495 

point of view, as well as in terms of the actors' ability to reflect on their professional activity: 496 

“This is very beneficial because it gives us an opportunity to think and pushes us out of our 497 

comfort zone. It makes us consider other types of indicators and wonder: what are the major 498 

factors to consider? It's interesting because it is questioning4”. MCDA became part of the 499 

knowledge creation process and gave birth to discussions on e.g. data availability and missing 500 

indicators to develop, several participants insisting on the potential value of long-term 501 

collaboration. Future endeavors could raise the question of integrating collective knowledge 502 

and local populations as well, probably at finer geographical scales (e.g. landscape level).  503 

Regarding future evolution as well, experts underline the importance of the participatory 504 

approach for the exploration of subjects with little hindsight: “Being associated is very 505 

important because there is little collaboration between operational services and research. This 506 

work brings technical and scientific evidence in a context of change where we do not always 507 

have straightforward answers5”. Our work contributes to it by helping identify vulnerable 508 

areas even in the absence of hazard, and by inducing discussions on underlying factors. 509 

                                                
4 Stakeholder’s feedback from the workshop 
5 Stakeholder’s feedback from the workshop 



4.3. Limitations and further research 510 

South-eastern France is heavily frequented by tourists during the fire season. Tourists are 511 

particularly sensitive owing to their lower experience, harder access to information and harder 512 

evacuation in heavily frequented locations. They were omitted owing to the difficulty of 513 

deriving a simple indicator and of aggregating it to resident population numbers. Besides, 514 

people are mobile and many casualties happen while fleeing, but we conceptualized exposure 515 

as “before fire”, our exposure metric was based on the town of residency, and proxies for 516 

evacuation were independent of the fire event (e.g. housing type).  Further work should strive 517 

to consider evacuation in a dynamic manner, which may be easier at a finer geographical scale, 518 

to include tourists. The inclusion of indicators related to ease of defense of a property could 519 

also be improved, given that some people prefer to stay rather than flee (McLennan et al., 520 

2012). 521 

While the conceptual framework derived from previous studies proved flexible for a 522 

hierarchical MCDA approach, boundaries between the several components of risk and 523 

vulnerability remain unclear. This is the case e.g. for factors such as defendability, firefighting 524 

access or landscape structure, which were considered to contribute to sensitivity but may also 525 

affect how fires ignite and behave, i.e., hazard. Setting boundaries remains necessary for 526 

practical purposes, but choices made must be remembered when analyzing and communicating 527 

about results. Besides, we followed several authors and computed vulnerability as a product of 528 

its sub-components, with the rationale that when an asset is e.g. not present, or does not sustain 529 

damage, it is not vulnerable. Others have adopted an additive approach to vulnerability 530 

(Oliveira et al., 2018). This seems to remain a debated question in the conceptual literature.  531 

While the participative and exploratory objectives of our work were attained, its non-predictive 532 

nature hinders further applied uses. While vulnerability maps provide powerful discussion 533 



tools, confidence in underlying values remains limited. Discussion-based subjective validation 534 

(e.g. interviews, workshops) may be enough for our purposes, but a more objective validation 535 

based on comparisons with external datasets would be necessary for prediction purposes. 536 

Besides, even though the AHP’s consistency ratios were small enough, results remain 537 

contingent on experts interviewed, the choice of which can induce bias, and the small sample 538 

size hinders further analysis. To our knowledge, published vulnerability assessments do not 539 

exist for our study area, only evaluations of hazard and exposure, the former of which we 540 

already included. Besides, comparisons between model-based vulnerability values and 541 

composite indicators would be methodologically challenging owing to their distinct natures. 542 

A subsequent  and more ambitious effort would include a larger amount of field experts 543 

throughout the research project, from indicator selection to ex-post discussion. They could be 544 

drawn from several Mediterranean regions and professional backgrounds, enabling cross-545 

comparisons across locations, expert profiles, and validation of indicators weights by 546 

comparing similar but independent expert groups. Methods such as fuzzy set theory could be 547 

used to decrease uncertainty arising from experts’ interpretation of the AHP’s linguistic 548 

elements, increasing confidence in indicator weights (Donevska et al., 2012). Other world 549 

regions subject to wildfire risk could also be studied (e.g. Australia, South America). 550 

Quantitative fire hazard evaluations are already performed there: applications of a participative 551 

methods would widen the scope of research conducted and provide insights on how territorial 552 

vulnerability is perceived and defined based on different local experience, environmental and 553 

socio-economic contexts. 554 

Finally, our assessment was conducted at the regional scale and assets were considered as the 555 

aggregation of many individual units. Some locations with a low number of sensitive and non-556 

resilient assets may appear as not vulnerable owing to a low exposure while, taken individually, 557 



assets would be considered vulnerable (e.g. pixels with very few but isolated and precarious 558 

elderly inhabitants). Our results should be taken as an assessment of vulnerability at a collective 559 

level, helpful for decision makers to prioritize the allocation of means, but not as an absolute 560 

evaluation. Other works should strive to develop a better understanding of vulnerability 561 

dynamics at the individual level, e.g. individual people’s behaviors and factors of resilience. 562 

5. Conclusion 563 

In this article, we developed a participative approach to assessing and mapping territorial 564 

vulnerability to wildfires in South-Eastern France, distinguishing between several components 565 

of vulnerability: exposure, sensitivity and adaptive capacity, and three assets (populations, 566 

ecosystems and infrastructures), thus providing an encompassing overview of the issue at stake. 567 

This hierarchical framework was coupled to the Analytical Hierarchy Process to prioritize and 568 

spatially aggregate indicators taken from the specialized literature, which proved a relevant and 569 

flexible way to integrate expert knowledge. Besides, model simulation data was used to derive 570 

an indicator of fire hazard, demonstrating how classical approaches to fire risk assessment 571 

could be used conjunctly to multi-criteria decision-making approaches. Results helped identify 572 

vulnerable locations overall and for each asset individually. We were also able to highlight 573 

major causative factors, and e.g. confirmed the importance of the wildland-urban interface and 574 

of experience with past fires. Secondary vulnerability hotspots were revealed, as well as 575 

vulnerable locations not yet confronted to hazard but where prevention efforts may be needed 576 

with respect to climate change. The participative approach also proved a successful manner of 577 

engaging stakeholder discussion. Interviews with experts, even during the covid pandemic, 578 

enabled discussions to take place, and an ex-post workshop was organized to put results into 579 

perspective and get feedback on the process. Field experts were in particular pleased with the 580 

introduction of the adaptive capacity concept and the inclusion of socio-economic and 581 



demographic data, which, according to them, encouraged novel ways of thinking. Further 582 

research should include several fire-prone regions and a larger number of experts, enabling 583 

comparisons across expert groups, locations, and the external validation of indicator weights 584 

to allow for more applied uses.  585 
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 778 

Appendix A 779 

Table A.1 – Scale used for pairwise comparison of factors (from Saaty 2004) 780 

Score Definition 

1 Equal importance 

3 Moderate importance of one over the other 

5 Essential or strong importance 

7 Very strong importance 

9 Extreme importance 

2, 4, 6, 8 Intermediate values between two adjacent judgements 

Reciprocals If factor i has one of the score assigned to it when 

compared with factor j, then j has the reciprocal score 

assigned to it when compared to factor i. 
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Appendix B 782 

Figure B.1 – Annotated land-use maps of the study area 783 
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