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ABSTRACT

Background. Identifying if and how climatic and non-climatic factors drive local changes in fire
regimes is, as in many other human-dominated landscapes, challenging in south-eastern France
where both heterogeneous spatial patterns and complex fire trends are observed. Aim. We
sought to identify the factors driving the spatial-temporal patterns of fire activity in southeastern
France. Methods. We incorporated several non-climatic variables into the probabilistic Firelihood
model of fire activity and implemented an enhanced spatio-temporal component to quantitatively
assess remaining unexplained variations in fire activity. Key results. Several non-climatic drivers
(i.e. orography, land cover and human activities) contributed as much as fire-weather to the
distribution of fire occurrence (>1 ha) but less to larger fires (>10, 100 and 1000 ha). Over the
past decades, increased fire-weather induced a strong increase in wildfire probabilities, which was
actually observed on the western part of the region but not so in the east and Corsican Island,
most likely due to reinforced suppression policies. Conclusions. While spatial patterns in fire
activity are driven by land-use and land-cover factors, temporal patterns were mostly driven by
changes in fire-weather and unexplained effects potentially related to suppression policies but
with large differences between regions.

Keywords: Firelihood, forest fires, Mediterranean France,

management, spatial changes, temporal changes.
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Introduction

It is well established that wildfire activity has changed in a number of regions of the
world during the past decades (Jones et al. 2022). Wildfires result from the combination
of many factors including fuel configuration, fire-weather conditions, human- or
naturally-triggered ignition source and the fire suppression and mitigation policies
(Costafreda-Aumedes et al. 2017). As climate, vegetation and human settlement patterns
are spatially diverse and evolving over time, the spatial and temporal trends of fire
activity result from complex interactions between these factors that may sometimes act in
opposite directions. Thus, while increased fire-weather has been observed in most areas
of the world (Jolly et al. 2015), fire activity has shown a wide range of regional trends
due to the influence of non-climatic drivers, including land-use land-cover (LULC) and
fire suppression (Vilar et al. 2016; Park et al. 2021). Yet, identifying the drivers of these
changes, and quantifying their relative contribution, often proves to be challenging
(Pezzatti et al. 2013; Fernandes et al. 2014; Moreno et al. 2014).

In regions such as the Euro-Mediterranean area (EU-Med) where landscapes have a
long history of human activities and practices, the spatial patterns of fire activity are
strongly driven by human settlement patterns (Moreira et al. 2011). Humans dominate
the wildfire regime supplying the vast majority of ignitions (Ganteaume and Jappiot
2013), but also alter land cover and perform suppression activities, both influencing
burnt areas. The study of human-caused fire occurrence has therefore received much
attention (Martinez et al. 2009; Ganteaume and Jappiot 2013) and modelling efforts
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(e.g. Oliveira et al. 2012; Rodriguez y Silva et al. 2014;
Costafreda-Aumedes et al. 2017; Ruffault and Mouillot
2017). Results have shown that the ‘wildland-urban inter-
face’ (WUI) and the ‘wildland-agricultural interface’ (WAI),
as well as the density of human settlements (such as road
density or building density), are among the most important
drivers of fire occurrence in the EU-Med (Galiana-Martin
et al. 2011; Martin et al. 2019), although the importance of
each of these factors varies from one region to another
(Moreira et al. 2011; Rodrigues et al. 2014). In comparison,
models for fire sizes (or for exceedance probabilities of size
thresholds) incorporating LULC factors are less abundant in
Europe (e.g. Moreira et al. 2010; Ager et al. 2014; Ruffault
and Mouillot 2017). Results suggest that types and continu-
ity of fuel play a major role in fire-spread probabilities but
that differences in fire selectivity among flammable vegeta-
tion types decrease under severe fire-weather (Barros and
Pereira 2014; Fernandes et al. 2016).

Like spatial fire patterns, historical trends in fire activity
were largely driven by non-climatic drivers during the past
decades in the EU-Med. While fire-weather increased over
much of the area (Giannaros et al. 2020), fire activity, includ-
ing fire numbers and burnt areas, significantly decreased in
most regions (Turco et al. 2017; Silva et al. 2019) because of
co-evolving human factors that overwhelmed the impact of
climate change. Negative trends can be explained, at least in
part, by an increased effort in fire management and preven-
tion in several countries, in response to the large and destruc-
tive fires that occurred during the 1980s and 1990s (Moreno
et al. 2014; Ruffault and Mouillot 2015), albeit this effect
remains difficult to quantify at the local scale.

Stochasticity in the wildfire activity, showing rare and
sparse events since fire occurrence probabilities at a specific
location and time remain low even if conditions are favour-
able, limits the possibility of conducting simple correlative
analyses directly on the observations at the local scale.
Handling fire stochasticity requires robust statistical frame-
works that account for the different factors — fire-weather,
LULG, fire prevention and fighting — affecting the probabilit-
ies of ignition, initial spread and spread to larger sizes at
various spatial and temporal scales, from hourly and daily to
yearly (e.g. Pimont et al. 2021). Many factors, as fire sup-
pression, culture, social awareness among others, are not easy
to incorporate with measurable metrics. High correlation in
time and space between such factors can lead to under-
estimation of credible intervals and to increased risk of con-
fusion between effects (i.e. of wrong attribution of wildfire
activities to their causes). Such spatial or temporal effects
have been accounted for in a few studies (e.g. Preisler and
Benoit 2004; Woolford et al. 2021); they are likely not spa-
tially uniform in magnitude and even direction, as recently
suggested by a thorough analysis of spatio-temporal trends in
fire numbers and sizes (Koh et al. 2021). The interaction
between spatial and temporal has recently been addressed
by Joseph et al. (2019) and Rodrigues et al. (2018).
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The French Mediterranean area is a particularly challeng-
ing place to disentangle the drivers of spatio-temporal wild-
fire activity. The coupling of hot and dry summers with
strong northly winds, known as ‘Mistral’ and ‘Tramontane’,
promote the occurrence of large fire events in the region
(Ruffault et al. 2016, 2018). However, the climate condi-
tions and human settlement locations are highly influential,
with drier climate in the lowlands near the coast where
human population and activities are dense, thereby increas-
ing the probability of fire ignitions (Curt et al. 2016; Pimont
et al. 2021). By contrast, lower fire activity (despite local
‘hot-spots’) is observed in hinterland and inland mountains,
where climate is less dry. Previous studies provided signifi-
cant insights into local fire drivers (e.g. Curt et al. 2013,
2016; Fox et al. 2015; Ruffault et al. 2017; Ganteaume and
Guerra 2018; Ganteaume and Barbero 2019) but, to date, a
systematic assessment at the regional scale is still missing. In
addition, as in other Mediterranean regions, fire-weather
has increased in Mediterranean France during the past dec-
ades (Fréjaville and Curt 2015; Ruffault et al. 2016; Barbero
et al. 2020), but the fire number and, above all, burnt areas
have decreased by two folds or more (Curt and Frejaville
2018). Earlier reductions in fire activity have been attribu-
ted to the effect of fire control policies (Fox et al. 2015;
Ruffault and Mouillot 2015; Pimont et al. 2021), but the
magnitude of this effect is difficult to estimate because of the
potential confusion with changes in climate, landscape
factors or other socio-economic drivers.

Here, we provide a comprehensive assessment of the
spatial and temporal trends of wildfire drivers in southern
France. We used counterfactual analyses based on spatio-
temporal scenarios constructed thanks to the probabilistic
Firelihood model (Pimont et al. 2021) to address two objec-
tives. First, we determine which landscape-related and
human factors drive the spatial patterns of fire activity in
southern France, assess their effect on fire probability, and
quantify their relative contribution in comparison to fire-
weather. Second, for each of these factors, we question
whether it contributes to the historical trend in fire activity,
and if so, we aim to quantify this contribution as well as its
local variability across the region.

Methods

Overview

Firelihood (FL) is a Bayesian probabilistic framework that
models daily occurrence and size of wildfires as a marked
point process (points describing occurrences and marks
describing sizes) from explanatory variables (Pimont et al.
2021). FL accounts for the stochasticity of fire activity and
models the occurrence of fires larger than 1ha (escaped
fires) as a Poisson process and the size of these fires as
a combination of threshold exceedance probability and
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piecewise size distributions. FL includes spatio-temporal
effects to account for limitations in explanatory variables.
Effects are estimated with the R-INLA package, which imple-
ments the integrated nested Laplace approximation (Rue
et al. 2017) and allows spatially structured Gaussian random
effects with Matérn covariance function represented through
the stochastic partial differential equation (SPDE) approach
(Lindgren and Rue 2015). The Matérn covariance is a flexible
and widely used covariance model in spatial statistics that
includes the exponential covariance function as a special
case, and it offers the advantage of manageable numerical
representations even with more than 1000 pixels as here
(Krainski et al. 2018).

The first instances of FL (later referred as FL1) included
the Fire Weather Index (FWI) and forest area as explanatory
variables. Spatio-temporal effects were implemented for the
occurrence component and included a seasonal, spatial and
annual effect, the latter representing a shift in fire numbers
after the 2003 heatwave. Estimations of fire activity were
carried out in 8-km pixels. Details on FL1 are provided in
Supplementary Material S2, and the model has been thor-
oughly evaluated in Pimont et al. (2021). In FL1, the impact
of unaccounted factors — corresponding to all unknown expla-
natory factors — on the estimation of known effects is mitigated
by spatio-temporal effects, which additional stochasticity into
the model to appropriately capture variability due to unknown
factors and statistical uncertainty. Moreover, those spatio-
temporal effects allow a realistic representation of fire activi-
ties, so that spatio-temporal analyses are possible despite the
stochasticity at play in fire observations (e.g. pixels without
observed fires during the observation period).

To further study the evolution of spatio-temporal patterns
of fire activity in a more detailed manner, we developed an
extension of FL, referred to as FL2, which includes addi-
tional LULC at 2-km resolution and refined spatio-temporal

N 0 W 300 km

Fig. I.
number of fires strictly larger than | ha per year in each 2 km pixel of the reference grid (left), with
a geographical context map in the right. Note that the scale bar corresponds to the left map.

effects. The occurrence component of FL2 includes a yearly
effect and a spatial effect for local temporal tendencies. Size
exceedance models for 10 and 100 ha include a yearly effect
as well as spatial effects for SylvoEcoRegions (SERs).

The simulations performed with FL2 allowed us to:
(1) quantify the relative contributions of the different vari-
ables to spatial patterns thanks to a partition of variance;
and (2) predict the evolution of those fire activities from
1993-2002 that would have occurred during 2009-2018
if only climate, LULC or unexplained factors had changed
at a time; hence, allowing us to attribute observed changes
to the different explanatory variables.

Study area and fire activity

The study area consists of 15 NUTS3-level French adminis-
trative units located in south-eastern France (Fig. 1,
75.560 km?), which concentrate the majority of burned
area during the summer season in France. It is dominated
by a Mediterranean climate and a few alpine stages. This area
exhibits contrasted patterns of orography, vegetation, popula-
tion and climate (Supplementary Material S1). Non-urban
land covers include crop, coniferous and deciduous forests
and shrublands. Fire records between 1993 and 2018 were
extracted from the Prométhée database at a 2-km resolution,
which was also used as the reference grid for our analyses.
Observed fires are scattered over the territory with a few hot-
spots (Fig. 1). Here, we considered fire activity during the
warm fire season (from 25 May to 31 October).

Explanatory variables

The main explanatory variable was the daily FWI, which
represents temporal and spatial variations in meteorological
fire danger. FWI was computed over the 2-km reference grid
from meteorological variables extracted from the SAFRAN

Fire numbers
-

0.1

0.01

0.001

Patterns of fire occurrence over the study period (1993-2018) expressed as the mean
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reanalysis at 8-km pixel size (Vidal et al. 2010), using the
cffdrs R package (Wang et al. 2017). For each 2-km pixel, we
used the SAFRAN data corresponding to the 8-km pixel
containing the centre of the 2-km pixel of interest; i.e. we
did not downscale the climatic data.

LULC data, listed in Table 1, was derived from Copernicus
land cover data (https://land.copernicus.eu) and French Forest
Service databases (Office National des Foréts, ONF). For some
variables that are not available on a yearly basis (Table 1), we
filled the missing values by linear interpolation between
available sources. Although LULC changes (Supplementary
Material S4) may not occur gradually we considered this
smoothed approach better to avoid noise introduced in the
specific years when data is released, which may accumulate
the sudden changes having taken place during the previous
period. Yearly data was extracted for the 2-km reference grid
as either the sum of area per pixel, the mean in the pixel or
the value at the pixel centroid, depending on the variable.

Smoothed values of LULC at coarser scales (4-16 km) were
also tested as explanatory variables as an alternative to the
default 2-km resolution. We hypothesised that the size thresh-
old exceedance probability could be better explained at coarser
scales than at ignition location. The variable ‘Fuel rating ONF’
corresponds to a discrete vegetation sensitivity mapping rang-
ing from 1 to 5, developed by the French National Forest
Service; although it is a static variable it creates no negative
impacts on the model, since LULC changes are small over time,

Table |. List of explanatory variables and their characteristics.

and this variable will give the same score to a forested area
regardless of its area. Here, each index was weighted accord-
ing to its corresponding area in the pixel, leading to a score
ranging from O to 5. In order to improve spatial prediction of
exceedance thresholds, we used 28 SERs as explanatory
variables (Supplementary Fig. A1) corresponding to homo-
geneous forest productivity or forest habitats (IGN 2019).

FL2 development

The occurrence component assumed a Poisson distribution
for fire numbers and explains the spatio-temporal variation
of expected fire numbers:

Sovn FWL ) + fiypex WEEK; ¢)
FL1

+ B(WAp;,) + LI%CfLULC (LULCiy) + fyy &G, Y)

+ Srear ) + fx y i, YD — 1992)
Spatio-temporal trends

log Nl%ga ~By +

1)

where N'} is the expected number of fires larger than 1 ha
in pixel i and day d, and the f-terms are the various non-
linear effects. Subscript ‘Y’ indicates explanatory variable
evolving on a yearly basis.

The effects of daily FWI and week-of-year (seasonal) were
the same as in FL1. The wildland area presence (WApl-’y) was

Variable Extraction Units Time step Source

Wildland area Pixel area sum ha YearlyA CLC 311-131, 322-324
Wildland area presence Absence/presence - Yearly” CLC 311-131, 322-324
Shrubland area Pixel area sum ha Yearly” CLC 322-324

Mix forest area Pixel area sum ha Yearly* CLC 313

Broadleaved forest area Pixel area sum ha Yearly® CLC 311

Coniferous forest area Pixel area sum ha Yearly* CLC 312

Fuel rating ONF Pixel area weighted sum Score (0-5) Static ONF

Aspect Mean value/pixel Azimuth (°) Static Copernicus

Slope Mean value/pixel Degrees (°) Static Copernicus

Wildland—urban interface Pixel area sum ha Year‘lyA ONF

Agriculture Pixel area sum ha Yearly* CLC 211, 221223, 241-244
Urban area Pixel area sum ha YearlyA CLC II1, 112, 121-124, 132, 133
Population density Centroid value/urban area Num/pixel Yearly Insee

Road length Sum distance/pixel m/pixel Static IGN

Year = = Yearly =

Fire weather index Centroid value Non-dimensional Daily SAFRAN, cffdrs

The ‘Extraction’ field describes how the information was compiled within each grid cell. The ‘Units’ field expresses the represented dimension. Field ‘Time-step’ is
the period of temporal variation of each variable (‘static’ is for data that remains constant, either because of the lag of data or because its static nature). The
‘Source’ is the database that provided the data for the variable (for Corine Land Cover (CLC), the class numbers considered are specified).

Alnterpolation for missing years.
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a binary variable used to differentiate pixels with negligible
wildland area from the other pixels. Spatial (fyy) and
spatio-temporal trend components capture the variability
in wildfire activity that was not explained by other covari-
ates. Both the spatial effects and the spatially varying
change rate f)’(’Y(Xi, Y:) were represented with SPDE.
The effect fygar accounted for unexplained annual change
in fire occurrence for the whole region, whereas f)’(,y X, Y)
allowed to disentangle regions where the occurrence
increases over time (f)/c,y > 0) from those where it decreased

(f)’(’Y < 0) - with respect to other covariates.

The size component of FL1 has been improved towards
refined exceedance-threshold-probability models for two
thresholds u of 10 and 100 ha. The probability pl.l,‘d of a fire
occurring in pixel i and during day d to exceed u is modelled
through a logistic regression model:

p*
log——% = P + fAL (FWI; )
1 =Py
+ LUE LULC (LULCl y) + YEAR (y)
+ flisag (SER) 2)

These models, referred to as the size models for simplic-
ity, also include a spatio-temporal component, which was
not present in FL1. It consists of a yearly random effect and
the spatial effect modelled with the spatially-conditionally
autoregressive ‘Besag’ model, allowing dependent effects
between adjacent SERs. The approach was used instead of
SPDE because the fire size data is too small to estimate a
random effect with Matérn covariance function at relatively
high spatial resolution.

For both the occurrence and size models, LULC variables
were sequentially included according to the parsimony cri-
terions known as Deviance Information Criterion (DIC;
Sutanto et al. 2021), a non-dimensional indicator which
decreses with model quality for a given set of data, and
the Area Under the Curve (AUC), scaling from 0.5 to 1,
where 0.5 indicates a complete random prediction and 1 a
perfect prediction of observation.

FL2 simulations and applications

For a given set of explanatory variables, the occurrence model
was used to simulate multiple realisations (here, 100) of M{ga
for the full study region and period. These potential fire
activities were averaged over time to draw a probabilistic
occurrence map (Fig. 2), which compares well with observa-
tions (Fig. 1). It shows that the probability to get a fire is not 0
even if no fires have been recorded over the past 30 years.
The occurrence of fires larger than 10 and 100ha
was obtained by combining simulated occurrence with size

models( 10ha — Mld pllgha and Z\Iil,g(’ha — I\Igha llgoha)

Fire numbers
1

0.1

300 km

Fig. 2. Simulation of | ha fire numbers for the full study period
(1993-2018) expressed as the mean number of fires strictly larger
than | ha per year in each 2 km pixel of the reference grid.

In order to disentangle the role of the different types
of effects (fire-weather, LULC and other spatio-temporal
effects) in spatial patterns of fire activities, we computed
the yearly Poisson intensities related to each type in each
pixel, by aggregating daily effects of fire-weather. We then
compute the relative contributions (RC) of the different
effects as a partition of spatial variance for each year,
which was then averaged for years of the study period.
Details of this method, and how it applies to N'Pa N10ha
and N'°%2 are provided in Supplementary Material S3.

In order to disentangle the role of the different types of
effects in the evolution of spatial patterns, we simulated the
fire activities during the recent decade (2009-2018) according
to four counterfactual scenarios: (1) a scenario ‘Fire-weather
change’ where only climate changed (as observed on the
recent period) by reproducing the LULC of the early
1993-2002 decade and ignoring spatio-temporal trends
(i.e. ignoring fyp,g (YEAR) + f)'(,Y(Xl-, Y)(YEAR; — 1992)
in Eqn 1); (2) a scenario ‘LULC change’ where only LULC
changed over time, using the same FWI time series for the
recent decade that the one observed during the earlier period
and ignoring the spatio-temporal trends; (3) a scenario
‘Other temporal changes’ where only the modelled spatio-
temporal trends were considered for changes between the
two decades, assuming no change in fire-weather and LULC
since the 1993-2002 decade; and (4) a scenario where the
three types of variables evolved as observed, corresponding
to the simulated actual recent decade (2009-2018). These
scenarios were compared with activities simulated in
1993-2002 as a reference. Anomalies between the scenarios
to the reference allowed us to attribute the changes,
observed between the two decades (scenario 4), to the
different types of explanatory variables, each type corre-
sponding to one of the three first scenarios. For example, if
‘Fire-weather change’ scenario matches scenario (4), it
would mean that fire-weather change is responsible for
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most of the observed changes; this process is supported by
the spatial representation of anomalies.

Results

Variable selection and model performance

Variable selection based on DIC and AUC is summarised in
Table 2, leading to final models. Significant improvements
were obtained when including LULC variables. Fire occur-
rence patterns were better explained by fine-scale landscape
factors, contrary to size models for which 4 km and even 8
and 16 km led sometimes to better predictions. We recall
that the partial effects of a variable reflect the effect of this
variable with all other variables being fixed. The partial
effects of the occurrence model were consistent, with inten-
sity increases associated with fuel type rating, FWI, popula-
tion and road length (Fig. 3b, ¢, h, i). Inverted U-shape
responses associated with wildland area, aspect, slope and
wildland-urban interface (Fig. 3a, d, e, g) were explained by
reverse effects of these factors on ignition and initial spread,

as already observed for wildland area in Pimont et al
(2021). These covariates have a maximum near respectively
250, 80ha/pixel, 7.5°-17.5°, and south and south-east
expositions.

The yearly effect (Fig. 3j) confirmed the decay in fire
activity observed after the 2003 crisis. The positive spatial
effect (Fig. 3k) reveals that unexplained factors led to higher
occurrence than expected from FWI and LULC predictors in
some sub-regions; e.g. in the island of Corsica, or the inner
mountain regions. The spatial distribution of annual trends
(Fig. 31) was contrasted from west to east: positive trends to
the west and negative to the east.

The partial effects of both size models were similar (100 ha
in Fig. 3 and 10 ha in Supplementary Fig. A2), with monotonic
responses. Exceedance probabilities increased with wildland
area, fuel type rating, FWI, coniferous and shrubland areas
and slope (Fig. 4a—e, h), and decreased with broadleaved and
agricultural areas, and population (Fig. 4f-i). Upper ranges of
the drivers were generally associated with saturations. The
yearly effect for the 100 ha threshold decreased — except the
2003 peak - but this change was not significant as current
trends (blue dashed line) were inside the credible interval of

Table 2. Variable selection of the occurrence model (OCCURRENCE) and size models for the 10 ha (SIZE 10) and the 100 ha (SIZE 100)

exceedance thresholds.

Variables included in the model DIC AUC AUC
(training) (validation)
OCCURRENCE
Intercept + WAp + Fuel + WA 58876 0.731 0.736
Intercept + WAp + Fuel + WA + Aspect + Slp 58390 0.743 0.736
Intercept + WAp + Fuel + WA + Aspect + Slp + WUI + Pop + Agri + Roads 57922 0.754 0.751
Intercept + WAPp + Fuel + WA + Aspect + Slp + WUI + Pop + Agri + Roads + SPDE + Sp_temp + Years 50131 0.877 0.827
SIZE 10
Intercept + FWI 5948 0.642 0.571
Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr 5719 0.684 0.651
Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr + Pop + Slp + Mx(f (8 km) 5673 0.694 0.669
Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr + Pop + Slp + Mxf 5646 0.706 0.662
(8 km) + Fuel + Besag + Years
SIZE 100
Intercept + FWI 2139 0.727 0.692
Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr (4 km) 2035 0.767 0.759
Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr (4 km) + Pop + Slp (16 km) 2019 0.776 0.776
Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr (4 km) + Pop + Slp 2002 0.789 0.776

(16 km) + Fuel + Besag + Years

The distance indicated in the parenthesis refers to the spatial aggregation used for a given variable; when there is no written distance, the variable has been used in

the original 2 km resolution.

Variables have been added and tested individually. For the sake of brevity, the results for all spatial aggregations have not been presented in the table (only the

best one).

WAp, wildland area presence; Fuel, ONF’s fuel rating; WA, wildland area; Aspect, aspect of the pixel; Slp, slope; WUI, wildland—urban interface; Pop, population
per pixel; Agri, agricultural area; Roads, road length; Con, coniferous forest area; FWI, Fire Weather Index; BRL, broadleaved forest area; Shr, shrubland area;
Mxf, mixed forest area; SPDE, spatial model; Sp_temp, Spatio-temporal model; Besag, spatial model based on SERs.
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Fig. 3.

Multiplicative effects (a—j) of the predictor variables in the occurrence model, represented as a graphic line with confidence intervals;

the x-axis shows the value in each of the variable-specific bins; the y-axis is the value of the multiplicative effect; that is, the factor by which the
expected number of fires changes with respect to the case of a multiplicative effect of one. Spatial effect (fx, y) for the occurrence model from
the SPDE model (k); and spatially-dependent annual trend (fy y) for the occurrence model (I). Note that FW/’s effect (c) has a larger amplitude
compared to the other effects due to it’s daily scale inherited from the precedent model, Firelihood 1.0 from Pimont et al. (2021).

early years (Fig. 4j). For the 10 ha threshold (Supplementary
Fig. S2k), after a significant decrease until 2003, no clear
trend was observed during the recent years. The spatial effect
(Fig. 4k) shows a west—east gradient with increased probabil-
ity in the eastern part and in mountainous regions, which
could be explained by operational constraints in suppression
policies in remote mountainous regions.

Factors explaining spatial distributions and their
changes

The partition of variance of fire activity allowed us to decom-
pose the spatial variability between four types of effects (fire-
weather, LULC, spatial and temporal) with quite different
importance for relative wildfire risk over the full period
(Fig. 5). We found that the spatial effect had the biggest
contribution to 1ha-number simulations, while LULC and
fire-weather explained each one-fourth of the total variance.
The ‘temporal effect’ in spatial patterns — associated with
spatial trends — was less important. For larger fire numbers
(10 and 100 ha), the fire-weather explained the largest frac-
tion of spatial variance, followed by the spatial effect, while
LULC were important (17-20%). The temporal effect — asso-
ciated with temporal trends of occurrence — was marginal.
These results show that fire-weather and LULC together
explained roughly 50% of spatial distribution of 1 ha fires
and up to 70% for larger fires (10 and 100 ha).

The comparison between the earlier and the recent dec-
ade for the actual evolution of variables confirmed a
decrease in fire numbers for all sizes, ranging between
—30 and —45% (Fig. 6). When considering changes in
factors one at a time, simulations for the recent decade
were more contrasted. The ‘Fire-weather change’ scenario
shows an increase in fire events, while the ‘LULC change’
scenario did not have a notable effect. The ‘Other temporal
change’ scenario showed a decrease in fire numbers, larger
than the ‘actual’ simulations. Hence, the potential increase
caused by fire-weather change for the three different fire
sizes (1, 10 and 100 ha) was over-compensated by temporal
changes that were not explained by LULC variables. We
investigated the spatial distributions of these changes by
mapping anomalies between past (reference period) and
recent scenarios (Fig. 7, Supplementary Figs A3, A4), show-
ing that the spatial distributions were similar throughout fire
sizes, with the north-eastern alpine region showing no
noticeable changes. Both the real present and the other
temporal changes scenarios (Fig. 7a, d) showed a widespread
decrease over the eastern regions and local increases in the
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western regions, revealing very heterogeneous trend over the
territory. Fire-weather change induced scattered increases by
‘hot-spots’, even where reductions are observed (Fig. 7b).
Finally, changes in LULC produced marginal changes
(Fig. 7c¢), not explaining the recent fire regime changes.

Discussion

Spatio-temporal modelling and analysis

The goal of this work was to understand the underlying
drivers of spatial and temporal patterns of fire activities in
south-eastern France, with a focus on the differences between
past and recent fire regimes. For this purpose, we implemen-
ted spatio-temporal random effects in the Firelihood probabi-
listic framework (Pimont et al. 2021). This approach offers at
least two important advantages for the modelling of fire
activity. First, we found that these random effects provided
realistic fire activity scenarios throughout south-eastern
France, despite fire data sparseness. Second, in a context
where unexplained factors depending on the local conditions
are very important (Diaz-Avalos et al. 2016), this approach
allowed for accurate estimations of the explanatory variables’
effects and of residual unexplained spatio-temporal random
effects.

Regarding the occurrence model’s components, the spatio-
temporal effects implemented in FL2 were very sophisticated,
as they account for spatial factors, overall temporal changes —
seasonal and yearly — and trends in spatial patterns, the latter
effect allowing spatial patterns to change over time linked to
processes not directly related with the included explanatory
factors. The spatio-temporal effects of the size models (excee-
dance probability) were simpler because of the reduced size
of the dataset for 10 and 100 ha fires. However, the temporal
effects allowed for potential yearly changes and spatial
effects structured by SERs and proved to enhance the predic-
tive ability of the model.

LULC factors of fire activities

Overall, the LULC factors retained in our model of fire
occurrence (>1ha) were consistent with the findings of
previous modelling studies in southern Europe. Indeed, we
found that most prevalent factors in human-caused fire
occurrence models were human-related, including popula-
tion density, dwellings and access networks to forest and
natural land areas (Costafreda-Aumedes et al. 2017).
However, vegetation cover of different fuel types was not
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selected in our fire occurrence model, while fuel rating,
usually not included in previous studies, was found to be a
better predictor. On the contrary, the models for exceedance
probability of 10 and 100ha selected vegetation cover
variables as predictors, with either positive (shrubland and
conifer) or negative (broadleaves) effects, which is consist-
ent with previous models for fire size (Diaz-Avalos et al.
2016), and land cover fire-proneness studies in Europe
(Moreira et al. 2009). Vegetation cover variables were also
found to be more influential on fire sizes than on fire
occurrence in the United States (Hawbaker et al. 2013).
Road density had the strongest effect on fire occurrence
among all LULC in our model, confirming the key role of
accessibility to forest areas found in other regions of Europe
(e.g. Vilar et al. 2010; Serra et al. 2014). However, this
factor was not selected in size models, in contrast to previ-
ous studies in the United States that selected accessibility
(distance to roads) (Dickson et al. 2006; Ager et al. 2013;
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Hawbaker et al. 2013). As observed by Costafreda-Aumedes
et al. (2017), interfaces between forest/wildland, agricul-
ture and urban areas, and vegetation cover, were also found
to be highly influential on fire occurrence.

LULC variables played an important role in fire occur-
rence, explaining ~25% of its spatial distribution, (Fig. 4),
with the same order of magnitude as fire-weather, and in
accordance with previous results on the western part of the
study area (Ruffault and Mouillot 2017). Nonetheless,
unexplained spatial factors and their temporal changes
still represented half of the spatial variability in occurrence,
meaning that these commonly used predictors did not fully
explain the fire occurrence hot-spots observed in western
areas and Corsica, or cold-spots observed in mountainous
areas or alluvial plains (Fig. 2). For the size models, the fire-
weather explained the major part of the spatial distribution,
and the share of the LULC and unexplained spatial effects
were smaller. This might partly be explained by the less
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sophisticated spatio-temporal effects for exceedances. However,
the larger picture that emerges is that fire occurrence was
explained equally by fire-weather and by landscape and
socio-economic drivers, and once a fire has been ignited, the
major driver for its size was the weather during the fire event.

Temporal trends in the fire regime

Fire-weather change alone was found to drive significant
increases in potential fire activity, due to a shift of the
distribution of the FWI values between the two periods of
our study. Around 50% of this increase in fire-weather has
already been attributed to anthropogenic climate warming
(Barbero et al. 2020). Despite the importance of LULC vari-
ables over the spatial distribution of fires, LULC changes
alone induced marginal changes in fire activity. Temporal
changes related to unexplained factors were the main driver,
compensating the climate-induced change, contrasting with
the findings of Viedma et al. (2018) in a west-central

Spanish landscape, who documented virtually no trend in
fire-weather, but substantial dynamics in landscape drivers
of fire, with significant associated trends in fire activity
using a 10 km pixel-grid.

Figs 3j, 4j and Supplementary Fig. A2j give an indication
of overall temporal changes associated with unexplained
factors, allowing us to conclude that the decay was mostly
caused by a major reduction in escaped fire numbers after
2003, and that posterior evolution has been limited.
Few variations were detected on exceedance probabilities,
especially in the recent years. It is very likely that fire
suppression policy reduced the number of escaped summer
fires, as suggested for the 1973-2005 period in the western
part of the region (Ruffault et al. 2015), or for the
1976-2009 period in most areas of the region (Fréjaville
and Curt 2017); similar trends were reported in Spain by
Moreno et al. (2014). Indeed, following the record-breaking
year 2003 in terms of burnt area in France, the suppression
was reinforced with new fire-fighting material and better
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training capacities, but such changes were not easy to cap-
ture with quantitative variables.

No more reduction has been detected since 2007.
In particular, the capability to limit the escaped fires that
become large (>100 ha) has not been improved, especially
during the past decade, matching with Evin et al. (2018),
who reported a successful suppression strategy, but no sig-
nificant trend on larger fires. Those findings may put in
question the capacity of the French prevention and suppres-
sion system to absorb future increases in fire activity associ-
ated with climate change, especially given the fact that large
fire numbers are expected to increase faster than 1 ha fires
(Fargeon 2019).

The spatial distribution of unexplained changes revealed
new interesting patterns, providing more insights into the
possible temporal drivers of the observed evolution. The
positive effect of the fire-weather was concentrated in the
current fire activity hot-spots, whereas the unexplained
temporal changes were negative in almost all the eastern
part of the region. Positive unexplained temporal trends in
the south-west would be, according to fire managers, asso-
ciated with areas of agricultural abandonment, raising the
ignition potential of this area. It is also likely that suppres-
sion policies were less reinforced in these traditionally less
fire-prone areas and struggled to face the observed fire-
weather increase.

Conclusion

Analysing factors of fire activities at regional scales is highly
challenging because of the stochasticity and the non-
stationarity of both these factors and the fire activities.
The modelling framework and the simulation plan allowed
us to reveal important changes in fire activity and gain
insights on some of their drivers. The simulation-based
approach allowed us to disentangle the relative contribution
of usual explanatory variables to spatial fire activities and to
identify differences between fire sizes. We also further
explored recent changes in fire regimes and found that the
main temporal changes observed over recent decades were
driven by unexplained factors suggesting an important con-
tribution of prevention and suppression policies to these
trends. Our study further revealed that, if very significant
reductions on the number of escaped fires (1 ha fires) was
observed after the 2003 heatwave, no significant overall
reduction could be detected over the last decade, neither
on fire numbers nor on the ability of escaped fires to turn
into large fires, even if strong regional differences were
detected along a west to east gradient. In a context where
climate change is expected to further increase fire weather
in this region in the next decades (Fargeon 2020), this raises
the question as to how long current low levels in fire activity
could be maintained by ongoing efforts in fire suppression
and prevention.
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