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Disentangling the factors of spatio-temporal patterns 
of wildfire activity in south-eastern France 
Jorge Castel-ClaveraA,* , François PimontA , Thomas OpitzB, Julien RuffaultA , Miguel RivièreC,D and  
Jean-Luc DupuyA  

ABSTRACT 

Background. Identifying if and how climatic and non-climatic factors drive local changes in fire 
regimes is, as in many other human-dominated landscapes, challenging in south-eastern France 
where both heterogeneous spatial patterns and complex fire trends are observed. Aim. We 
sought to identify the factors driving the spatial-temporal patterns of fire activity in southeastern 
France. Methods. We incorporated several non-climatic variables into the probabilistic Firelihood 
model of fire activity and implemented an enhanced spatio-temporal component to quantitatively 
assess remaining unexplained variations in fire activity. Key results. Several non-climatic drivers 
(i.e. orography, land cover and human activities) contributed as much as fire-weather to the 
distribution of fire occurrence (>1 ha) but less to larger fires (>10, 100 and 1000 ha). Over the 
past decades, increased fire-weather induced a strong increase in wildfire probabilities, which was 
actually observed on the western part of the region but not so in the east and Corsican Island, 
most likely due to reinforced suppression policies. Conclusions. While spatial patterns in fire 
activity are driven by land-use and land-cover factors, temporal patterns were mostly driven by 
changes in fire-weather and unexplained effects potentially related to suppression policies but 
with large differences between regions.  

Keywords: Bayesian, Firelihood, forest fires, Mediterranean France, modelling, risk 
management, spatial changes, temporal changes. 

Introduction 

It is well established that wildfire activity has changed in a number of regions of the 
world during the past decades (Jones et al. 2022). Wildfires result from the combination 
of many factors including fuel configuration, fire-weather conditions, human- or 
naturally-triggered ignition source and the fire suppression and mitigation policies 
(Costafreda-Aumedes et al. 2017). As climate, vegetation and human settlement patterns 
are spatially diverse and evolving over time, the spatial and temporal trends of fire 
activity result from complex interactions between these factors that may sometimes act in 
opposite directions. Thus, while increased fire-weather has been observed in most areas 
of the world (Jolly et al. 2015), fire activity has shown a wide range of regional trends 
due to the influence of non-climatic drivers, including land-use land-cover (LULC) and 
fire suppression (Vilar et al. 2016; Park et al. 2021). Yet, identifying the drivers of these 
changes, and quantifying their relative contribution, often proves to be challenging 
(Pezzatti et al. 2013; Fernandes et al. 2014; Moreno et al. 2014). 

In regions such as the Euro-Mediterranean area (EU-Med) where landscapes have a 
long history of human activities and practices, the spatial patterns of fire activity are 
strongly driven by human settlement patterns (Moreira et al. 2011). Humans dominate 
the wildfire regime supplying the vast majority of ignitions (Ganteaume and Jappiot 
2013), but also alter land cover and perform suppression activities, both influencing 
burnt areas. The study of human-caused fire occurrence has therefore received much 
attention (Martínez et al. 2009; Ganteaume and Jappiot 2013) and modelling efforts 
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(e.g. Oliveira et al. 2012; Rodriguez y Silva et al. 2014;  
Costafreda-Aumedes et al. 2017; Ruffault and Mouillot 
2017). Results have shown that the ‘wildland–urban inter-
face’ (WUI) and the ‘wildland–agricultural interface’ (WAI), 
as well as the density of human settlements (such as road 
density or building density), are among the most important 
drivers of fire occurrence in the EU-Med (Galiana-Martin 
et al. 2011; Martín et al. 2019), although the importance of 
each of these factors varies from one region to another 
(Moreira et al. 2011; Rodrigues et al. 2014). In comparison, 
models for fire sizes (or for exceedance probabilities of size 
thresholds) incorporating LULC factors are less abundant in 
Europe (e.g. Moreira et al. 2010; Ager et al. 2014; Ruffault 
and Mouillot 2017). Results suggest that types and continu-
ity of fuel play a major role in fire-spread probabilities but 
that differences in fire selectivity among flammable vegeta-
tion types decrease under severe fire-weather (Barros and 
Pereira 2014; Fernandes et al. 2016). 

Like spatial fire patterns, historical trends in fire activity 
were largely driven by non-climatic drivers during the past 
decades in the EU-Med. While fire-weather increased over 
much of the area (Giannaros et al. 2020), fire activity, includ-
ing fire numbers and burnt areas, significantly decreased in 
most regions (Turco et al. 2017; Silva et al. 2019) because of 
co-evolving human factors that overwhelmed the impact of 
climate change. Negative trends can be explained, at least in 
part, by an increased effort in fire management and preven-
tion in several countries, in response to the large and destruc-
tive fires that occurred during the 1980s and 1990s (Moreno 
et al. 2014; Ruffault and Mouillot 2015), albeit this effect 
remains difficult to quantify at the local scale. 

Stochasticity in the wildfire activity, showing rare and 
sparse events since fire occurrence probabilities at a specific 
location and time remain low even if conditions are favour-
able, limits the possibility of conducting simple correlative 
analyses directly on the observations at the local scale. 
Handling fire stochasticity requires robust statistical frame-
works that account for the different factors – fire-weather, 
LULC, fire prevention and fighting – affecting the probabilit-
ies of ignition, initial spread and spread to larger sizes at 
various spatial and temporal scales, from hourly and daily to 
yearly (e.g. Pimont et al. 2021). Many factors, as fire sup-
pression, culture, social awareness among others, are not easy 
to incorporate with measurable metrics. High correlation in 
time and space between such factors can lead to under- 
estimation of credible intervals and to increased risk of con-
fusion between effects (i.e. of wrong attribution of wildfire 
activities to their causes). Such spatial or temporal effects 
have been accounted for in a few studies (e.g. Preisler and 
Benoit 2004; Woolford et al. 2021); they are likely not spa-
tially uniform in magnitude and even direction, as recently 
suggested by a thorough analysis of spatio-temporal trends in 
fire numbers and sizes (Koh et al. 2021). The interaction 
between spatial and temporal has recently been addressed 
by Joseph et al. (2019) and Rodrigues et al. (2018). 

The French Mediterranean area is a particularly challeng-
ing place to disentangle the drivers of spatio-temporal wild-
fire activity. The coupling of hot and dry summers with 
strong northly winds, known as ‘Mistral’ and ‘Tramontane’, 
promote the occurrence of large fire events in the region 
(Ruffault et al. 2016, 2018). However, the climate condi-
tions and human settlement locations are highly influential, 
with drier climate in the lowlands near the coast where 
human population and activities are dense, thereby increas-
ing the probability of fire ignitions (Curt et al. 2016; Pimont 
et al. 2021). By contrast, lower fire activity (despite local 
‘hot-spots’) is observed in hinterland and inland mountains, 
where climate is less dry. Previous studies provided signifi-
cant insights into local fire drivers (e.g. Curt et al. 2013,  
2016; Fox et al. 2015; Ruffault et al. 2017; Ganteaume and 
Guerra 2018; Ganteaume and Barbero 2019) but, to date, a 
systematic assessment at the regional scale is still missing. In 
addition, as in other Mediterranean regions, fire-weather 
has increased in Mediterranean France during the past dec-
ades (Fréjaville and Curt 2015; Ruffault et al. 2016; Barbero 
et al. 2020), but the fire number and, above all, burnt areas 
have decreased by two folds or more (Curt and Frejaville 
2018). Earlier reductions in fire activity have been attribu-
ted to the effect of fire control policies (Fox et al. 2015;  
Ruffault and Mouillot 2015; Pimont et al. 2021), but the 
magnitude of this effect is difficult to estimate because of the 
potential confusion with changes in climate, landscape 
factors or other socio-economic drivers. 

Here, we provide a comprehensive assessment of the 
spatial and temporal trends of wildfire drivers in southern 
France. We used counterfactual analyses based on spatio- 
temporal scenarios constructed thanks to the probabilistic 
Firelihood model (Pimont et al. 2021) to address two objec-
tives. First, we determine which landscape-related and 
human factors drive the spatial patterns of fire activity in 
southern France, assess their effect on fire probability, and 
quantify their relative contribution in comparison to fire- 
weather. Second, for each of these factors, we question 
whether it contributes to the historical trend in fire activity, 
and if so, we aim to quantify this contribution as well as its 
local variability across the region. 

Methods 

Overview 

Firelihood (FL) is a Bayesian probabilistic framework that 
models daily occurrence and size of wildfires as a marked 
point process (points describing occurrences and marks 
describing sizes) from explanatory variables (Pimont et al. 
2021). FL accounts for the stochasticity of fire activity and 
models the occurrence of fires larger than 1 ha (escaped 
fires) as a Poisson process and the size of these fires as 
a combination of threshold exceedance probability and 
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piecewise size distributions. FL includes spatio-temporal 
effects to account for limitations in explanatory variables. 
Effects are estimated with the R-INLA package, which imple-
ments the integrated nested Laplace approximation (Rue 
et al. 2017) and allows spatially structured Gaussian random 
effects with Matérn covariance function represented through 
the stochastic partial differential equation (SPDE) approach 
(Lindgren and Rue 2015). The Matérn covariance is a flexible 
and widely used covariance model in spatial statistics that 
includes the exponential covariance function as a special 
case, and it offers the advantage of manageable numerical 
representations even with more than 1000 pixels as here 
(Krainski et al. 2018). 

The first instances of FL (later referred as FL1) included 
the Fire Weather Index (FWI) and forest area as explanatory 
variables. Spatio-temporal effects were implemented for the 
occurrence component and included a seasonal, spatial and 
annual effect, the latter representing a shift in fire numbers 
after the 2003 heatwave. Estimations of fire activity were 
carried out in 8-km pixels. Details on FL1 are provided in 
Supplementary Material S2, and the model has been thor-
oughly evaluated in Pimont et al. (2021). In FL1, the impact 
of unaccounted factors – corresponding to all unknown expla-
natory factors – on the estimation of known effects is mitigated 
by spatio-temporal effects, which additional stochasticity into 
the model to appropriately capture variability due to unknown 
factors and statistical uncertainty. Moreover, those spatio- 
temporal effects allow a realistic representation of fire activi-
ties, so that spatio-temporal analyses are possible despite the 
stochasticity at play in fire observations (e.g. pixels without 
observed fires during the observation period). 

To further study the evolution of spatio-temporal patterns 
of fire activity in a more detailed manner, we developed an 
extension of FL, referred to as FL2, which includes addi-
tional LULC at 2-km resolution and refined spatio-temporal 

effects. The occurrence component of FL2 includes a yearly 
effect and a spatial effect for local temporal tendencies. Size 
exceedance models for 10 and 100 ha include a yearly effect 
as well as spatial effects for SylvoEcoRegions (SERs). 

The simulations performed with FL2 allowed us to: 
(1) quantify the relative contributions of the different vari-
ables to spatial patterns thanks to a partition of variance; 
and (2) predict the evolution of those fire activities from 
1993–2002 that would have occurred during 2009–2018 
if only climate, LULC or unexplained factors had changed 
at a time; hence, allowing us to attribute observed changes 
to the different explanatory variables. 

Study area and fire activity 

The study area consists of 15 NUTS3-level French adminis-
trative units located in south-eastern France (Fig. 1, 
75.560 km2), which concentrate the majority of burned 
area during the summer season in France. It is dominated 
by a Mediterranean climate and a few alpine stages. This area 
exhibits contrasted patterns of orography, vegetation, popula-
tion and climate (Supplementary Material S1). Non-urban 
land covers include crop, coniferous and deciduous forests 
and shrublands. Fire records between 1993 and 2018 were 
extracted from the Prométhée database at a 2-km resolution, 
which was also used as the reference grid for our analyses. 
Observed fires are scattered over the territory with a few hot- 
spots (Fig. 1). Here, we considered fire activity during the 
warm fire season (from 25 May to 31 October). 

Explanatory variables 

The main explanatory variable was the daily FWI, which 
represents temporal and spatial variations in meteorological 
fire danger. FWI was computed over the 2-km reference grid 
from meteorological variables extracted from the SAFRAN 

Fire numbers

300 km

1

0.1

0.01

0.001

0

Fig. 1. Patterns of fire occurrence over the study period (1993–2018) expressed as the mean 
number of fires strictly larger than 1 ha per year in each 2 km pixel of the reference grid (left), with 
a geographical context map in the right. Note that the scale bar corresponds to the left map.   
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reanalysis at 8-km pixel size (Vidal et al. 2010), using the 
cffdrs R package (Wang et al. 2017). For each 2-km pixel, we 
used the SAFRAN data corresponding to the 8-km pixel 
containing the centre of the 2-km pixel of interest; i.e. we 
did not downscale the climatic data. 

LULC data, listed in Table 1, was derived from Copernicus 
land cover data (https://land.copernicus.eu) and French Forest 
Service databases (Office National des Forêts, ONF). For some 
variables that are not available on a yearly basis (Table 1), we 
filled the missing values by linear interpolation between 
available sources. Although LULC changes (Supplementary 
Material S4) may not occur gradually we considered this 
smoothed approach better to avoid noise introduced in the 
specific years when data is released, which may accumulate 
the sudden changes having taken place during the previous 
period. Yearly data was extracted for the 2-km reference grid 
as either the sum of area per pixel, the mean in the pixel or 
the value at the pixel centroid, depending on the variable. 

Smoothed values of LULC at coarser scales (4–16 km) were 
also tested as explanatory variables as an alternative to the 
default 2-km resolution. We hypothesised that the size thresh-
old exceedance probability could be better explained at coarser 
scales than at ignition location. The variable ‘Fuel rating ONF’ 
corresponds to a discrete vegetation sensitivity mapping rang-
ing from 1 to 5, developed by the French National Forest 
Service; although it is a static variable it creates no negative 
impacts on the model, since LULC changes are small over time, 

and this variable will give the same score to a forested area 
regardless of its area. Here, each index was weighted accord-
ing to its corresponding area in the pixel, leading to a score 
ranging from 0 to 5. In order to improve spatial prediction of 
exceedance thresholds, we used 28 SERs as explanatory 
variables (Supplementary Fig. A1) corresponding to homo-
geneous forest productivity or forest habitats (IGN 2019). 

FL2 development 

The occurrence component assumed a Poisson distribution 
for fire numbers and explains the spatio-temporal variation 
of expected fire numbers: 

N
f f

f f X Y

f y f X Y y

log ~ +
(FWI ) + (WEEK )

FL1
+ (WAp ) + (LULC ) + ( , )

+
( ) + ( , )( 1992)
Spatio-temporal trends

i d
i d i d

i y i y X Y i i

X Y i i

,
1ha

0
FWI , WEEK ,

, LULC LULC , ,

YEAR , (1)  

where Ni d,
1ha is the expected number of fires larger than 1 ha 

in pixel i and day d, and the f-terms are the various non- 
linear effects. Subscript ‘y’ indicates explanatory variable 
evolving on a yearly basis. 

The effects of daily FWI and week-of-year (seasonal) were 
the same as in FL1. The wildland area presence (WApi y, ) was 

Table 1. List of explanatory variables and their characteristics.       

Variable Extraction Units Time step Source   

Wildland area Pixel area sum ha YearlyA CLC 311–131, 322–324 

Wildland area presence Absence/presence – YearlyA CLC 311–131, 322–324 

Shrubland area Pixel area sum ha YearlyA CLC 322–324 

Mix forest area Pixel area sum ha YearlyA CLC 313 

Broadleaved forest area Pixel area sum ha YearlyA CLC 311 

Coniferous forest area Pixel area sum ha YearlyA CLC 312 

Fuel rating ONF Pixel area weighted sum Score (0–5) Static ONF 

Aspect Mean value/pixel Azimuth (°) Static Copernicus 

Slope Mean value/pixel Degrees (°) Static Copernicus 

Wildland–urban interface Pixel area sum ha YearlyA ONF 

Agriculture Pixel area sum ha YearlyA CLC 211, 221–223, 241–244 

Urban area Pixel area sum ha YearlyA CLC 111, 112, 121–124, 132, 133 

Population density Centroid value/urban area Num/pixel Yearly Insee 

Road length Sum distance/pixel m/pixel Static IGN 

Year – – Yearly – 

Fire weather index Centroid value Non-dimensional Daily SAFRAN, cffdrs 

The ‘Extraction’ field describes how the information was compiled within each grid cell. The ‘Units’ field expresses the represented dimension. Field ‘Time-step’ is 
the period of temporal variation of each variable (‘static’ is for data that remains constant, either because of the lag of data or because its static nature). The 
‘Source’ is the database that provided the data for the variable (for Corine Land Cover (CLC), the class numbers considered are specified). 
AInterpolation for missing years.  
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a binary variable used to differentiate pixels with negligible 
wildland area from the other pixels. Spatial f( )X Y, and 
spatio-temporal trend components capture the variability 
in wildfire activity that was not explained by other covari-
ates. Both the spatial effects and the spatially varying 
change rate f X Y( , )X Y i i, were represented with SPDE. 
The effect fYEAR accounted for unexplained annual change 
in fire occurrence for the whole region, whereas f X Y( , )X Y i i,
allowed to disentangle regions where the occurrence 
increases over time f( > 0)X Y, from those where it decreased 
f( < 0)X Y, – with respect to other covariates. 

The size component of FL1 has been improved towards 
refined exceedance-threshold-probability models for two 
thresholds u of 10 and 100 ha. The probability pi d

u
, of a fire 

occurring in pixel i and during day d to exceed u is modelled 
through a logistic regression model: 

p
p

f

f f y

f

log
1

= + (FWI )

+ (LULC ) + ( )

+ (SER)

i d
u

i d
u

p u p u
i d

p u
i y

p u

p u

,

,
0

,
FWI

,
,

LULCM LULC
,

, YEAR
,

BESAG
, (2)   

These models, referred to as the size models for simplic-
ity, also include a spatio-temporal component, which was 
not present in FL1. It consists of a yearly random effect and 
the spatial effect modelled with the spatially-conditionally 
autoregressive ‘Besag’ model, allowing dependent effects 
between adjacent SERs. The approach was used instead of 
SPDE because the fire size data is too small to estimate a 
random effect with Matérn covariance function at relatively 
high spatial resolution. 

For both the occurrence and size models, LULC variables 
were sequentially included according to the parsimony cri-
terions known as Deviance Information Criterion (DIC;  
Sutanto et al. 2021), a non-dimensional indicator which 
decreses with model quality for a given set of data, and 
the Area Under the Curve (AUC), scaling from 0.5 to 1, 
where 0.5 indicates a complete random prediction and 1 a 
perfect prediction of observation. 

FL2 simulations and applications 

For a given set of explanatory variables, the occurrence model 
was used to simulate multiple realisations (here, 100) of Ni d,

1ha

for the full study region and period. These potential fire 
activities were averaged over time to draw a probabilistic 
occurrence map (Fig. 2), which compares well with observa-
tions (Fig. 1). It shows that the probability to get a fire is not 0 
even if no fires have been recorded over the past 30 years. 

The occurrence of fires larger than 10 and 100 ha 
was obtained by combining simulated occurrence with size 
models (N N p=i d i d i d,

10ha
,
1ha

,
10ha and N N p=i d i d i d,

100ha
,
1ha

,
100ha). 

In order to disentangle the role of the different types 
of effects (fire-weather, LULC and other spatio-temporal 
effects) in spatial patterns of fire activities, we computed 
the yearly Poisson intensities related to each type in each 
pixel, by aggregating daily effects of fire-weather. We then 
compute the relative contributions (RC) of the different 
effects as a partition of spatial variance for each year, 
which was then averaged for years of the study period. 
Details of this method, and how it applies to N1ha, N10ha 

and N100ha are provided in Supplementary Material S3. 
In order to disentangle the role of the different types of 

effects in the evolution of spatial patterns, we simulated the 
fire activities during the recent decade (2009–2018) according 
to four counterfactual scenarios: (1) a scenario ‘Fire-weather 
change’ where only climate changed (as observed on the 
recent period) by reproducing the LULC of the early 
1993–2002 decade and ignoring spatio-temporal trends 
(i.e. ignoring f f X Y(YEAR ) + ( , )(YEAR 1992)i X Y i i iYEAR ,
in Eqn 1); (2) a scenario ‘LULC change’ where only LULC 
changed over time, using the same FWI time series for the 
recent decade that the one observed during the earlier period 
and ignoring the spatio-temporal trends; (3) a scenario 
‘Other temporal changes’ where only the modelled spatio- 
temporal trends were considered for changes between the 
two decades, assuming no change in fire-weather and LULC 
since the 1993–2002 decade; and (4) a scenario where the 
three types of variables evolved as observed, corresponding 
to the simulated actual recent decade (2009–2018). These 
scenarios were compared with activities simulated in 
1993–2002 as a reference. Anomalies between the scenarios 
to the reference allowed us to attribute the changes, 
observed between the two decades (scenario 4), to the 
different types of explanatory variables, each type corre-
sponding to one of the three first scenarios. For example, if 
‘Fire-weather change’ scenario matches scenario (4), it 
would mean that fire-weather change is responsible for 

Fire numbers

300 km

1

0.1

0.01

0.001

0

Fig. 2. Simulation of 1 ha fire numbers for the full study period 
(1993–2018) expressed as the mean number of fires strictly larger 
than 1 ha per year in each 2 km pixel of the reference grid.  
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most of the observed changes; this process is supported by 
the spatial representation of anomalies. 

Results 

Variable selection and model performance 

Variable selection based on DIC and AUC is summarised in  
Table 2, leading to final models. Significant improvements 
were obtained when including LULC variables. Fire occur-
rence patterns were better explained by fine-scale landscape 
factors, contrary to size models for which 4 km and even 8 
and 16 km led sometimes to better predictions. We recall 
that the partial effects of a variable reflect the effect of this 
variable with all other variables being fixed. The partial 
effects of the occurrence model were consistent, with inten-
sity increases associated with fuel type rating, FWI, popula-
tion and road length (Fig. 3b, c, h, i). Inverted U-shape 
responses associated with wildland area, aspect, slope and 
wildland–urban interface (Fig. 3a, d, e, g) were explained by 
reverse effects of these factors on ignition and initial spread, 

as already observed for wildland area in Pimont et al. 
(2021). These covariates have a maximum near respectively 
250, 80 ha/pixel, 7.5°–17.5°, and south and south-east 
expositions. 

The yearly effect (Fig. 3j) confirmed the decay in fire 
activity observed after the 2003 crisis. The positive spatial 
effect (Fig. 3k) reveals that unexplained factors led to higher 
occurrence than expected from FWI and LULC predictors in 
some sub-regions; e.g. in the island of Corsica, or the inner 
mountain regions. The spatial distribution of annual trends 
(Fig. 3l) was contrasted from west to east: positive trends to 
the west and negative to the east. 

The partial effects of both size models were similar (100 ha 
in Fig. 3 and 10 ha in Supplementary Fig. A2), with monotonic 
responses. Exceedance probabilities increased with wildland 
area, fuel type rating, FWI, coniferous and shrubland areas 
and slope (Fig. 4a–e, h), and decreased with broadleaved and 
agricultural areas, and population (Fig. 4f–i). Upper ranges of 
the drivers were generally associated with saturations. The 
yearly effect for the 100 ha threshold decreased – except the 
2003 peak – but this change was not significant as current 
trends (blue dashed line) were inside the credible interval of 

Table 2. Variable selection of the occurrence model (OCCURRENCE) and size models for the 10 ha (SIZE 10) and the 100 ha (SIZE 100) 
exceedance thresholds.      

Variables included in the model DIC AUC 
(training) 

AUC 
(validation)   

OCCURRENCE  

Intercept + WAp + Fuel + WA 58 876 0.731 0.736  

Intercept + WAp + Fuel + WA + Aspect + Slp 58 390 0.743 0.736  

Intercept + WAp + Fuel + WA + Aspect + Slp + WUI + Pop + Agri + Roads 57 922 0.754 0.751  

Intercept + WAp + Fuel + WA + Aspect + Slp + WUI + Pop + Agri + Roads + SPDE + Sp_temp + Years 50 131 0.877 0.827 

SIZE 10  

Intercept + FWI 5948 0.642 0.571  

Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr 5719 0.684 0.651  

Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr + Pop + Slp + Mxf (8 km) 5673 0.694 0.669  

Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr + Pop + Slp + Mxf 
(8 km) + Fuel + Besag + Years 

5646 0.706 0.662 

SIZE 100  

Intercept + FWI 2139 0.727 0.692  

Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr (4 km) 2035 0.767 0.759  

Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr (4 km) + Pop + Slp (16 km) 2019 0.776 0.776  

Intercept + FWI + WA(4 km) + Agri (4 km) + Con + Brl + Shr (4 km) + Pop + Slp 
(16 km) + Fuel + Besag + Years 

2002 0.789 0.776 

The distance indicated in the parenthesis refers to the spatial aggregation used for a given variable; when there is no written distance, the variable has been used in 
the original 2 km resolution. 
Variables have been added and tested individually. For the sake of brevity, the results for all spatial aggregations have not been presented in the table (only the 
best one). 
WAp, wildland area presence; Fuel, ONF’s fuel rating; WA, wildland area; Aspect, aspect of the pixel; Slp, slope; WUI, wildland–urban interface; Pop, population 
per pixel; Agri, agricultural area; Roads, road length; Con, coniferous forest area; FWI, Fire Weather Index; BRL, broadleaved forest area; Shr, shrubland area; 
Mxf, mixed forest area; SPDE, spatial model; Sp_temp, Spatio-temporal model; Besag, spatial model based on SERs.  
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early years (Fig. 4j). For the 10 ha threshold (Supplementary 
Fig. S2k), after a significant decrease until 2003, no clear 
trend was observed during the recent years. The spatial effect 
(Fig. 4k) shows a west–east gradient with increased probabil-
ity in the eastern part and in mountainous regions, which 
could be explained by operational constraints in suppression 
policies in remote mountainous regions. 

Factors explaining spatial distributions and their 
changes 

The partition of variance of fire activity allowed us to decom-
pose the spatial variability between four types of effects (fire- 
weather, LULC, spatial and temporal) with quite different 
importance for relative wildfire risk over the full period 
(Fig. 5). We found that the spatial effect had the biggest 
contribution to 1 ha-number simulations, while LULC and 
fire-weather explained each one-fourth of the total variance. 
The ‘temporal effect’ in spatial patterns – associated with 
spatial trends – was less important. For larger fire numbers 
(10 and 100 ha), the fire-weather explained the largest frac-
tion of spatial variance, followed by the spatial effect, while 
LULC were important (17–20%). The temporal effect – asso-
ciated with temporal trends of occurrence – was marginal. 
These results show that fire-weather and LULC together 
explained roughly 50% of spatial distribution of 1 ha fires 
and up to 70% for larger fires (10 and 100 ha). 

The comparison between the earlier and the recent dec-
ade for the actual evolution of variables confirmed a 
decrease in fire numbers for all sizes, ranging between 
−30 and −45% (Fig. 6). When considering changes in 
factors one at a time, simulations for the recent decade 
were more contrasted. The ‘Fire-weather change’ scenario 
shows an increase in fire events, while the ‘LULC change’ 
scenario did not have a notable effect. The ‘Other temporal 
change’ scenario showed a decrease in fire numbers, larger 
than the ‘actual’ simulations. Hence, the potential increase 
caused by fire-weather change for the three different fire 
sizes (1, 10 and 100 ha) was over-compensated by temporal 
changes that were not explained by LULC variables. We 
investigated the spatial distributions of these changes by 
mapping anomalies between past (reference period) and 
recent scenarios (Fig. 7, Supplementary Figs A3, A4), show-
ing that the spatial distributions were similar throughout fire 
sizes, with the north-eastern alpine region showing no 
noticeable changes. Both the real present and the other 
temporal changes scenarios (Fig. 7a, d) showed a widespread 
decrease over the eastern regions and local increases in the 

western regions, revealing very heterogeneous trend over the 
territory. Fire-weather change induced scattered increases by 
‘hot-spots’, even where reductions are observed (Fig. 7b). 
Finally, changes in LULC produced marginal changes 
(Fig. 7c), not explaining the recent fire regime changes. 

Discussion 

Spatio-temporal modelling and analysis 

The goal of this work was to understand the underlying 
drivers of spatial and temporal patterns of fire activities in 
south-eastern France, with a focus on the differences between 
past and recent fire regimes. For this purpose, we implemen-
ted spatio-temporal random effects in the Firelihood probabi-
listic framework (Pimont et al. 2021). This approach offers at 
least two important advantages for the modelling of fire 
activity. First, we found that these random effects provided 
realistic fire activity scenarios throughout south-eastern 
France, despite fire data sparseness. Second, in a context 
where unexplained factors depending on the local conditions 
are very important (Díaz-Avalos et al. 2016), this approach 
allowed for accurate estimations of the explanatory variables’ 
effects and of residual unexplained spatio-temporal random 
effects. 

Regarding the occurrence model’s components, the spatio- 
temporal effects implemented in FL2 were very sophisticated, 
as they account for spatial factors, overall temporal changes – 
seasonal and yearly – and trends in spatial patterns, the latter 
effect allowing spatial patterns to change over time linked to 
processes not directly related with the included explanatory 
factors. The spatio-temporal effects of the size models (excee-
dance probability) were simpler because of the reduced size 
of the dataset for 10 and 100 ha fires. However, the temporal 
effects allowed for potential yearly changes and spatial 
effects structured by SERs and proved to enhance the predic-
tive ability of the model. 

LULC factors of fire activities 

Overall, the LULC factors retained in our model of fire 
occurrence (>1 ha) were consistent with the findings of 
previous modelling studies in southern Europe. Indeed, we 
found that most prevalent factors in human-caused fire 
occurrence models were human-related, including popula-
tion density, dwellings and access networks to forest and 
natural land areas (Costafreda-Aumedes et al. 2017). 
However, vegetation cover of different fuel types was not 

Fig. 3. Multiplicative effects (a–j) of the predictor variables in the occurrence model, represented as a graphic line with confidence intervals; 
the x-axis shows the value in each of the variable-specific bins; the y-axis is the value of the multiplicative effect; that is, the factor by which the 
expected number of fires changes with respect to the case of a multiplicative effect of one. Spatial effect f( )X Y, for the occurrence model from 
the SPDE model (k); and spatially-dependent annual trend f( )X Y, for the occurrence model (l). Note that FWI’s effect (c) has a larger amplitude 
compared to the other effects due to it’s daily scale inherited from the precedent model, Firelihood 1.0 from  Pimont et al. (2021).   
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selected in our fire occurrence model, while fuel rating, 
usually not included in previous studies, was found to be a 
better predictor. On the contrary, the models for exceedance 
probability of 10 and 100 ha selected vegetation cover 
variables as predictors, with either positive (shrubland and 
conifer) or negative (broadleaves) effects, which is consist-
ent with previous models for fire size (Díaz-Avalos et al. 
2016), and land cover fire-proneness studies in Europe 
(Moreira et al. 2009). Vegetation cover variables were also 
found to be more influential on fire sizes than on fire 
occurrence in the United States (Hawbaker et al. 2013). 

Road density had the strongest effect on fire occurrence 
among all LULC in our model, confirming the key role of 
accessibility to forest areas found in other regions of Europe 
(e.g. Vilar et al. 2010; Serra et al. 2014). However, this 
factor was not selected in size models, in contrast to previ-
ous studies in the United States that selected accessibility 
(distance to roads) (Dickson et al. 2006; Ager et al. 2013;  

Hawbaker et al. 2013). As observed by Costafreda-Aumedes 
et al. (2017), interfaces between forest/wildland, agricul-
ture and urban areas, and vegetation cover, were also found 
to be highly influential on fire occurrence. 

LULC variables played an important role in fire occur-
rence, explaining ~25% of its spatial distribution, (Fig. 4), 
with the same order of magnitude as fire-weather, and in 
accordance with previous results on the western part of the 
study area (Ruffault and Mouillot 2017). Nonetheless, 
unexplained spatial factors and their temporal changes 
still represented half of the spatial variability in occurrence, 
meaning that these commonly used predictors did not fully 
explain the fire occurrence hot-spots observed in western 
areas and Corsica, or cold-spots observed in mountainous 
areas or alluvial plains (Fig. 2). For the size models, the fire- 
weather explained the major part of the spatial distribution, 
and the share of the LULC and unexplained spatial effects 
were smaller. This might partly be explained by the less 
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sophisticated spatio-temporal effects for exceedances. However, 
the larger picture that emerges is that fire occurrence was 
explained equally by fire-weather and by landscape and 
socio-economic drivers, and once a fire has been ignited, the 
major driver for its size was the weather during the fire event. 

Temporal trends in the fire regime 

Fire-weather change alone was found to drive significant 
increases in potential fire activity, due to a shift of the 
distribution of the FWI values between the two periods of 
our study. Around 50% of this increase in fire-weather has 
already been attributed to anthropogenic climate warming 
(Barbero et al. 2020). Despite the importance of LULC vari-
ables over the spatial distribution of fires, LULC changes 
alone induced marginal changes in fire activity. Temporal 
changes related to unexplained factors were the main driver, 
compensating the climate-induced change, contrasting with 
the findings of Viedma et al. (2018) in a west-central 

Spanish landscape, who documented virtually no trend in 
fire-weather, but substantial dynamics in landscape drivers 
of fire, with significant associated trends in fire activity 
using a 10 km pixel-grid. 

Figs 3j, 4j and Supplementary Fig. A2j give an indication 
of overall temporal changes associated with unexplained 
factors, allowing us to conclude that the decay was mostly 
caused by a major reduction in escaped fire numbers after 
2003, and that posterior evolution has been limited. 
Few variations were detected on exceedance probabilities, 
especially in the recent years. It is very likely that fire 
suppression policy reduced the number of escaped summer 
fires, as suggested for the 1973–2005 period in the western 
part of the region (Ruffault et al. 2015), or for the 
1976–2009 period in most areas of the region (Fréjaville 
and Curt 2017); similar trends were reported in Spain by  
Moreno et al. (2014). Indeed, following the record-breaking 
year 2003 in terms of burnt area in France, the suppression 
was reinforced with new fire-fighting material and better 
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Fig. 7. Spatial distribution of anomalies (in mean yearly fire numbers per pixel) between the 1993–2002 and 2009–2018 decades 
for 1 ha fire numbers. Same figure for 10 and 100 ha are shown in Supplementary Figs A3, A4. (a) Recent decade; (b) fire-weather; 
(c) LULC, (d) other temporal changes.   
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training capacities, but such changes were not easy to cap-
ture with quantitative variables. 

No more reduction has been detected since 2007. 
In particular, the capability to limit the escaped fires that 
become large (>100 ha) has not been improved, especially 
during the past decade, matching with Evin et al. (2018), 
who reported a successful suppression strategy, but no sig-
nificant trend on larger fires. Those findings may put in 
question the capacity of the French prevention and suppres-
sion system to absorb future increases in fire activity associ-
ated with climate change, especially given the fact that large 
fire numbers are expected to increase faster than 1 ha fires 
(Fargeon 2019). 

The spatial distribution of unexplained changes revealed 
new interesting patterns, providing more insights into the 
possible temporal drivers of the observed evolution. The 
positive effect of the fire-weather was concentrated in the 
current fire activity hot-spots, whereas the unexplained 
temporal changes were negative in almost all the eastern 
part of the region. Positive unexplained temporal trends in 
the south-west would be, according to fire managers, asso-
ciated with areas of agricultural abandonment, raising the 
ignition potential of this area. It is also likely that suppres-
sion policies were less reinforced in these traditionally less 
fire-prone areas and struggled to face the observed fire- 
weather increase. 

Conclusion 

Analysing factors of fire activities at regional scales is highly 
challenging because of the stochasticity and the non- 
stationarity of both these factors and the fire activities. 
The modelling framework and the simulation plan allowed 
us to reveal important changes in fire activity and gain 
insights on some of their drivers. The simulation-based 
approach allowed us to disentangle the relative contribution 
of usual explanatory variables to spatial fire activities and to 
identify differences between fire sizes. We also further 
explored recent changes in fire regimes and found that the 
main temporal changes observed over recent decades were 
driven by unexplained factors suggesting an important con-
tribution of prevention and suppression policies to these 
trends. Our study further revealed that, if very significant 
reductions on the number of escaped fires (1 ha fires) was 
observed after the 2003 heatwave, no significant overall 
reduction could be detected over the last decade, neither 
on fire numbers nor on the ability of escaped fires to turn 
into large fires, even if strong regional differences were 
detected along a west to east gradient. In a context where 
climate change is expected to further increase fire weather 
in this region in the next decades (Fargeon 2020), this raises 
the question as to how long current low levels in fire activity 
could be maintained by ongoing efforts in fire suppression 
and prevention. 

Supplementary material 

Supplementary material is available online. 

References 
Ager AA, Buonopane M, Reger A, Finney MA (2013) Wildfire exposure 

analysis on the national forests in the pacific northwest, USA. Risk 
Analysis 33, 1000–1020. doi:10.1111/j.1539-6924.2012.01911.x 

Ager AA, Preisler HK, Arca B, Spano D, Salis M (2014) Wildfire risk 
estimation in the Mediterranean area. Environmetrics 25, 384–396. 
doi:10.1002/env.2269 

Barbero R, Abatzoglou JT, Pimont F, Ruffault J, Curt T (2020) 
Attributing Increases in Fire Weather to Anthropogenic Climate 
Change Over France. Frontiers in Earth Science 8, 104. doi:10.3389/ 
feart.2020.00104 

Barros AMG, Pereira JMC (2014) Wildfire selectivity for land cover 
type: Does size matter? PLoS ONE 9, e84760. doi:10.1371/journal. 
pone.0084760 

Costafreda-Aumedes S, Comas C, Vega-Garcia C (2017) Human-caused 
fire occurrence modelling in perspective: A review. International 
Journal of Wildland Fire 26, 983–998. doi:10.1071/WF17026 

Curt T, Frejaville T (2018) Wildfire Policy in Mediterranean France: 
How Far is it Efficient and Sustainable? Risk Analysis 38, 472–488. 
doi:10.1111/RISA.12855 

Curt T, Borgniet L, Bouillon C (2013) Wildfire frequency varies with the 
size and shape of fuel types in southeastern France: Implications for 
environmental management. Journal of Environmental Management 
117, 150–161. doi:10.1016/j.jenvman.2012.12.006 

Curt T, Fréjaville T, Lahaye S (2016) Modelling the spatial patterns of 
ignition causes and fire regime features in southern France: 
Implications for fire prevention policy. International Journal of 
Wildland Fire 25, 785–796. doi:10.1071/WF15205 

Díaz-Avalos C, Juan P, Serra-Saurina L (2016) Modeling fire size of 
wildfires in Castellon (Spain), using spatiotemporal marked point pro-
cesses. Forest Ecology and Management 381, 360–369. doi:10.1016/j. 
foreco.2016.09.013 

Dickson BG, Prather JW, Xu Y, Hampton HM, Aumack EN, Sisk TD 
(2006) Mapping the probability of large fire occurrence in northern 
Arizona, USA. Landscape Ecology 21, 747–761. doi:10.1007/s10980- 
005-5475-x 

Evin G, Curt T, Eckert N (2018) Has fire policy decreased the 
return period of the largest wildfire events in France? A 
Bayesian assessment based on extreme value theory. Natural 
Hazards and Earth System Sciences 18, 2641–2651. doi:10.5194/ 
nhess-18-2641-2018 

Fargeon H (2020) Effet du changement climatique sur l’évolution de 
l’aléa incendie de forêt en France métropolitaine au 21ème siècle. 
Sylviculture, foresterie. Institut agronomique, vétérinaire et forestier 
de France, 2019. PhD Thesis [In French]. AgroParisTech. Available at 
https://tel.archives-ouvertes.fr/INRA/tel-02789674v1 

Fernandes PM, Loureiro C, Guiomar N, Pezzatti GB, Manso FT, Lopes L 
(2014) The dynamics and drivers of fuel and fire in the Portuguese 
public forest. Journal of Environmental Management 146, 373–382. 
doi:10.1016/J.JENVMAN.2014.07.049 

Fernandes PM, Barros AMG, Pinto A, Santos JA (2016) Characteristics 
and controls of extremely large wildfires in the western Mediterranean 
Basin. Journal of Geophysical Research: Biogeosciences 121, 
2141–2157. doi:10.1002/2016JG003389 

Fox DM, Martin N, Carrega P, Andrieu J, Adnès C, Emsellem K, Ganga 
O, Moebius F, Tortorollo N, Fox EA (2015) Increases in fire risk due to 
warmer summer temperatures and wildland urban interface changes 
do not necessarily lead to more fires. Applied Geography 56, 1–12. 
doi:10.1016/j.apgeog.2014.10.001 

Fréjaville T, Curt T (2015) Spatiotemporal patterns of changes in fire 
regime and climate: defining the pyroclimates of south-eastern 
France (Mediterranean Basin). Climatic Change 129, 239–251. 
doi:10.1007/s10584-015-1332-3 

Fréjaville T, Curt T (2017) Seasonal changes in the human alteration of 
fire regimes beyond the climate forcing. Environmental Research 
Letters 12, 035006. doi:10.1088/1748-9326/aa5d23 

J. Castel-Clavera et al.                                                                                                        International Journal of Wildland Fire 

26 

https://doi.org/10.1071/WF22086
https://doi.org/10.1111/j.1539-6924.2012.01911.x
https://doi.org/10.1002/env.2269
https://doi.org/10.3389/feart.2020.00104
https://doi.org/10.3389/feart.2020.00104
https://doi.org/10.1371/journal.pone.0084760
https://doi.org/10.1371/journal.pone.0084760
https://doi.org/10.1071/WF17026
https://doi.org/10.1111/RISA.12855
https://doi.org/10.1016/j.jenvman.2012.12.006
https://doi.org/10.1071/WF15205
https://doi.org/10.1016/j.foreco.2016.09.013
https://doi.org/10.1016/j.foreco.2016.09.013
https://doi.org/10.1007/s10980-005-5475-x
https://doi.org/10.1007/s10980-005-5475-x
https://doi.org/10.5194/nhess-18-2641-2018
https://doi.org/10.5194/nhess-18-2641-2018
https://tel.archives-ouvertes.fr/INRA/tel-02789674v1
https://doi.org/10.1016/J.JENVMAN.2014.07.049
https://doi.org/10.1002/2016JG003389
https://doi.org/10.1016/j.apgeog.2014.10.001
https://doi.org/10.1007/s10584-015-1332-3
https://doi.org/10.1088/1748-9326/aa5d23


Galiana-Martin L, Herrero G, Solana J (2011) A Wildland–Urban Interface 
Typology for Forest Fire Risk Management in Mediterranean Areas. 
Landscape Research 36, 151–171. doi:10.1080/01426397.2010. 
549218 

Ganteaume A, Barbero R (2019) Contrasting large fire activity in the 
French Mediterranean. Natural Hazards and Earth System Sciences 
19, 1055–1066. doi:10.5194/nhess-19-1055-2019 

Ganteaume A, Guerra F (2018) Explaining the spatio-seasonal variation 
of fires by their causes: The case of southeastern France. Applied 
Geography 90, 69–81. doi:10.1016/j.apgeog.2017.11.012 

Ganteaume A, Jappiot M (2013) What causes large fires in Southern 
France. Forest Ecology and Management 294, 76–85. doi:10.1016/j. 
foreco.2012.06.055 

Giannaros TM, Lagouvardos K, Kotroni V (2020) Performance evalua-
tion of an operational rapid response fire spread forecasting system in 
the southeast mediterranean (Greece). Atmosphere 11, 1264. 
doi:10.3390/atmos11111264 

Hawbaker TJ, Radeloff VC, Stewart SI, Hammer RB, Keuler NS, Clayton 
MK (2013) Human and biophysical influences on fire occurrence in 
the United States. Ecological Applications 23, 565–582. doi:10.1890/ 
12-1816.1 

IGN (2019) Résultats par sylvoécorégions - INVENTAIRE FORESTIER. 
[In French] Available at https://inventaire-forestier.ign.fr/spip. 
php?rubrique253#nh1 [accessed 29 October 2021] 

Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, 
Williamson GJ, Bowman DMJS (2015) Climate-induced variations in 
global wildfire danger from 1979 to 2013. Nature Communications 6, 
7537. doi:10.1038/ncomms8537 

Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G, Forkel 
M, Smith AJP, Burton C, Betts RA, van der Werf GR, Sitch S, Canadell 
JG, Santín C, Kolden C, Doerr SH, Le Quéré C (2022) Global and 
regional trends and drivers of fire under climate change. Reviews of 
Geophysics 60, e2020RG000726. doi:10.1029/2020rg000726 

Joseph MB, Rossi MW, Mietkiewicz NP, Mahood AL, Cattau ME, 
St. Denis LA, Nagy RC, Iglesias V, Abatzoglou JT, Balch JK (2019) 
Spatiotemporal prediction of wildfire size extremes with Bayesian finite 
sample maxima. Ecological Applications 29, 1266–1281. doi:10.1002/ 
eap.1898 

Koh J, Pimont P, Dupuy JL, Opitz T (2021) Spatiotemporal wildfire 
modelling through point processes with moderate and extreme 
marks. arXiv. doi:10.48550/arXiv.2105.08004 

Krainski E, Gómez-Rubio V, Bakka H, Lenzi A, Castro-Camilo D, 
Simpson D, Lindgren F, Rue H (2018) ‘Advanced spatial modeling 
with stochastic partial differential equations using R and INLA.’ 
(Chapman and Hall/CRC) 

Lindgren F, Rue H (2015) Bayesian Spatial Modelling with R-INLA. 
Journal of Statistical Software 63, 1–25. doi:10.18637/jss.v063.i19 

Martín Y, Zúñiga-Antón M, Rodrigues Mimbrero M (2019) Modelling 
temporal variation of fire-occurrence towards the dynamic prediction 
of human wildfire ignition danger in northeast Spain. Geomatics, 
Natural Hazards and Risk 10, 385–411. doi:10.1080/19475705. 
2018.1526219 

Martínez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire 
risk rating for prevention planning in Spain. Journal of Environmental 
Management 90, 1241–1252. doi:10.1016/j.jenvman.2008.07.005 

Moreira F, Vaz P, Catry F, Silva JS (2009) Regional variations in wild-
fire susceptibility of land-cover types in Portugal: Implications for 
landscape management to minimize fire hazard. International Journal 
of Wildland Fire 18, 563–574. doi:10.1071/WF07098 

Moreira F, Andersen A, Anderson SAJ, Ascoli D, Baeza J, Barbati A, 
Duguy B, Finney M, Gill M, Keane R, Rigolot E, Ryan K, Williams D, 
Xanthopoulos G (2010) A comparison of landscape planning 
approaches and practices for strategic fuel management in southern 
Europe, Australia, New Zealand and the USA. In ‘VI International 
Conference on Forest Fire Research’, 15–18 November 2010, 
Coimbra, Portugal. (Ed. D Viegas) (University of Coimbra) 

Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, 
Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E 
(2011) Landscape – wildfire interactions in southern Europe: 
Implications for landscape management. Journal of Environmental 
Management 92, 2389–2402. doi:10.1016/j.jenvman.2011.06.028 

Moreno MV, Conedera M, Chuvieco E, Pezzatti GB (2014) Fire regime 
changes and major driving forces in Spain from 1968 to 2010. 

Environmental Science & Policy 37, 11–22. doi:10.1016/J.ENVSCI. 
2013.08.005 

Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC (2012) 
Modeling spatial patterns of fire occurrence in Mediterranean Europe 
using Multiple Regression and Random Forest. Forest Ecology and 
Management 275, 117–129. doi:10.1016/j.foreco.2012.03.003 

Park IW, Mann ML, Flint LE, Flint AL, Moritz M (2021) Relationships of 
climate, human activity, and fire history to spatiotemporal variation 
in annual fire probability across California. PLoS ONE 16, e0254723. 
doi:10.1371/journal.pone.0254723 

Pezzatti GB, Zumbrunnen T, Bürgi M, Ambrosetti P, Conedera M 
(2013) Fire regime shifts as a consequence of fire policy and socio- 
economic development: An analysis based on the change point 
approach. Forest Policy and Economics 29, 7–18. doi:10.1016/J. 
FORPOL.2011.07.002 

Pimont F, Fargeon H, Opitz T, Ruffault J, Barbero R, Martin-StPaul N, 
Rigolot E, Riviére M, Dupuy J-L (2021) Prediction of regional wildfire 
activity in the probabilistic Bayesian framework of Firelihood. 
Ecological Applications 31, e02316. doi:10.1002/eap.2316 

Preisler HK, Benoit JW (2004) A state space model for predicting wild-
land fire risk. USDA Forest Service, Pacific Southwest Research 
Station, Albany and Riverside, California. Available at https://www. 
fs.usda.gov/psw/publications/preisler/psw_2004_preisler001_asa.pdf 

Rodrigues M, de la Riva J, Fotheringham S (2014) Modeling the spatial 
variation of the explanatory factors of human-caused wildfires in 
Spain using geographically weighted logistic regression. Applied 
Geography 48, 52–63. doi:10.1016/j.apgeog.2014.01.011 

Rodrigues M, Jiménez-Ruano A, Peña-Angulo D, de la Riva J (2018) 
A comprehensive spatial-temporal analysis of driving factors of 
human-caused wildfires in Spain using Geographically Weighted 
Logistic Regression. Journal of Environmental Management 225, 
177–192. doi:10.1016/j.jenvman.2018.07.098 

Rodriguez y Silva F, Molina JR, Leal JR (2014) The efficiency analysis of 
the fire control operations using the VISUAL-SEVEIF tool. In ‘Advances 
in Forest Fire Research’. (Ed. DX Viegas). pp. 1883–1894 (Universidade 
de Coimbra) doi:10.14195/978-989-26-0884-6_210. 

Rue H, Riebler A, Sørbye SH, Illian JB, Simpson DP, Lindgren FK (2017) 
Bayesian computing with INLA: a review. Annual Review of Statistics 
and Its Application 4, 395–421. doi:10.1146/annurev-statistics- 
060116-054045 

Ruffault J, Mouillot F (2015) How a new fire-suppression policy can 
abruptly reshape the fire-weather relationship. Ecosphere 6, 199. 
doi:10.1890/ES15-00182.1 

Ruffault J, Mouillot F (2017) Contribution of human and biophysical 
factors to the spatial distribution of forest fire ignitions and large 
wildfires in a French Mediterranean region. International Journal of 
Wildland Fire 26, 498–508. doi:10.1071/WF16181 

Ruffault J, Moron V, Trigo RM, Curt T (2016) Objective identification of 
multiple large fire climatologies: An application to a Mediterranean 
ecosystem. Environmental Research Letters 11, 075006. doi:10.1088/ 
1748-9326/11/7/075006 

Ruffault J, Moron V, Trigo RM, Curt T (2017) Daily synoptic conditions 
associated with large fire occurrence in Mediterranean France: evi-
dence for a wind-driven fire regime International Journal of 
Climatology 37(1), 524–533. doi:10.1002/joc.4680 

Ruffault J, Curt T, Martin-StPaul NK, Moron V, Trigo RM (2018) 
Extreme wildfire events are linked to global-change-type droughts 
in the northern Mediterranean. Natural Hazards and Earth System 
Sciences 18, 847–856. doi:10.5194/nhess-18-847-2018 

Serra L, Saez M, Mateu J, Varga D, Juan P, Díaz-Ávalos C, Rue H (2014) 
Spatio-temporal log-Gaussian Cox processes for modelling wildfire 
occurrence: The case of Catalonia, 1994–2008. Environmental and 
Ecological Statistics 21, 531–563. doi:10.1007/s10651-013-0267-y 

Silva JMN, Moreno MV, Le Page Y, Oom D, Bistinas I, Pereira JMC 
(2019) Spatiotemporal trends of area burnt in the Iberian Peninsula, 
1975–2013. Regional Environmental Change 19, 515–527. 
doi:10.1007/s10113-018-1415-6 

Sutanto HT, Pramoedyo H, Wardhani WS, Astutik S (2021) The 
Selection of Bayesian Polynomial Regression with INLA by using 
DIC, WAIC and CPO. Journal of Physics: Conference Series 1747, 
012029. doi:10.1088/1742-6596/1747/1/012029 

Turco M, Von Hardenberg J, Aghakouchak A, Llasat MC, Provenzale A, 
Trigo RM (2017) On the key role of droughts in the dynamics of 

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

27 

https://doi.org/10.1080/01426397.2010.549218
https://doi.org/10.1080/01426397.2010.549218
https://doi.org/10.5194/nhess-19-1055-2019
https://doi.org/10.1016/j.apgeog.2017.11.012
https://doi.org/10.1016/j.foreco.2012.06.055
https://doi.org/10.1016/j.foreco.2012.06.055
https://doi.org/10.3390/atmos11111264
https://doi.org/10.1890/12-1816.1
https://doi.org/10.1890/12-1816.1
https://inventaire-forestier.ign.fr/spip.php?rubrique253#nh1
https://inventaire-forestier.ign.fr/spip.php?rubrique253#nh1
https://doi.org/10.1038/ncomms8537
https://doi.org/10.1029/2020rg000726
https://doi.org/10.1002/eap.1898
https://doi.org/10.1002/eap.1898
https://doi.org/10.48550/arXiv.2105.08004
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.1080/19475705.2018.1526219
https://doi.org/10.1080/19475705.2018.1526219
https://doi.org/10.1016/j.jenvman.2008.07.005
https://doi.org/10.1071/WF07098
https://doi.org/10.1016/j.jenvman.2011.06.028
https://doi.org/10.1016/J.ENVSCI.2013.08.005
https://doi.org/10.1016/J.ENVSCI.2013.08.005
https://doi.org/10.1016/j.foreco.2012.03.003
https://doi.org/10.1371/journal.pone.0254723
https://doi.org/10.1016/J.FORPOL.2011.07.002
https://doi.org/10.1016/J.FORPOL.2011.07.002
https://doi.org/10.1002/eap.2316
https://www.fs.usda.gov/psw/publications/preisler/psw_2004_preisler001_asa.pdf
https://www.fs.usda.gov/psw/publications/preisler/psw_2004_preisler001_asa.pdf
https://doi.org/10.1016/j.apgeog.2014.01.011
https://doi.org/10.1016/j.jenvman.2018.07.098
https://doi.org/10.14195/978-989-26-0884-6_210
https://doi.org/10.1146/annurev-statistics-060116-054045
https://doi.org/10.1146/annurev-statistics-060116-054045
https://doi.org/10.1890/ES15-00182.1
https://doi.org/10.1071/WF16181
https://doi.org/10.1088/1748-9326/11/7/075006
https://doi.org/10.1088/1748-9326/11/7/075006
https://doi.org/10.1002/joc.4680
https://doi.org/10.5194/nhess-18-847-2018
https://doi.org/10.1007/s10651-013-0267-y
https://doi.org/10.1007/s10113-018-1415-6
https://doi.org/10.1088/1742-6596/1747/1/012029
https://www.publish.csiro.au/wf


summer fires in Mediterranean Europe. Scientific Reports 7, 81. 
doi:10.1038/s41598-017-00116-9 

Vidal JP, Martin E, Franchistéguy L, Baillon M, Soubeyroux JM (2010) 
A 50-year high-resolution atmospheric reanalysis over France with 
the Safran system. International Journal of Climatology 30, 
1627–1644. doi:10.1002/JOC.2003 

Viedma O, Urbieta IR, Moreno JM (2018) Wildfires and the role of 
their drivers are changing over time in a large rural area of west- 
central Spain. Scientific Reports 8, 17797. doi:10.1038/s41598-018- 
36134-4 

Vilar L, Woolford DG, Martell DL, Martín MP (2010) A model for predict-
ing human-caused wildfire occurrence in the region of Madrid, Spain. 
International Journal of Wildland Fire 19, 325–337. doi:10.1071/ 
WF09030 

Vilar L, Gómez I, Martínez-Vega J, Echavarría P, Riaño D, Martín MP 
(2016) Multitemporal modelling of socio-economic wildfire drivers 
in central Spain between the 1980s and the 2000s: Comparing gen-
eralized linear models to machine learning algorithms. PLoS ONE 
11(8), e0161344. doi:10.1371/journal.pone.0161344 

Wang X, Wotton BM, Cantin AS, Parisien MA, Anderson K, Moore B, 
Flannigan MD (2017) cffdrs: an R package for the Canadian Forest 
Fire Danger Rating System. Ecological Processes 6, 5. doi:10.1186/ 
s13717-017-0070-z 

Woolford DG, Martell DL, McFayden CB, Evens J, Stacey A, Wotton BM, 
Boychuk D (2021) The development and implementation of a human- 
caused wildland fire occurrence prediction system for the province of 
Ontario, Canada. Canadian Journal of Forest Research 51, 303–325. 
doi:10.1139/cjfr-2020-0313 

Data availability. The data that support this study comes from six sources with different availability conditions: (1) data for CLC available at Copernicus 
(Land Monitoring Service) https://land.copernicus.eu/; (2) fire records available at Prométhée database https://www.promethee.com/; (3) landscape descriptive 
geographical layers from the French IGN (Institut national de l’information géographique et forestière) at https://geoservices.ign.fr/catalogue; (4) population 
data available from the French Insee (Institut national de la statistique et des études économiques) at https://www.insee.fr/fr/statistiques?theme=0; (5) climatic 
SAFRAN data available under demand via SICLIMA Extraction application at https://www6.paca.inrae.fr/agroclim/Demande-des-donnees-de-Meteo-France; 
and (6) fuel classification is not publicly available as it is managed by the French ONF (Office National des Forêts). 

Conflicts of interest. The authors declare no conflicts of interest. 

Declaration of funding. This research did not receive any specific funding. 

Acknowledgements. We would like to thank Marion Toutchkov for her valuable feedback on the paper and Benoit Reymond for the data availability. Both 
of them belong to the Fire Agency at French Forest Service (Agence DFCI, ONF). 

Author affiliations 
AURFM, INRAE, Avignon, France. 
BBioSP, INRAE, Avignon, France. 
CUMR CIRED (Université Paris-Saclay,CNRS, Ecole des Ponts ParisTech, CIRAD, EHESS), Nogent-sur-Marne, France. 
DBETA (Université de Lorraine, Université deStrasbourg, CNRS, INRAE), Nancy, France.    

J. Castel-Clavera et al.                                                                                                        International Journal of Wildland Fire 

28 

https://doi.org/10.1038/s41598-017-00116-9
https://doi.org/10.1002/JOC.2003
https://doi.org/10.1038/s41598-018-36134-4
https://doi.org/10.1038/s41598-018-36134-4
https://doi.org/10.1071/WF09030
https://doi.org/10.1071/WF09030
https://doi.org/10.1371/journal.pone.0161344
https://doi.org/10.1186/s13717-017-0070-z
https://doi.org/10.1186/s13717-017-0070-z
https://doi.org/10.1139/cjfr-2020-0313
https://land.copernicus.eu/
https://www.promethee.com/
https://geoservices.ign.fr/catalogue
https://www.insee.fr/fr/statistiques?theme=0
https://www6.paca.inrae.fr/agroclim/Demande-des-donnees-de-Meteo-France

	Disentangling the factors of spatio-temporal patterns of wildfire activity in south-eastern France
	Introduction
	Methods
	Overview
	Study area and fire activity
	Explanatory variables
	FL2 development
	FL2 simulations and applications
	Results
	Variable selection and model performance
	Factors explaining spatial distributions and their changes
	Discussion
	Spatio-temporal modelling and analysis
	LULC factors of fire activities
	Temporal trends in the fire regime
	Conclusion
	Supplementary material
	References




