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Abstract
Characterizing  the  temperature-dependent  development  rate  requires  empirical

data  acquired  by  rearing  individuals  at  different  temperatures.  Many  mathematical
models can be fitted to empirical data, making model comparison a mandatory step, yet
model selection practices widely vary. We present guidelines for model selection using
statistical  criteria  and  the  assessment  of  biological  relevance  of  fits,  exemplified
throughout a Lepidoptera pest dataset. We also used  in silico experiments to explore
how experimental design and species attributes impact estimation accuracy of biological
traits.  Our  results  suggested  that  the  uncertainty  in  model  predictions  was  mostly
determined by the rearing effort and the variance in development times of individuals.
We found that a higher number of tested temperatures instead of a higher sample size
per  temperature  may  lead  to  more  accurate  estimations  of  model  parameters.  Our
simulations suggested that an inappropriate model choice can lead to biased estimated
values of biological traits (defined as attributes of temperature dependent development
rate, i.e. optimal temperature for development and critical thresholds), highlighting the
need  for  standardized  model  selection  methods.  Therefore,  our  results  have  direct
implications  for  future  studies  on  the  temperature-dependent  development  rate  of
insects.

Keywords: development rate; laboratory; nonlinear models; temperature

1. Introduction
Arthropods  are  ectothermic  organisms,  so  that  ambient  temperature  is  a

determining  factor  for  their  life-history  traits  such  as  survival,  fecundity,  and
development. Consequently, the study of arthropod responses to environmental factors
has a long history in quantitative ecology, and particularly for insects, considering their
role in agroecosystems (Uvarov, 1931). Insect life-history traits are essential components
for  modeling  and  predicting  insect  occurrence,  phenology,  and  population  dynamics
(Ewing et al., 2016; Haridas et al., 2016; Nielsen et al., 2016). Insect phenological models
have  received  much  attention  in  entomology  (Chuine  and  Régnière,  2017,  Shi  et  al.,
2017b). Used primarily for pest management (e.g. Crespo-Pérez et al., 2011; Rebaudo et
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al., 2017; Roy et al., 2002), but also in forensic science (e.g. Martín-Vega et al., 2017) and
vector  borne  diseases  (e.g.  Kreppel  et  al.,  2016),  phenological  models  have  been
developed to predict insect emergence time and duration, distribution, outbreaks, and
voltinism (Shi et al. 2017b).  Additionally, phenological modeling has been an important
tool  in  recent  decades for  studying  the  impact  of  climate change on the population
dynamics of arthropod species (e.g. Mwalusepo et al., 2015; Pollard et al., 2020).

Phenological models depend on two elements: i) temperature time series, which
can be used to represent past, present or future conditions, and ii) characterization of
the relationship  between development  rate  and temperature for  each arthropod life
stage. For the latter, the relationship is well documented in the literature as nonlinear
and takes the form of a thermal performance curve (fig. 1; Huey and Stevenson, 1979;
Sinclair et al., 2016; Uvarov, 1931). The nonlinear variation of development rate according
to  temperature  is  usually  described  using  mathematical  models  with   parameters
corresponding to different temperatures of biological meaning. Three parameters are
typically  measured:  the  critical  thresholds  for  development  (CTmin and  CTmax)  and  the
optimal  temperature  for  development  (Topt).  These  three  parameters  are  used  to
compare species' responses to temperature (e.g. Stejskal et al., 2019) or to predict the
potential impact of climate change on insect development (Sinclair et al., 2016).

The experimental data used to quantify the relationship between development rate
and temperature are usually obtained by using rearing units for insects under controlled
conditions. Insects are reared at different constant temperatures and monitored every
day (or hour) to estimate the length of each life stage in each individual (or group of
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Fig.  1:  Theoretical  performance  curve  for  temperature-dependent  development  rate.
Models generally assume that development rate is null under a critical temperature (CTmin)
from which it  increases slowly as temperature increases,  reaches a temperature zone
where  the  relationship  can  be  considered  as  linear  (Campbell  et  al.  1974)  until  the
development rate reaches a maximum at an optimal temperature (Topt).  It then rapidly
decreases and is considered null under a critical temperature (CTmax).
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individuals),  despite  known  limitations  on  the  use  of  constant  versus  fluctuating
temperatures (Colinet et al., 2015). Such experiments have been carried out on a large
variety of insect species with different purposes. For example,  the characterization of
temperature-dependent  development  rates  of  Copitarsia  incommoda (Lepidoptera:
Noctuidae) with nonlinear models has been used to build a risk map of  C. incommoda
outbreaks in quinoa crops in the Bolivian Andes (Rebaudo et al., 2017). Another example
can  be  found  for  Phratora  vulgatissima  (Coleoptera:  Chrysomelidae),  a  herbivorous
coleoptera feeding on willow,  cultivated in Europe and North America as a perennial
biomass crop (Pollard et al., 2020). A phenological model based on the characterization
of the relationship between development rates and temperature for the different life
stages has been built and its analysis showed that the currently univoltine species could
be bivoltine under the RCP8.5 climate change scenario (IPCC, 2014).

Since Réaumur's first experiments on caterpillars in the 1730s, many efforts have
been  made  to  build  mathematical  models  describing  the  temperature-dependent
development rate (Rebaudo and Rabhi, 2018; Roy et al.,  2002). One approach toward
characterizing the relationship between temperature and development is grounded on
the  degree-day  theory  using  a  simple  linear  regression  model  which  has  been
successfully used to predict development rate curve (Campbell et al.,  1974). However,
this characterization is limited to the range of temperatures where development rate can
be  considered  linear  and  could  lead  to  misinterpretations  for  insects  experiencing
temperatures outside this range, which are frequently encountered by insects in regions
marked with  seasonality  or  high  diurnal  thermal  amplitude (Pincebourde and  Casas,
2015). In addition, because global warming is characterized by an increasing frequency of
extreme events (IPCC, 2014), it is essential to evaluate the response of insects to extreme
temperatures (Ungerer et al.  1999; Shi  et  al.,  2012).  Thus,  the characterization of  the
nonlinear parts  of  the development  rate  curve for  insects has become an important
challenge.  For  that  purpose,  several  nonlinear  equations  have  been  proposed  to
characterize development rate according to temperature (e.g. Briere et al., 1999; Lactin et
al., 1995; Sharpe and DeMichele, 1977), and more than 30 equations can be found in the
literature to date. Comparing models is consequently an essential step in characterizing
development rate in insects, but remains to this day an irregular practice (Quinn, 2017).

As described by Lamb et al. (1984), a modeling study should comply with several
criteria:  (1)  the  model  should  fit  the  data  accurately  (which  can  be  estimated  using
statistical measures of goodness-of-fit); (2) the parameters of the model should have a
biological  meaning;  and  (3)  the  model  should  be  parsimonious,  i.e.  have  as  few
parameters as possible. However, a conclusion from the numerous discussions on model
selection (see Damos and Savopoulou-Soultani,  2012; Kontodimas et al.,  2004; Quinn,
2017; Régnière et al., 2012; Shi and Ge, 2010; Shi et al., 2016, 2017a; Zahiri et al., 2010) is
that model comparison is mandatory, since it is not possible to find a consensus on one
model.  Goodness-of-fit assessment plays a central part in model selection, while model
selection  methods  are  heterogenous  (e.g.  using  the  Aikaike  Information  Criterion  in
Rebaudo et al., 2017, Residual Sum of Squares and AIC in Pollard et al., 2020, RSS, R2, and
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AIC in Noor-ul-Ane et al., 2018) and model comparison is not systematic in the literature
(Quinn, 2017). The main motivation for this article is to present a guideline to assess and
compare model  adjustments  from empirical  datasets.  The guidelines  are exemplified
with an empirical dataset obtained for  Tecia solanivora (Lepidoptera: Gelechiidae). Also,
because several factors other than the criteria used for goodness-of-fit assessment can
play a role in model selection, we explore how experimental design influences parameter
estimation  accuracy.  We  studied  the  experimental  design  characteristics  (number  of
experimental temperatures, number of individuals) and insect population characteristics
(variance  among individuals  in  development  time)  to  identify  and  quantify  the  main
determinants that optimize temperature-dependent development rate characterization.

The purpose of this work is i)  to specify the experimental  designs that favor an
accurate characterization of the nonlinear relationship between development rate and
temperature, ii) to propose a guideline for model assessment. Although these two parts
are  treated  independently,  they  are  complementary  by  proposing  methods  on  two
technical  components  of  the  characterization  of  development  rate  as  a  function  of
temperature.  We  first  assess  and  compare  model  fits  using  simulated  datasets
corresponding to different scenarios of experimental design, under different biological
assumptions.  Then  we  describe  methods  for  model  goodness-of-fit  assessment  and
comparison, together with the tools to implement them, using a dataset extracted from
the literature. Through these two aspects of temperature-dependent development rate
modeling,  our  goal  is  to  specify  the  best  practices  for  the  characterization  of
development rate as a function of temperature.

2. Methods
The development rate model for each life stage can be written as a function of

temperature  r(T). This function can have several parameters that can be estimated by
fitting the model to observed data. A typical experiment consists in rearing n insects at J
different temperatures and observing the length of  the stage for each individual.  We
denote as nj the number of insects reared at temperature Tj (j=1, … J) and Dij the length of
the  stage  for  the  ith  individual  reared  at  temperature  Tj.  For  each  individual,  the
development rate is computed as the inverse of the length of the stage rij=1/Dij. Below, we
denote as rij the observed values of the development rate of individual i at temperature
Tj and as r̂ j the prediction from the model r(Tj). 

2.1. Impact of experimental design, a simulation study
Estimating the model parameters and biological traits from the development rate

models depends on two kinds of characteristics: those imposed by the species biology
(i.e., the probability distribution of development times at each temperature), and those
set  by  the  experimental  design  (i.e.,  the  number  of  individuals  reared  at  each
temperature,  the number,  range and distribution of  experimental  temperatures).  The
purpose of this study is to define the characteristics of experimental designs that allow
an accurate (i.e.  precise  and unbiased)  characterization of  the  nonlinear  relationship
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between development rate and temperature for insects. We defined an in silico biological
scenario  with  (1)  a  theoretical  model  used  to  describe  temperature-dependent
development rate,  (2)  a set of  parameter values for this model,  and (3)  a probability
distribution  of  the  development  times  at  each  temperature,  including  the  variance
parameter value.

Using simulations of  different  in silico biological  and experimental  scenarios,  we
explored  how  the  variance  of  the  development  times  at  each  temperature  (species
attribute),  the  number  of  individuals  at  each  temperature,  the  number  of  tested
temperatures,  and  the  distribution  of  tested  temperatures  (experimental  design
attributes)  impact  the  precision  and  bias  of  model  parameters  and  biological  traits
estimations. 

2.1.1. In silico biological and experimental scenarios
All in silico biological scenarios were simulated with the Brière-2 model (Briere et al.,

1999), chosen for its wide acceptance in the literature (e.g. Aghdam et al., 2009; Roy et al.,
2002; Tochen et al., 2014). 

r (T )=aT (T −CT min) (CTmax−T ) (1/b ) (1)

The model presents the advantages of having two parameters corresponding to CTmin and
CTmax and Topt can be computed with:

T opt=
(2bCTmax+ (b+1 )CT min)+√4b2CTmax

2 + (b+1 )2CT min
2 −4b2CTminCT max

4b+2
(2)

To mimic real-world values for the theoretical development rate curve, we extracted the
set of parameter values of the Brière-2 model fitted on the Cydia pomonella pupal stage
from Aghdam et al. (2009) (CTmin = 8.2, CTmax = 34.4, a = 0.00009, b = 3.9, Topt computed =
31.03°C). 

For all simulations, we considered that the duration of an individual’s life stage for a
given  temperature  follows  a  log-normal  distribution  to  represent  the  unimodal
asymmetrical distribution typical of development times distributions in insects (Régnière
et al.,  2012; Régnière,  1984; Stinner et  al.,  1975).  A scenario includes the rearing at  J
temperatures  (T1,  …  TJ)  of  nj individuals.  At  each  temperature  Tj,  the  mean  value  of
development time (dj = 1/rj) was computed from the theoretical curve given by equation
1, and the development times of individuals (Dij) were drawn in a log-normal distribution
of parameters μj and σ² where μj = log(dj) – (σ²/2):

log (Dij )∼N (log (d j )− (σ2/2 ) , σ2 ) (3)

The variance of the development time is given by σ d j
2 =(eσ

2

−1 )d j2 and the coefficient

of variation  by cv j=σ d j /d j=√(eσ
2

−1). For the sake of simplicity, we considered a constant
coefficient of variation for the development time at all temperatures. This constant CV
was  notably  found  for  the  different  development  stages  of  the  cabbage  beetle
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Colaphellus bowringi (Coleoptera: Chrysomelidae) (Shi et al. 2017c). We simulated in silico
biological scenarios with three different values of the coefficients of variation (10%, 30%,
50%) and chose  σ² accordingly. Because experimental  measurements of  development
time  are  usually  made  on  a  daily  basis  (e.g.  Tochen  et  al.,  2014),  the  simulated
development times (in days) were rounded up to the next whole number. To assess the
impact of the experimental rearing effort on the accuracy of parameter estimations, we
explored the effect of the number of individuals in a range of plausible values. The range
was defined based on observed reference values in the literature, with 10, 50, 100 or 500
individuals per temperature (Aghdam et al., 2009; Briere and Pracros, 1998; Howell and
Neven, 2000; Pollard et al., 2020; Roy et al., 2002; Zahiri et al., 2010). Based on a sample
of  the  references  within  a  review  on  the  relationship  between  temperature  and
development rate (Rebaudo and Rabhi, 2018), we chose to explore the impact of the
number of experimental temperatures with 5, 7 and 15 different temperatures in the
range  of  the  expected  values  (from  CTmin to  CTmax),  with  different  distributions  of
experimental  temperatures.  Temperatures  were  distributed  differently  depending  on
three scenarios. In the first one (referred to as “uniform”), temperatures were equally
distributed  within  the  range  of  the  critical  thermal  thresholds,  as  exemplified  in
numerous studies (e.g. Kontodimas et al., 2004; Messenger and Flitters, 1958; Noor-ul-
Ane et al., 2018; Roy et al., 2002; Zahiri et al., 2010). In the second scenario (referred to as
“linear”),  temperatures  were  equally  distributed  within  a  range  of  temperatures
corresponding to the linear zone. This choice of experimental design is common in the
literature because extreme temperatures are rarely observed in the habitat, and because
there is a high mortality rate at extreme temperatures often leading to a lack of data (e.g.
Campbell  et  al.,  1974;  Howell  and  Neven,  2000;  Zuim  et  al.,  2017).  To  obtain
temperatures in this range, the thermal safety margin (TSM),  defined in Sinclair  et al.
(2016) as the difference between CTmax and Topt (TSM = CTmax - Topt), was used. On the basis
of the hypothesis that insects avoid temperatures close to critical  thermal thresholds
(Martin and Huey, 2008), temperatures were distributed between CTmin + TSM and CTmax -
TSM in  this  scenario.  The third  scenario  (referred to as  “specific”)  corresponds to  an
alternative to classical  experimental  designs,  with temperatures unequally  distributed
within the range of the critical thermal thresholds. To generate this scenario, we sampled
additional temperatures in a uniform distribution and selected the requested number of
temperatures closest to the thermal thresholds (see Supplementary Material 2 lines 95 to
113). As suggested by Kingsolver and Buckley (2020), the nonlinearity of development
curves  in  extreme  temperatures  could  be  better  described  by  experimental  design
including more low and high temperatures than mid-temperatures.

2.1.2. Assessing bias, precision and accuracy of parameter estimators
We  combined  the  resulting  temperature  experimental  designs  with  the  four

possible sample sizes at each temperature and the three values for the coefficient of
variation in a complete factorial design leading to 108 scenarios. For each scenario, 500
repetitions were simulated, leading to 54000  in silico simulations. For each simulation,
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the Brière-2 model was fitted to the simulated data. With each model fit, we estimated
the values of the four parameters of the model (a, b, CTmin, CTmax) and Topt, and compared
these estimates to the theoretical values with:

error ( p̂kz )= p̂kz− pk (4)
where  p̂kz is the estimation of the parameter pk (p denoting one of the parameters) with
dataset k of scenario z.

For each parameter and each of the 108 scenarios, we quantified the bias of the
estimator as the median error (ME), its precision as its interquartile range (IQR) and its
accuracy by the mean of absolute errors (MAE). Bias evaluates the systematic error in
parameter estimations, precision depends on the variance of the estimator, and accuracy
is defined as the overall difference between the estimated parameter values and their
true value (Walther and Moore, 2005). Bias and accuracy were measured using median
error and mean of absolute errors, respectively, because they are both less sensitive to
outlier  values  than  more  common  measures  like  mean error  and  mean of  squared
errors. The complete code is available in Supplementary Material 2.

2.1.3. Impacts of misspecification
In order to estimate the impacts of misspecification (i.e. fitting another model than

Brière-2), we fitted seven models for which two parameters corresponded to  CTmin and
CTmax, in addition to the Brière-2 model (Analytis model from Analytis, 1977; Performance
model from Shi et al., 2011; Shi model from Shi et al., 2011; Brière-1 model from Briere et
al., 1999; Wang model from Wang et al., 1982; Ratkowsky model from Ratkowsky et al.,
1983; Kontodimas model from Kontodimas et al., 2004). The models were fitted to 500
simulated datasets with CV = 10% and a uniform distribution of 15 temperatures and 500
individuals  per temperature.  For  each fit,  the parameters corresponding to  CTmin and
CTmax were extracted, and  Topt was approximated from the fitted model. Then, the bias
was measured with the median of errors (equation 8).

2.2. Model fit, assessment and comparison
Models characterizing the relationship between development rate and temperature

in insects differ in complexity, as well as in their biological assumptions (Davidson 1944,
Sharpe and DeMichele 1977, Scoolfield et al. 1981, Brière 1999, Ikemoto 2005, Régnière
et al. 2012). As a result of the variety of available models, the process of model selection
is a complex task. Here we propose guidelines for (1) model fitting, (2) statistical model
selection, and (3) biological relevance of fits.

2.2.1. Methods for model fitting
From the vast literature on insect development rate (see the review by Rebaudo

and Rabhi, 2018), the nonlinear least squares method (NLS) emerges as the main method
to adjust insect development rate models to empirical data (but see Got and Rodolphe,
1989; Hansen et al., 2011; Régnière et al., 2012; Yurk and Powell, 2010 for examples of
adjustments  based on maximum likelihood estimations and Shi  et  al.  2017c for  NLS
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limitations). NLS consists in iterative optimization using algorithms to identify equation
parameter  values  minimizing  the  sum  of  squares  of  errors.  These  are  traditional
methods not specific to development rate curves for insects, and several algorithms exist
for  this  purpose  (Nocedal  and Wright,  2006),  the most  widespread being  the Gauss-
Newton algorithm (Björck,  1996)  and the Levenberg-Marquardt algorithm (Levenberg,
1944; Marquardt, 1963).  In R statistical software (R Core Team, 2021), the Gauss-Newton
and  Levenberg-Marquardt  algorithms  are  respectively  implemented  through  the
packages stats (R Core Team, 2021) and minpack.lm (Elzhov et al., 2016). 

2.2.2. Statistical model selection
The first step in fit assessment is to analyze the precision of parameter estimates.

For  that  purpose,  standard  errors  of  estimates  can  be computed.  In  a  second  step,
statistical selection criteria can be used to select one or several model candidates among
all  fitted  models.  These  criteria  are  grounded  on  goodness-of-fit  and  the  parsimony
principle (i.e. models must fit the data accurately with as few parameters as possible).
Goodness-of-fit  quantifies  how well  a  model  fits  to  a  set  of  experimental  data  using
statistical  criteria.  Here,  we  present  two  measures  of  the  discrepancy  between  the
predictions  of  the  model  and the  observed development  rates,  and two information
criteria that can be used for model selection.

The Residual Sum of Squares (RSS) is the sum of the squares of the differences
between values of the development rate predicted by the model (r̂ j) and the observed
values (rij).  It  has been vastly used for insect development rate curve characterization
over recent decades (e.g. Kontodimas et al., 2004; Pollard et al., 2020; Shi and Ge, 2010).
RSS value is scale-dependent,  meaning that a threshold discriminating goodness-of-fit
cannot be defined. However, RSS can be used as a comparison tool in order to identify
models with a higher difference between predicted and empirical data and is calculated
with:

RSS=∑
j=1

J

∑
i=1

n j

(rij− r̂ j )
2 (5)

The root-mean squared error (RMSE; equation 2) is defined as:

RMSE=√ RSSn (6)

Its usage is similar to RSS for characterizing insect development rate model accuracy (e.g.
Damos  and  Savopoulou-Soultani,  2008;  Mirhosseini  et  al.,  2017;  Shi  et  al.,  2016).  In
contrast with RSS, RMSE has the advantage of being expressed in the same unit as the
outcome, making it  easier  to interpret.  It  can also be normalized using the mean or
median development rate. Both RMSE and RSS can be used to rank model fits and to
select the model that minimizes RMSE and RSS values.

To compare models fitted on the same dataset  integrating a  trade-off between
model  complexity  (i.e.  the  number  of  parameters  K)  and  goodness-of-fit,  the  Akaike
Information  Criterion  (AIC;  Akaike,  1974)  and  Bayesian  Information  Criterion  (BIC;
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Schwarz, 1978) can be used. Because goodness-of-fit tends to be maximized by adding
more  parameters  to  a  model,  both  of  these  criteria  consider  a  penalty  parameter
dependent on the number of parameters. In the case of least squares estimations of
model parameters (Burnham and Anderson, 2002), the AIC and BIC can be calculated
with:

AIC=n× log( RSSn )+2K (7)

BIC=n×log( RSSn )+ log (n )×K (8)

The BIC involves a larger penalty than the AIC and penalizes models with a high number
of parameters more than the AIC. The AIC is a common tool for selecting a model for
insect development rate curve characterization (e.g. Orang et al., 2014; Quinn, 2017; Tran
et al., 2012). The BIC is less popular but has been used several times in the same way
(e.g. Arbab and Mcneill, 2011).

According to Burnham and Anderson (2002) the goodness-of-fit of models resulting
in close AIC values can be considered equivalent. The study proposed a rule of thumb to
discriminate between models using the differences between the lowest AIC value and
each model’s AIC value (noted ΔAIC): the goodness-of-fit of models resulting in ΔAIC < 2 can
be considered equivalent to the model with the lowest AIC, while models resulting in ΔAIC

> 10 can be discarded as their goodness-of-fit is low in comparison with the model with
the lowest AIC. In the case of Tecia solanivora, we chose to select models based on their
ΔAIC values,  and  models  resulting  in  ΔAIC >  10  were  discarded.  The  advantage  of  this
method  is  that  several  models  can  be  selected  and  the  resulting  biological  trait
estimations can be compared.

2.2.3. Biological relevance of fits
The AIC and BIC allow us to choose the model that represents the best trade-off

between  model  complexity  and  goodness-of-fit  among  a  set  of  models,  but  not
necessarily a model that would be a good representation of the biological process. A
good  description  of  data  according  to  statistical  measures  can  result  in  biologically
unrealistic development rate curves with aberrant values of CTmin and CTmax, notably when
data  are  sparse  in  low  and  high  temperatures  (Ikemoto  and  Kiritani,  2019).  Several
examples of evaluation of biological traits values can be found in the literature, but the
practice does not seem to be widespread (Orang et al. 2014; Kontodimas et al. 2004).
Complementary knowledge about the biology of the studied species could help to clarify
such criteria. For instance, in the case of  Tecia solanivora, we chose to discard models
that  resulted  in  CTmin inferior  to  5°C,  based  on  measured  survival  rates  in  low
temperatures  (Crespo-Pérez  et  al.,  2011).  Because  individuals  cannot  survive  in
temperatures  lower  than 5°C,  we made the assumption that  estimations of  minimal
critical threshold should be higher than 5°C. Thus, a limitation on the use of biological
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criteria for model selection is that it  requires preliminary results on the temperature-
dependent development rate and on the species' response to temperature in order to
discard aberrant model adjustments. Here we used published results on survival rates in
low temperatures, as seen in Nephus includens and Nephus bisignatus (Kontodimas et al.
2004). However, the most relevant biological criteria could depend on the species and on
available knowledge. Moreover, filtering fits based on biological criteria requires strong
assumptions  and  can  influence  the  interpretation  of  results.  In  our  case  we  cannot
conclude  that  development  is  not  possible  in  temperatures  under  5°C  based  on
development  rate  curve  interpretation,  since  we  made  this  assumption  for  model
selection. Thus, biological criteria should always be justified with regard to the knowledge
of  the  species,  and  vigilance  is  required  in  interpreting  results.  To  add  biological
information in the modeling process, other methods could be used. For instance, it is
possible  to  add  a  constraint  on  a  parameter  estimation  in  an  NLS  procedure.  The
algorithm look for the parameter estimations that minimizes the residual sum of squares
in  respect  of  the  constraint  (e.g.   CTmin ≤  5°C).   Alternatively,  parameters  could  be
estimated in a bayesian framework with informative priors for parameters such as CTmin.
Such approach was used to estimate upper and lower thresholds in the mountain pine
beetle Dendroctonus ponderosae (McManis et al., 2018). Both methods however prevent
the use of models that do not include parameters corresponding to biological traits, and
thus the generalization of our approach. In the example presented here, we used 14
models that do not directly estimate  CTmin and/or  CTmax and/or  Topt (e.g. the polynomial
model of degree four has 5 parameters but none correspond to a biological trait). For
these  models,  we  computed  CTmin and  CTmax by  taking  respectively  the  minimal  and
maximal temperature where the predicted development rate was null, and we computed
Topt using the temperature where the predicted development rate took its maximal value
(local maximal value). Yet, we acknowledge that for some models, these biological traits
could be written analytically as a function of the model parameters (see Brière-2 model
and equation 2 which was given in Brière et al., 1999).

Another limitation for assessing the biological relevance of fits is that some models
result in an asymptotic curve around zero in low and/or high temperatures (e.g. models
in Logan et al., 1976; Sharpe and DeMichele, 1977; Taylor, 1981). In order to overcome
this  limitation,  we  propose  to  use  alternative  metrics  corresponding  to  threshold
temperatures  where  the  development  rate  is  below a  given fraction  of  the  maximal
development  rate.  The  biological  meaning  of  these  metrics  is  different  from  the
temperature thresholds where development rate is null, but they can be used similarly to
CTmin and  CTmax for discarding biologically unrealistic curves, and can be computed with
every model. In the case of  T. solanivora, we measured threshold temperatures where
the development rate is inferior to 10% of the maximal development rate, noted CT10min

and CT10max. Biological trait values can be known either with the value estimated through
a parameter of a model, or directly from the fitted curve. When available, standard errors
of biological traits estimations were computed, but in some cases no standard errors
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could be computed because their value were computed using the model predictions, as
it is the case for CT10min and CT10max.

To illustrate the whole process of model fitting, statistical selection and biological
assessment, we estimated and selected models for the larval stage of  Tecia solanivora
(Lepidoptera: Gelechiidae) using data published in Crespo-Pérez et al. (2011). The dataset
is  composed  of  14  observed  mean  development  rates  measured  at  9  different
temperatures (see Crespo-Pérez et  al.,  2011).  Tecia  solanivora is  a potato tuber moth
present in Central and South america.  No diapause  has been reported in the Andean
region  near  the  equator  probably  due  to  the  small  thermal  differences  observed
between the seasons at these latitudes (Dangles et al. 2008).

For all the analyses, we used the R software version 4.0.3 and the devRate package
version 0.2.1 (Rebaudo et al., 2018). The complete code is available in Supplementary
Material 1. The dataset for T. solanivora is included in the package devRate.

3. Results
3.1 Experimental design impacts on estimations of biological traits

3.1.1.  Bias and precision of estimations
In silico insect rearing experiments simulated with a theoretical curve of the Brière-

2 model and fitting of the same model on simulated datasets showed that accuracy of
parameter estimations depended on the coefficient of  variation of  the distribution of
development times (fig. 3b), and on the characteristics of experimental design (fig. 3cde).
Overall, biological trait estimations were unbiased, as the medians of errors were close
to 0 for the three biological traits and the three coefficients of variation of development
times (fig. 3b). However, the precision of estimations depended on the biological traits
and scenario.  CTmax and  Topt had higher interquartile ranges of  errors than  CTmin (from
0.1204°C to 1137.27°C for  CTmax;  from 0.0724°C to 4.44°C for  CTmin;  from 0.0421°C to
1132.67°C for Topt depending on the scenario). With the experimental design with linear
distribution  of  5  temperatures  and 10  individuals  per  temperature,  which  led  to  the
highest interquartile range of errors for the three biological traits, the maximum error
found for CTmin was equal to 5.14°C. With this scenario resulting in a lack of data in high
temperatures,  Topt and  CTmax estimations  took  extreme  values  resulting  in  high  error
values superior to 104°C.

3.1.2. Impacts of experimental design
Accuracy of  biological  trait  estimations depended on the rearing effort.  For  the

three values of  coefficient of  variation, accuracy increased with increasing number of
temperatures,  and with increasing number of  individuals per temperature.  With CV =
10%, CTmax mean absolute error (MAE) varied from 23.87°C with 5 temperatures and 10
individuals, to 0.15°C with 15 temperatures and 500 individuals. With CV = 30%,  CTmax

MAE varied from 851.74°C with 5 temperatures and 10 individuals, to 0.26°C with 15
temperatures and 500 individuals. With CV = 50%, CTmax MAE varied from 1206.09°C with
5 temperatures and 10 individuals, to 0.42°C with 15 temperatures and 500 individuals.
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Similar results were observed for Topt estimations, but the values of MAE were lower than
for  CTmax estimations (fig.  3de).  For  CTmin,  similar  results  were  observed,  however  the
values of MAE were generally low (< 1°C), except with poor experimental designs (e.g. 5
temperatures and 10 individuals per temperature resulted in the highest value of MAE
for CTmin, equal to 2.9°C). The distribution of temperatures also affected the accuracy of
biological trait estimations. Linear distribution of temperatures resulted in higher MAE
values than uniform and specific distributions with every scenario (fig.  3cde).  Specific
distribution  of  temperatures  resulted  in  lower  or  equal  values  of  MAE compared  to
uniform distribution (fig. 3cde).

With CV = 10%, a total of 150 individuals (with 15 temperatures and 10 individuals
per temperature and specific or uniform distributions of temperatures) resulted in CTmax

MAE < 1°C (fig. 3d). With a specific distribution of 7 temperatures, at least 100 individuals
per temperature (for a total rearing of 700 individuals) were required to obtain a  CTmax

MAE < 1°C (fig. 3d). With the same number of temperatures and a uniform distribution,
at least 500 individuals (for a total of 3500 individuals) were required to obtain CTmax MAE
< 1°C (fig. 3d). The minimal value of  CTmax MAE for the linear distribution (MAE = 1.2°C)
was found with 15 temperatures and 500 individuals per temperature (fig. 3d).
With CV = 30%, a total of 750 individuals (with 15 temperatures and 50 individuals per
temperature and specific distribution of temperatures) resulted in CTmax MAE < 1°C. With
a uniform distribution, at least the double of individuals were required to obtain  CTmax

MAE < 1°C (with 15 temperatures and 100 individuals per temperature). With a specific
distribution of 7 temperatures and 500 individuals per temperature (for a total of 3500
individuals),  CTmax MAE was equal to 1.15°C. With a linear distribution of temperatures,
the minimum value of MAE (2.9°C) was found with 15 temperatures and 500 individuals
per temperature. 

With CV = 50%, the minimal required experimental design to result in MAE < 1°C
was a specific distribution of 15 temperatures and 100 individuals per temperature (total
of 1500 individuals). With a uniform distribution of temperatures, 15 temperatures and
500 individuals per temperature (total of 7500 individuals) resulted in MAE < 1°C. With a
linear distribution, the minimum value of  CTmax MAE found (MAE = 5.79°C) was for 15
temperatures and 500 individuals per temperature.
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Table 1: Models fitted to development rate data of larval stage of T. solanivora. The reference for each model is shown, as well as all the criteria for model
selection. RSS and RMSE are measures of the discrepancy between observations and predictions. AIC and BIC are used to select the most parsimonious models.
CTmin, CTmax, Topt, CT10min and CT10max are used to discard models with unrealistic biological interpretations. Models are ordered according to their AIC values.
Column K corresponds to the number of parameters. Standard error of parameter estimations are given in parenthesis when biological traits corresponded to a
model’s parameter. Other biological trait values were computed from the curves. Models marked with *** are those selected on the basis of statistical and
biological criteria.
Model name Reference K RSS RMSE AIC BIC CTmin CTmax Topt CT10min CT10max

janisch_32 Janisch (1932) 4 0.0012 0.0093 -121 -117.8 23.5 2.8 28.2
schoolfield_81*** Schoolfield et al. (1981) 6 0.0011 0.0087 -118.8 -114.4 27 6.7 29.3
wang_82*** Wang et al. (1982) 6 0.0011 0.0088 -118.6 -114.1 7 (13.3) 24.4 8.4 28.1
regniere_12*** Regniere et al. (2012) 6 0.0011 0.0088 -118.5 -114.1 9.9 (1735.4)30.1 (0.54) 23.5 9.9 29.8
taylor_81*** Taylor (1981) 3 0.0020 0.0118 -116.3 -113.8 21.4 (0.73) 9.5 33.4
poly4 - 5 0.0015 0.0103 -116 -112.2 31.1 21.6 30.2
ratkowsky_83*** Ratkowsky et al. (1983) 4 0.0018 0.0112 -115.7 -112.5 5 (3.47) 33.5 (0.91) 22.2 8.6 31.9
damos_11 Damos and Savopoulou (2011) 3 0.0022 0.0126 -114.5 -112 21.8 4.1 39.4
analytis_77*** Analytis (1977) 5 0.0018 0.0115 -113.1 -109.3 4.5 (21.8) 35.1 (21.1) 21.7 9.7 32.1
poly2*** - 3 0.0027 0.0138 -112 -109.5 8.6 34.2 21.4 9.2 33.6
kontodimas_04*** Kontodimas et al. (2004) 3 0.0028 0.0142 -111.2 -108.7 34.1 (1.09) 23.3 6.1 33.6
damos_08 Damos and Savopoulou (2008) 3 0.0029 0.0143 -110.9 -108.4 0 34.1 23.3 5 33.6
harcourtYee_82 Harcourt and Yee (1982) 4 0.0026 0.0137 -110.1 -106.9 8.2 34.1 22 9 33.5
perf2_11 Shi et al. (2011) 4 0.0026 0.0137 -110.1 -106.9 8.3 (1.86) 34.1 (1.42) 21.8 9.1 33.5
lactin2_95 Lactin et al. (1995) 4 0.0027 0.0139 -109.8 -106.6 7.6 34.1 22.6 8.5 33.6
logan10_76 Logan et al. (1976) 5 0.0024 0.0132 -109.3 -105.4 6.5 34 (3.3) 21.8 8.4 33.4
beta_95 Yin et al. (1995) 5 0.0026 0.0136 -108.3 -104.5 8.5 (7.25) 35.1 (28.6) 21 9.2 33.9
hilbertLogan_83 Hilbert and Logan (1983) 5 0.0026 0.0136 -108.3 -104.5 8 34.1 21.9 8.9 33.5
shi_11 Shi et al. (2011) 5 0.0026 0.0137 -108.1 -104.3 8.3 (2.83) 34.1 (1.58) 21.8 9.1 33.5
briere1_99 Briere et al. (1999) 3 0.0041 0.0170 -106 -103.5 35.1 (0.01) 25.3 1.9 35
lactin1_95 Lactin et al. (1995) 3 0.0042 0.0174 -105.5 -103 9 18.4 9.4
logan6_76 Logan et al. (1976) 4 0.0038 0.0165 -104.9 -101.7 34.4 (1.17) 24.9 34.1
beta_16 Shi et al. (2016) 4 0.0038 0.0165 -104.9 -101.7 34.4 (1.16) 24.9 34.1
bayoh_03 Bayoh and Lindsay (2003) 4 0.0044 0.0177 -102.9 -99.8 9.5 35 16.3 9.6 34.9
davidson_44 Davidson (1944) 3 0.0072 0.0227 -98.1 -95.5
briere2_99 Briere et al. (1999) 4 0.0067 0.0218 -97.1 -93.9 1.1 (25.4) 35.1 (0.01) 30.4 7.7 35



3.1.3. Impacts of model misspecification
We fitted eight models to datasets simulated with CV = 10%, a uniform distribution

of 15 temperatures and 500 individuals per temperature in order to measure the bias of
estimated values of  CTmin,  CTmax and Topt when another model than Brière-2 is fitted. The
simulations  resulted  in  different  values  of  median  error  for  CTmin,  Topt and  CTmax

estimations (fig. 4). For  CTmin, negative median errors were found for four models, and
varied from -3.1°C with the Rakowsky model and -0.07 with the Brière-2 model. Positive
median errors varied between 0.5°C with the Shi and Wang models, and 1.8°C with the
Performance model. For  CTmax,  the Analytis model resulted in a negative median error
equal to -0.17°C and for the seven other models,  positive median errors were found
between 0.28°C with the Brière-2 and 10.4°C with the Kontodimas model. For  Topt, four
models resulted in negative median errors from -0.035°C with the Brière-2 model and -
0.18°C with the Shi and Wang models. The four other models resulted in positive median
errors, between 0.028°C with the Analytis model and 1.2°C with the Kontodimas model.

14

Fig.  2:  Relationship between development rate and temperature of Tecia solanivora
larval stage, with eight models. Model selection with statistical and biological criteria
resulted in  eight  models  (see table  1  for  model  names and references).  For  each
model, the fitted curve is represented. The grey area corresponds to the area between
CT10min and  CT10max,  corresponding to critical thresholds where development rate is
inferior to 10% of the maximal development rate. The vertical black line corresponds
to the temperature at which development rate takes its maximal value (Topt).



3.2.  Model selection for temperature-dependent development rate of  Tecia
solanivora larval stage
The dataset of Tecia solanivora larval stages was used to estimate parameters of 26

models  using  the  Levenberg-Marquardt  algorithm  (table  1).  Standard  errors  of
parameter estimations were important for most models (e.g.  standard errors of  CTmin

estimations varied between 1.86°C and 1735.4°C; for  CTmax, they varied from 0.01°C to
28.6°C; see table 10 in Supplementary Material 1 for a complete overview of standard
errors of model parameters) because of the small sample size (N = 14), suggesting that
parameters estimations may be biased. The model fits were sorted based on statistical
measures of goodness-of-fit. Among the 26 models, the Janisch model minimized both
the AIC and BIC (Janisch, 1932). Fifteen model fits resulted in AIC values with a difference
from the lowest value higher than ten and were therefore excluded. The eleven resulting
model  fits  revealing no anomalies  in  their  RSS and RMSE values (table  1)  were then
filtered based on biological relevance of biological traits. Because  CTmin and  CTmax could
not be computed for some models, we analyzed the values of CT10min and CT10max. Based
on observed development rates and survival at low temperatures (Crespo-Pérez et al.,
2011), the minimal temperature threshold where development rate is lower than 10% of
the maximal development rate (CT10min) should be higher than 5°C and lower than 10°C,
as  it  is  the minimal  temperature at  which  positive  values  of  development  rate  were
measured. Two models demonstrated a value lower than 5°C (the Janisch model and the
Damos model, Damos and Savopoulou-Soultani, 2012; table 1) and were discarded. The
polynomial model of degree four was also discarded as no CTmin nor CT10min values were
predictable  because  the  model  fit  predicted  an  increasing  development  rate  in
temperatures  inferior  to  10°C.  Based  on  the  statistical  and biological  filtering,  seven
models (Analytis, 1977; Kontodimas et al., 2004; Ratkowsky et al., 1983; Regniere et al.,
2012; Schoolfield et al., 1981; Taylor, 1981; Wang et al., 1982) and the polynomial model
of  degree two were proposed as potential  candidates to represent  T.  Solanivora TPC.
Those model fits differed with regard of their biological traits (fig. 2). Depending on the
model, the predicted optimal developmental temperature (Topt) for the larval stages of T.
solanivora varied between 21.4°C, for the polynomial model of degree two and the Taylor
model, and 27°C with the Schoolfield model. Except for the Schoolfield model, all  the
models estimated  Topt values between 21.4°C and 24.4°C.  CT10min varied between 6.1°C
with the Kontodimas model and 9.9°C with the Régnière model. CT10max varied between
28.1°C with the Wang model and 33.6°C with the Kontodimas model. 
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Fig.  3: Impacts  of  species  attributes  (coefficient  of  variation  of  development  times
distribution) and experimental design (number and range of temperatures, number of
individuals  per temperature)  on estimations of  biological  traits. a)  Summary of  the
different aspects of  a dataset explored in this simulation study.  b)  Distributions of
errors for each biological  trait,  in function of the CV of development times.  Outlier
values are not represented. c) Mean absolute errors (MAE) for CTmin estimations with a
CV of  development times of  10%,  in  function of  experiment  attributes  (number of
temperatures,  number  of  individuals  per  temperature  and  distribution  of
temperatures). The MAE measures the accuracy of estimations, the higher the value,
the lower the accuracy. The dotted line corresponds to a total number of individuals
equal to 500, so that points above the line correspond to a total number of individuals
greater  than  500,  and  points  below  the  line  correspond  to  a  total  number  of
individuals lower than 500. d) Same results for CTmax estimations, e) same results for
Topt estimations.



Fig.  4:  Bias  for  CTmin,  Topt and  CTmax estimated  with  eight  models,  including  seven
misspecified models.  Bias was measured with median errors for three biological traits
(CTmin, Topt and CTmax) with eight models fitted to 500 datasets simulated with CV = 10%, 15
temperatures distributed uniformly  inside the range of  theoretical  critical  thresholds,
and 500 individuals per temperature. See table 1 for model names and references.

4. Discussion
In  this  article,  we first  investigate  how species  characteristics  and experimental

design impact inference power and accuracy.  We then illustrate the whole process of
development rate model selection using a dataset on Tecia solanivora.
Model selection using statistical and biological criteria on  Tecia solanivora larval stages
led to the selection of eight models, resulting in different curves and values of biological
traits (fig. 2, table 1). This example highlights the importance of model comparison, as
eight candidate models were selected among the 26 models that were originally fitted. In
the absence of additional data, the selection could not be refined, yet the assessment of
the biological relevance of fits allowed us to discard two models that were biologically
unrealistic based on knowledge of the survival rate at low temperatures (Crespo-Pérez et
al.,  2011).  This  result  exemplifies  the  benefits  of  using  biological  criteria  for  model
selection in insect temperature-dependent development rate characterization. Because
of  the  biological  criteria  we  chose  (CTmin >  5°C),  the  best  fitting  model  according  to
statistical  criteria  (Janisch  model)  was  discarded.  This  result  suggests  that  statistical
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measures of goodness-of-fit may not be sufficient for model selection, as they could lead
to the selection of model fits that are biologically unrealistic.

Despite  this  filtering  of  model  fits  with  statistical  and biological  criteria,  several
models were validated and discrepancies in the predicted values of biological traits were
observed (table 1). Such discrepancies could have consequences on the predictions of
phenology models, depending on the chosen temperature-dependent development rate
model fit.  On the basis of  available experimental  data,  this highlights the uncertainty
concerning  T.  solanivora responses in low and high temperatures,  so that vigilance is
required  when  interpreting  the  predictions  of  phenology  models  with  low  and  high
temperatures.  Despite  high  variations  of  Topt estimated values  (from 21.4°C to  27°C),
development rate curves were similar in mid-temperatures (fig. 2), where development
rate data are less sparse. This result raises the question of whether the choice of model
is  important  when temperatures  are mild.  Yet,  additional  data  would be required to
simulate  the  development  of  individuals  in  low  and  high  temperatures,  and  a
complementary rearing experiment of  T. solanivora at different constant temperatures
could be required. This raises the question whether data obtained for simulating insects
phenology, as is the case for  T. solanirova (Crespo-Pérez et al., 2011), are adequate for
predicting the impacts of global warming, as estimating the development rate curve in
high temperatures is uncertain due to data sparsity. In addition, the standard errors of
parameter estimations were generally high, suggesting that fits were not precise. Thus,
the observed differences in the estimated values of biological traits may not be directly
interpreted.  This  result  highlights  an  uncertainty  in  the  T.  solanivora temperature-
dependent development rate. The cause of the high standard errors may be the small
sample size (N = 14), due to the use of mean development rates instead of raw individual
dataset. A dataset including individual values of the development rate may be needed for
further investigations on the T. solanivora development rate in function of temperature,
in order to estimate model  parameters more precisely.  For  the generalization of  the
procedure, here we used the AIC knowing that it can favor complex models with small
dataset. For specific cases with small datasets, the AIC corrected (AICc) could benefit to
model selection (Burnham and Anderson, 2002).

The  model  selection  process  presented  here  allows  the  characterization  of
development rate as a function of temperature. As an additional step toward developing
phenological models, diapause induction, duration and termination should be taken into
account  when  required  that  often  depends  on  day  length  (Pollard  et  al.,  2020)  and
temperature (Gray et al., 2001). As exemplified by our results on  T. solanivora, it is not
always  possible  to  determine  which  model  is  the  most  suitable,  and  several  model
adjustments may be used for development rate characterization. The use of multiple
models to forecast phenology, as seen for the prediction of species distributions (Araujo
and New, 2007), could be an interesting development for insect development rate curve
characterization  and  phenology  modeling.  The  guidelines  proposed  here  summarize
established  methods  for  model  selection  in  the  case  of  temperature-dependent
development rate. None of these methods can assess the predictive power of models,
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which  could  be  useful  for  the  evaluation  of  models  of  the  temperature-dependent
development rate, as they are mostly used for predicting development and phenology in
function of environmental temperatures. For example, cross-validation methods (Arlot
and Celisse, 2010) could be an approach for assessing the predictive power of models of
the  temperature-dependent  development  rate.  Also,  developing  tools  to  obtain
confidence intervals for biological traits values would improve their interpretation.

The impacts of experimental design on biological trait estimations were explored
using simulations of different biological and experimental scenarios. The results showed
that  accuracy  of  biological  trait  estimations  depended  on  the  variance  in  individual
development times, as well as the characteristics of the experimental design (number
and range of temperatures, and number of individuals per temperature; fig. 3). Accuracy
of biological traits estimations can be maximized by maximizing the rearing effort i.e. by
increasing the number of temperatures, the number of individuals per temperature and
the range of temperatures (fig. 3). Our results suggest that the minimal required rearing
effort to obtain low MAE values depended on the variation in development times among
individuals. In addition, our results suggest that for the same total number of individuals,
a high number of temperatures instead of a high number of individuals per temperature
result in lower values of MAE. With a low value of coefficient of variation of development
times  (CV  =  10%),  the  required  rearing  effort  to  obtain  a  MAE  lower  than  1°C  with
uniform or specific distributions of temperatures was of only 150 individuals (with 15
temperatures and 10 individuals per temperature). With 7 temperatures, the required
number of individuals per temperature to obtain equivalent MAE values was ten times
higher for a specific distribution and 50 times higher for a uniform distribution.  This
result can be explained by the fact that a high number of temperatures might allow us to
obtain  more  data  in  the  nonlinear  parts  of  the  curve,  resulting  in  a  more  accurate
characterization of the temperature-dependent development rate. However, we did not
simulate the mortality of individuals, which is generally higher in extreme temperatures
than in mid-temperatures (e.g. Rebaudo et al., 2017; Régnière et al., 2012; Zahiri et al.,
2010).  The  required  number  of  individuals  per  temperature  might  be  higher  in
experimental  conditions,  as mortality  in  extreme temperatures  can vastly  reduce the
number of individuals per temperature (e.g. in Rebaudo et al.,  2017, 49 individuals at
pupal stage survived at 30°C against 98 at 18.1°C).

Mean absolute errors of CTmin estimations were always far lower than for CTmax and
Topt estimations, which suggests that the required experimental design depends on the
pursued objectives.  If  the estimation of  CTmin is  required,  the rearing  effort  could  be
reduced: for instance, with 5 temperatures distributed uniformly and 50 individuals per
temperature,  the  mean  absolute  error  found  for  CTmin was  equal  to  0.31°C  (with  a
coefficient of  variation in development times equal to 10%).  Our results suggest that
temperatures in the nonlinear zone close to CTmin are not required in order to estimate
accurately  its  value  with  the  nonlinear  Brière-2  model  (Briere  et  al.,  1999),  as  the
distribution of temperatures in the linear zone resulted in low mean absolute errors of
CTmin (from 1.22°C to 0.1°C with CV = 10%). However,  if  CTmax and  Topt estimations are
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needed, the rearing effort can be high when the coefficient of variation in development
times is superior to 30% (at least 750 individuals with 15 temperatures and 50 individuals
per temperature). In addition, data are required in the zone where development rates
decrease (between Topt and CTmax). In the absence of data in this zone, the errors for the
estimations of CTmax and Topt could take values higher than 104°C, which suggests that the
fitting  of  nonlinear  models  in  this  case  is  not  recommended.  The  cost  of  rearing
individuals is directly related to the time necessary for insects to develop. Because at low
temperatures the development times is generally high (e.g. the mean development time
at 10°C was of 272 days in our simulations), a high effort may be necessary to obtain
data in extreme temperatures.

In the absence of mortality, a distribution of temperatures with an effort on low
and high temperatures, as suggested in Kingsolver and Buckley (2020), resulted in lower
values of mean absolute error for CTmax estimation (fig. 3). It is a consistent result, given
that this type of temperature distribution allows us to obtain more data in the nonlinear
zones of the curve, which could improve the fitting of models in extreme temperatures.
However,  because  mortality  is  usually  higher  in  extreme  temperatures  than  in  mid-
temperatures,  this  type  of  temperature  distribution might  be associated with  a  high
number of individuals per temperature, in order to compensate for the higher mortality
rate. Another limitation of our simulation study is that only one development stage is
simulated. In laboratory experiments,  individuals are raised at constant temperatures
throughout  their  development.  Mortality  during development  often leads to  a  higher
number of individuals per temperature in the first stages of development than in the last
stages (e.g., in Zahiri  et al., 2010, the experiment started with 100 eggs, and at pupal
stage  there  were  between  13  and  82  individuals  that  survived  depending  on  the
temperature). Our simulations suggest that the accuracy of the estimates of biological
traits  depended on the number of  individuals  per temperature,  so it  is  questionable
whether the fitted development rate curves of the late immature stages are generally
less accurate than those of the early stages.

For characterizing the relationship between development rate  and temperature,
our results suggest that the required rearing effort could be estimated with preliminary
experiments to identify the variance in development times. Yet, general knowledge of the
inter-individual  variations  in  development  times  among  insects  is  still  needed.  For
instance, we made the hypothesis that the coefficient of variation of development times
did not vary with temperature, yet this hypothesis still needs to be verified. A constant
coefficient  of  variation  may  not  be  a  valid  assumption,  especially  for  species  with  a
diapause  induced  by  temperature,  as  a  certain  temperature  threshold  may  induce
diapause in all  individuals (e.g. Wall,  1974; Kimberling and Miller, 1988) and lead to a
limited variance in development times, which is incompatible with a constant coefficient
of variation that implies that the variance of development times increases with mean
development time. The NLS method assumes that the residuals of a fit are distributed
normally and that their variance is homogeneous, which differ from the design we chose
for the simulations where we assumed that the duration of each stage has a constant
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coefficient of  variation.  The constant coefficient  of  variation for  the duration of  each
stage produces heteroscedasticity as the variance of development rate depends on the
temperature and the mean development rate (Shi et al. 2017c). If the NLS method may
lead  to  biased  estimations  of  model  parameters,  it  has  been  chosen  for  its  broad
acceptation  in  the  literature  while  acknowledging  its  limitations  (Shi  et  al.  2017c).  In
addition,  we  chose  a  vast  range  of  coefficients  of  variation  (10%,  30%,  50%)  in  the
absence of knowledge about inter-individual variations, and the real range of coefficient
of variation remains uncertain. Our result suggests that with a low coefficient of variation
(CV = 10%), the required rearing effort for an accurate characterization of biological traits
might be lower than what is generally achieved (e.g. a total  of  1300 individuals were
reared  in  Zahiri  et  al.,  2010;  840  individuals  were  reared  in  Rebaudo  et  al.,  2017),
provided that a high number of temperatures inside the range of critical thresholds are
tested  (fig.  3de).  However,  when  the  coefficient  of  variation  is  high  (CV  =  50%),  the
required rearing effort for an accurate characterization of CTmax and Topt can be high and
potentially  technically  impossible  to  achieve  (e.g.  with  a  uniform  distribution  of
temperatures inside the range of  critical  thresholds,  a  total  of  7500 individuals  were
required to obtain values of mean absolute errors lower than 1°C).

In  our  simulations  we  fitted  seven  alternative  models  in  order  to  estimate  the
impacts of misspecification. Depending on the biological trait and on the fitted model,
positive  and  negative  biases  were  observed  (fig.  4).  This  result  suggests  that  model
selection can be biased by experimental effort, resulting in biased values of biological
traits. The results suggest that  Topt estimation is more robust to the fitted model than
CTmin and CTmax. Bias for CTmin estimations was lower in comparison with CTmax (fig. 4), for
which median error took values close to zero for two models (Brière-2 and Analytis).
Thus,  our  results  suggest  that  the  estimation of  CTmax requires  a  significant  effort  in
experimental design to obtain unbiased estimations.

Our two analysis on simulated and experimental dataset show the importance of
sample size in the estimations of biological traits. Because the experimental dataset used
is composed of mean development rates, we could not evaluate the role of the variance
of development rate on the estimation of parameters. The simulations show that the
accuracy of estimations depends on the coefficient of variation. Both analysis suggested
that  the  estimation  of  biological  traits  (attributes  of  development  rate  thermal
performance curve) may include uncertainty. Also, the results of the simulations suggest
that the lack of  development rate data near the critical  thresholds could lead to the
observed discrepancies in estimated values of attributes of development rate thermal
performance curve.

If insect response to temperature has been studied until now mostly by assessing
lower  critical  thresholds  (Kingsolver  and  Buckley,  2020;  Stejskal  et  al.,  2019),  insect
response to high temperatures is an essential component to study development rate in
the context of global warming (Ma et al., 2021). Thus, accurate characterizations of CTmax

values  for  temperature-dependent  development  rate  are  necessary  for  a  better
understanding  of  the  influence  of  high  temperature  events  on  the  development  of
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insects  (Kingsolver  and  Buckley,  2020).  Therefore,  our  results  on  the  impact  of  the
experimental  design on the estimation of  CTmax may contribute to the study of  insect
response to climate change. In addition, our results suggest that inappropriate model
choice can lead to biased values of  biological  traits,  and thus highlight the need for
shared and standardized model selection methods.
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