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Large-scale study reveals regional fungicide applications as a major determinant of 1 

resistance evolution in the wheat pathogen Zymoseptoria tritici in France. 2 
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Phenotypes of qualitative or quantitative resistance to various fungicides were 29 

monitored annually, from 2004 to 2017, at about 70 sites throughout regions of France 30 

(territorial units of 25 000km² in average). We modelled changes in resistance 31 

frequency with regional anti-Septoria fungicide use, yield losses due to the disease and 32 

the regional area under organic wheat. 33 

• Key results: The major driver of resistance dynamics was fungicide use at the regional 34 

scale. We estimated its effect on the increase in resistance and apparent relative fitness 35 

of each resistance phenotype. The predictions of the model replicated the 36 

spatiotemporal patterns of resistance observed in field populations (R² from 0.56 to 37 

0.82).   38 

• Main conclusion: The evolution of fungicide resistance is determined at the regional 39 

scale. There is therefore a need for the collective management of resistance, at local 40 

but also non-intuitively at larger scales, which could be guided by the results of studies 41 

like this.     42 

 43 

Keywords: 44 
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 48 

1 INTRODUCTION 49 

The efficacy of pesticides and drugs has been compromised by the rapid and widespread 50 

evolution of resistance, increasing the use of pesticides and drugs to maintain control levels 51 

(Georghiou & Mellon, 1983; Russell, 2005; Gould et al., 2018). The management of resistance 52 

evolution is essential for human health, biodiversity and food security, given the rapid 53 

emergence and spread of resistance and the lack of new modes of action (MoA) (Palumbi, 54 

2001; Grimmer et al., 2014). Many studies have investigated the effects of various factors on 55 

the evolution of resistance: fitness cost (Andersson, 2003), mutation rate (Martinez & Baquero, 56 
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2000; Gressel, 2011), population size (Sisterson et al., 2004), strength of selection pressure 57 

and its mitigation in anti-resistance strategies (Oz et al., 2014; van den Bosch et al., 2014). A 58 

number of studies have advocated further studies on the relative impact of these factors on a 59 

given pest and of the interactions between these factors (Berendonk et al., 2015; Hughes & 60 

Andersson, 2015), with a view to promoting large-scale strategies (Okeke et al., 2005; 61 

Menalled et al., 2016). 62 

 63 

Several studies have shown how agricultural selection pressures affect the large-scale 64 

structure of pest populations at national scale. For instance, the national distribution of 65 

resistance varieties shapes the adaptation of pathogen populations to cultivars (Tyutyunov et 66 

al., 2008; Papaïx et al., 2011). Historical herbicide applications have been shown to drive the 67 

evolution of herbicide resistance at a national scale (Hicks et al., 2018). For fungicide 68 

resistance, theoretical studies have revealed that combining effective MoAs over time and 69 

space can delay resistance evolution (REX Consortium, 2013; van den Bosch et al., 2014) and 70 

that large-scale management strategies may differ from and interact with in-field strategies 71 

(Parnell et al., 2006). However, so far, in the absence of large-scale studies, recommendations 72 

about fungicide use mostly stem from empirical studies conducted in local field trials assessing 73 

the impact of different spraying strategies (Rosenzweig et al., 2008; Dooley et al., 2016a,b; 74 

Heick et al., 2017).  75 

 76 

The aim of this study was to highlight the determinants of fungicide resistance evolution at the 77 

national scale in France. We investigated the main potential drivers of evolution: (i) the 78 

selection pressure effect, as assessed by regional fungicide use, (ii) the genetic drift effect, 79 

which is modulated by population size (Maxwell et al., 1990; Sisterson et al., 2004), using yield 80 

losses as a proxy and (iii) the refuge effect, including the fraction of wheat fields unsprayed 81 

with fungicides over the territory (Parnell et al., 2006; Tabashnik et al., 2008), assessed by 82 

determining the area under organic wheat. Although organic areas may not be the only fields 83 

not sprayed for a given fungicide (e.g. conventional areas not using this given fungicide), they 84 
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represent at least a lower bound for refuges. 85 

 86 

We focused our analysis on Zymoseptoria tritici (formerly Septoria tritici and Mycosphaerella 87 

graminicola as teleomorph), an ascomycete responsible for septoria leaf blotch (STB) on 88 

winter wheat. Z. tritici has many features facilitating the emergence of resistance: high genome 89 

plasticity, a large population size, high genetic diversity, asexual and sexual reproduction, an 90 

ability to disperse over large distances (Zhan & McDonald, 2004; Croll & McDonald, 2012). 91 

STB is a major wheat disease that can cause yield losses of up to 50% (Ponomarenko et al., 92 

2011; Torriani et al., 2015). In western Europe, up to 70% of all fungicide use is linked to STB 93 

control (Fones & Gurr, 2015). As a result, various degrees of resistance to all authorised unisite 94 

inhibitors (i.e. exhibiting a single molecular mode of action) have been observed in France 95 

(Garnault et al., 2019).  96 

 97 

We previously published an initial analysis of the Performance trial network dataset, in which 98 

phenotypes of resistance to four fungicide MoAs were monitored annually, from 2004 to 2017, 99 

at about 70 sites throughout France (Garnault et al. 2019). We found significant differences 100 

between resistance phenotypes in terms of changes in spatial distribution and/or growth rates. 101 

Major differences in population structure and dynamics were highlighted between the north 102 

and south of France.  103 

 104 

We develop here an explanatory model for identifying the determinants of these regional 105 

spatiotemporal heterogeneities in resistance evolution according to resistance phenotype. We 106 

investigated the effect of annual fungicide use, pathogen population size and the fraction of 107 

refuges, all at the regional scale (spatial units of 25 000 squared kilometers in average). The 108 

use of the regional scale was encouraged by the fact that (i) the use of fungicide use in France 109 

was well-documented at this scale, from panel surveys, (ii) the distribution of resistance 110 

frequency data we had in France was fairly well adapted to this scale, (iii) we wanted to keep 111 

homogeneity with works published in Garnault et al. (2019). Our analysis shows that the 112 
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change in resistance frequency can be assessed at regional scale, and that the major 113 

determinant of resistance is the selection pressure exerted by fungicide applications in the 114 

preceding year. This study provides empirical results for regional resistance management, at 115 

a level intermediate between field and national recommendations. A sound understanding of 116 

resistance evolution and of its determinants would help optimizing resistance management 117 

and applying them at sound spatiotemporal scales. It should ultimately help to reduce pesticide 118 

use in agrosystems. 119 

 120 

2 MATERIALS AND METHODS 121 

2.1 Data description  122 

2.1.1 Sampling of Z. tritici populations and estimation of resistance frequency  123 

The “Performance network” is supervised by ARVALIS-Institut du Végétal and the INRAE 124 

research institute at Thiverval-Grignon. It carried out field trials on wheat throughout France 125 

between 2004 and 2017 with a mean of 70 trials annually (4 to 5 trials per region and per year, 126 

90% credible interval is 1 to 10). The frequency of resistant phenotypes in Z. tritici populations 127 

sampled annually in these trials is recorded in the associated dataset (see Garnault et al., 2019 128 

for further information).  129 

Wheat trials were carried out in a randomized block design with 3 to 4 replicates. The frequency 130 

of resistant phenotypes in population were estimated by collecting bulk pycnidiospores from 131 

30 to 40 upper leaves, that were randomly sampled within each plot and showed STB 132 

symptoms. Cropped cultivars were predominantly STB-sensitive to promote the presence of 133 

the disease, a total of 124 different wheat cultivars were cropped over the whole studied period. 134 

Phenotypes were distinguished on the basis of their germination or growth on Petri dishes 135 

containing discriminatory doses of fungicides, optimised on individual genotyped isolates (see 136 

Leroux & Walker, 2011 and Garnault et al., 2019 for more details). We then considered: (i) the 137 

phenotype displaying specific qualitative resistance to strobilurins (or QoIs; inhibitors of 138 

respiration complex III), hereafter referred to as the StrR phenotype, (ii) the group of 139 

phenotypes with moderate quantitative resistance to DMIs (sterol 14α-demethylation 140 
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inhibitors), hereafter referred to as TriMR phenotypes, (iii) the group of phenotypes with a high 141 

quantitative resistance to DMIs, hereafter referred to as TriHR phenotypes. The TriMR group 142 

encompasses the TriR6 and TriR7-TriR8 phenotypes, which were also included in the analysis 143 

(TriR6 strains were recognised on the basis of their growth on low doses of prochloraz, 144 

contrasting with the lack of growth of TriR7–TriR8 strains in these conditions; Leroux & Walker, 145 

2011).  146 

 147 

Region, year, sampling date and cultivar grown were recorded for each sample. We considered 148 

only populations from unsprayed plots for this study. Regions corresponded to administrative 149 

spatial entities (n=  22) whose mean surface was 25 000 km². French regions roughly match 150 

the agro-pedo-climatic heterogeneity of the national territory. The plots were sampled at two 151 

time points: at “S1” in April-May, at about the Z32 wheat stage (n=1320, from 2006 to 2011), 152 

and at “S2” in May-June, at about the Z39-Z55 wheat stage (n=2407, from 2004 to 2017). 153 

 154 

In this study, we focused on the phase of resistance selection. We therefore extracted from 155 

the Performance dataset the time periods during which resistance frequencies were 156 

increasing, i.e. with estimated positive national growth rates (see Garnault et al., 2019). These 157 

periods were 2004 to 2012 (n=852, 16 regions) for the StrR phenotype, 2005 to 2011 (n=754, 158 

16 regions) for the TriMR phenotype group, and 2010 to 2017 (n=360, 14 regions) for the TriHR 159 

phenotype group. We also included data from 2006 to 2017 for the TriR6 and TriR7-TriR8 160 

phenotypes (n=910 and n=851, respectively), for analysis of the spatial heterogeneity of their 161 

frequencies. The data are summarised in Table 1. 162 

 163 

2.1.2 Regional fungicide use  164 

Every year, Bayer Crop Science uses field surveys to estimate the area of wheat sprayed with 165 

fungicides containing anti-STB active ingredients (AIs) in each region of France. These data 166 

do not include information about the dose used in the application. They only provide 167 

information about the areas sprayed with the AIs concerned and the number of sprayings 168 
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(areas result from the multiplication of these two values). These areas are expressed in 169 

deployed hectares. 170 

 171 

We retained the most widely used AIs for each MoA (AIs accounting cumulatively for more 172 

than 95% of the use of the MoA), to prevent background noise from AIs with a limited impact 173 

on STB control. The model therefore included pyraclostrobin (26%), azoxystrobin (19%), 174 

trifloxystrobin (15%), kresoxim-methyl (15%), fluoxastrobin (12%) and picoxystrobin (12%) for 175 

QoIs; and epoxiconazole (30%), prochloraz (17%), tebuconazole (13%), cyproconazole (11%), 176 

prothioconazole (10%), propiconazole (7%), metconazole (7%), fluquinconazole (2%) and 177 

hexaconazole (1%) for DMIs.  178 

 179 

We took the regional heterogeneity in wheat production between regions (and, hence, in the 180 

area sprayed with fungicides) into account, by dividing the number of deployed hectares by 181 

the regional area under conventionally farmed wheat. The latter was calculated by subtracting 182 

the area under organic wheat (see section 2.1.4) from the total area under wheat (from the 183 

AGRESTE online data: agreste.agriculture.gouv.fr) for each year and region. This new variable 184 

unit was named ℎ𝑎𝐷

𝐶

 (𝐷 for deployed and 𝐶 for cropped hectares), and was proportional to the 185 

mean number of times each AI was used over a cropping season in a given region. The 186 

national trend and the regional heterogeneity of fungicide use expressed in ℎ𝑎𝐷

𝐶

 are shown for 187 

DMIs and QoIs in Fig. 1. Henceforth, this variable is denoted 𝐹𝑖𝑡𝑓, with f corresponding to the 188 

AI, t to the year and i to the region. 189 

 190 

2.1.3 Yield losses induced by STB  191 

ARVALIS-Institut du Végétal assessed annual yield loss by conducting paired plot experiments 192 

throughout France with a mean of 80 trials annually (21 observations per region and per year 193 

distributed among 3 to 4 trials, 90% credible interval is 9 to 48), from 2004 to 2017, in 20 194 

French regions (Arvalis, 2019). In each trial, we considered modalities cropped with STB-195 
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susceptible wheat cultivars, in both unsprayed plots and sprayed plots (providing maximum 196 

protection against diseases). These cultivars were moderately to highly resistant to rusts in 197 

order to attribute yield losses mainly to STB. Yield losses due to STB were calculated by 198 

subtracting the yield in the unsprayed plot from that in the sprayed plot. Based on these data, 199 

we predicted regional yield losses for each year with a linear model (fixed effects: year, region; 200 

random effects: wheat cultivar, trial). The national trend and the regional heterogeneity of yield 201 

losses, expressed in decitons per hectare, are shown in Fig. 1. This variable is denoted 𝑃𝑖𝑡 202 

hereafter, with t corresponding to the year and i to the region. 203 

 204 

2.1.4 Proportion of the total area under wheat farmed organically  205 

The area under organically farmed wheat crops was recorded by AgenceBIO (the French 206 

national platform for the promotion and development of organic farming) and ARVALIS-Institut 207 

du Végétal. We collected regional data from 2007 onwards, and national data from 2004 208 

onwards. The regional areas under organic wheat between 2004 and 2006 were assessed 209 

from the observed mean proportions of the regional area under organic wheat in subsequent 210 

years and from national data for 2004 to 2006. We used the regional proportion of wheat under 211 

organic farming in our models. This proportion was calculated by dividing the regional area 212 

under organic wheat by the total area under wheat in the same region, based on AGRESTE 213 

online data. The national trend and the regional heterogeneity of the area under organic wheat, 214 

expressed in hectares, are shown in Fig. 1. This variable is denoted 𝑅𝑖𝑡 hereafter, with t 215 

corresponding to the year and i to the region. 216 

 217 

2.2 Statistical modelling 218 

We modelled the change in frequency for each resistance phenotype in French populations. 219 

The model took into account (i) the different phases of resistance dynamics (see below), (ii) 220 

the effects of previously described potential regional determinants and finally (iii) variability due 221 

to the sampling design (sampling date and wheat cultivar).  222 

  223 
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Phases in resistance dynamics. We distinguished three phases in resistance dynamics: “no 224 

resistance” (frequency equal to 0), “resistance selection” and “generalized resistance” 225 

(frequency equal to 100). During the “resistance selection” phase, observations were modelled 226 

with binomial random variables with a sample size of 100 (mean number of observed spores 227 

used to determine frequencies). The probabilities that a population was in the “no resistance”, 228 

“generalized resistance” or “resistance selection” phase depended on the year t. These 229 

probabilities were referred as 𝜋0𝑡, 𝜋100𝑡 and (1 − 𝜋0𝑡 − 𝜋100𝑡), respectively. Thus, 𝑌𝑖𝑡𝑗𝑘𝑛, the 230 

nth frequency observed in region i, in year t, on cultivar j and at sampling date k followed a 231 

zero-and-one inflated binomial distribution (Eqn 1). 232 

 233 

Eqn 1 234 

𝑌𝑖𝑡𝑗𝑘𝑛 {

= 0                                                   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋0𝑡

  ~ ℬ(100, 𝑝𝑖𝑡𝑗𝑘𝑛)      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜋0𝑡 − 𝜋100𝑡

= 100                                          𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋100𝑡

 235 

 236 

Resistance evolution. Using a logit transformation (Eqn 2), the proportion 𝑝𝑖𝑡𝑗𝑘𝑛 of resistant 237 

phenotypes during resistance evolution was modelled by the regional dynamics 𝐷𝑖𝑡 and the 238 

variability due to sampling design 𝜁𝑖𝑡𝑗𝑘𝑛. 239 

 240 

Eqn 2 241 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡𝑗𝑘𝑛) = 𝑙𝑛 (
𝑝𝑖𝑡𝑗𝑘𝑛

1 − 𝑝𝑖𝑡𝑗𝑘𝑛
) = 𝐷𝑖𝑡 + 𝜁𝑖𝑡𝑗𝑘𝑛 242 

 243 

Regional dynamics. The change in resistance frequencies depended on regional-scale 244 

variables: fungicide use, yield losses and areas under organic farming. The regional dynamics 245 

𝐷𝑖(𝑡+1) in region i at year t+1 was obtained by adding the regional dynamics of the previous 246 

year 𝐷𝑖𝑡 to the additive effects of fungicide use 𝜙𝑖𝑡, yield loss 𝜌𝑃𝑖𝑡 and wheat area under organic 247 

farming 𝜅𝑅𝑖𝑡 in year t (Eqn 3). 𝐷𝑖1 is related to the logit of the initial resistance frequency in 248 
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region i. We kept values for the fungicide uses and areas under organic wheat raw (i.e. neither 249 

centered nor reduced), while we centered values for the yield losses. Thus, the parameter β 250 

corresponds to a continuous shift in resistance frequency in absence of fungicide and refuges 251 

with an average population size. This parameter will be interpreted as an apparent fitness 252 

penalty if estimated negative, and as an apparent fitness advantage otherwise. 253 

 254 

Eqn 3 255 

𝐷𝑖(𝑡+1) = 𝐷𝑖𝑡 + 𝛽 + 𝜙𝑖𝑡 + 𝜌𝑃𝑖𝑡 + 𝜅𝑅𝑖𝑡       𝑤𝑖𝑡ℎ 𝑡 ≥ 1   256 

  257 

We derived two models from Eqn 3: one in which the use of fungicides is specified for each AI 258 

within MoAs, and another in which only the global use of each MoA (i.e. sum of AIs uses) is 259 

considered.  260 

 261 

In the first model, MAI, the term 𝜙𝑖𝑡 from Eqn 3 was defined as in Eqn 4: 262 

 263 

Eqn 4 264 

𝜙𝑖𝑡 = ∑ 𝜈𝑓𝐹𝑖𝑡𝑓

𝑓∈ℱ

 265 

 266 

𝐹𝑖𝑡𝑓  corresponds to the fungicide use for a specific AI f, in region i and year t (see section 2.1.2). 267 

The set ℱ included all AIs in a specific class associated with considered resistance: QoIs for 268 

the StrR phenotype, DMIs for the TriR phenotypes. We assumed that fungicide use positively 269 

selected resistant phenotypes over susceptible or less sensitive phenotypes. Thus, the 270 

parameters associated with fungicide use were, by definition, positive (i.e. 𝜈𝑓 ≥ 0), except for 271 

the TriR6 and TriR7-TriR8 phenotypes, which were not the most DMI-resistant phenotypes 272 

over their study period.  273 

 274 
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In the second model, MMoA, we considered: 𝐹𝑖𝑡. = ∑ 𝐹𝑖𝑡𝑓𝑓∈ℱ , the regional use of a given MoA. 275 

The term 𝜙𝑖𝑡 from Eqn 3 was simplified and written: 𝜙𝑖𝑡 = 𝜈 ∗ 𝐹𝑖𝑡. This model was run only for 276 

the StrR, TriMR and TriHR phenotypes, with, as above, the constraint 𝜈 ≥ 0. 277 

 278 

Observation variability. The variability 𝜁𝑖𝑡𝑘𝑙𝑛 of observations in Eqn 2 was modelled with a 279 

mixed model (Equation 5). 280 

 281 

Equation 5 282 

𝜁𝑖𝑡𝑗𝑘𝑛 = 𝛾𝑗 + 𝛿𝑘 + 𝜀𝑖𝑡𝑗𝑘𝑛  283 

 284 

The parameter 𝛾𝑗 corresponds to the random effect of the 124 wheat cultivars (𝛾𝑗 drawn from 285 

a centered Gaussian distribution with standard deviation 𝜎𝛾). The parameter 𝛿𝑘 is the fixed 286 

effect of sampling date k (i.e. “S1” or “S2”, see section 2.1.1, with contrast 𝛿𝑆2 = 0). Finally, 287 

𝜀𝑖𝑡𝑗𝑘𝑛 is the overdispersion, modelled as a random individual effect with a mean of 0 and a 288 

standard deviation of 𝜎. 289 

 290 

2.3 Parameter expression  291 

The explanatory variables had different units (e.g. proportion of wheat under organic farming 292 

vs. fungicide use). Moreover, the interpretation of the parameters of the zero-one-inflated 293 

logistic regression was not straightforward. We simplified the interpretation, by defining the 294 

expected frequency difference (EFD) for each variable and phenotype. The EFD described the 295 

frequency shift due to the mean value of this variable over a population with the mean 296 

resistance frequency (i.e. the difference between 𝑝𝑒, the expected frequency, and 𝑝̅, the mean 297 

frequency of the resistance phenotype in the data). The expected frequency was computed 298 

with: 299 

• for 𝜈𝑓, the effect of fungicide use: 𝑙𝑜𝑔𝑖𝑡 (𝑝𝜈𝑓
𝑒 ) =  𝑙𝑜𝑔𝑖𝑡(𝑝̅) + 𝜈̂𝑓𝐹̅𝑓, where 𝐹̅𝑓 is the mean 300 

annual use of fungicide f over all regions, and 𝜈̂𝑓 is the estimate of 𝜈𝑓; 301 



12 

 

• for 𝛽, the effect of constant growth: 𝑙𝑜𝑔𝑖𝑡(𝑝𝛽
𝑒 ) =  𝑙𝑜𝑔𝑖𝑡(𝑝̅) + 𝛽̂; 302 

• for 𝜌, the effect of yield losses due to STB: 𝑙𝑜𝑔𝑖𝑡(𝑝𝜌
𝑒) =  𝑙𝑜𝑔𝑖𝑡(𝑝̅) + 𝜌̂𝑃̅; 303 

• for 𝜅, the effect of the area of wheat under organic farming: 𝑙𝑜𝑔𝑖𝑡(𝑝𝜅
𝑒) =  𝑙𝑜𝑔𝑖𝑡(𝑝̅) + 𝜅̂𝑅̅; 304 

• for 𝛿, the effect of sampling date: 𝑙𝑜𝑔𝑖𝑡(𝑝δ
𝑒) =  𝑙𝑜𝑔𝑖𝑡(𝑝̅) + δ̂𝑇0; 305 

• for 𝜎𝛾, the standard deviation from the cultivar effect : 𝑙𝑜𝑔𝑖𝑡 (𝑝σγ
𝑒 ) =  𝑙𝑜𝑔𝑖𝑡(𝑝̅) ± σ̂γ. 306 

The expected frequency difference was then calculated as 𝐸𝐹𝐷 = (𝑝𝑒  −  𝑝̅) ∗ 100. 307 

 308 

2.4 Bayesian analysis 309 

Statistical analyses were performed with R software (R Development Core Team, 2008), in a 310 

Bayesian framework, with the rjags package (Plummer, 2013). 311 

 312 

Prior and posterior densities. Non-informative prior distributions were used (Supporting 313 

Information, Eqn S1). Posterior distributions were estimated by Monte Carlo-Markov chain 314 

(MCMC) methods. Five MCMC chains were run, over 1 000 000 iterations, with a burn-in of 315 

100 000 and a thinning every 1 000 for the variable selection phase (see the following section), 316 

followed by 500 000 iterations with a burn-in of 50 000 and a thinning every 500 for the final 317 

parameter estimation. Convergence was assessed with the Gelman and Rubin 𝑅̂ statistic 318 

(Gelman et al., 2004). Credible intervals of the highest posterior density were calculated from 319 

posterior densities with the HDI package (Dezeure et al., 2015). Parameter estimates were 320 

considered significant at the 5% level (or the 2.5% or 0.1% level), if their 95% credible interval 321 

(97.5% and 99.9%, respectively) did not contain the 0 value. 322 

 323 

Variable selection. We used a selection procedure to identify the relevant variables in each 324 

model for each resistance phenotype. We used a method based on indicator variables (Kuo & 325 

Mallick, 1998), in which each predictor was multiplied by a dummy variable with a prior 326 

distribution corresponding to a Bernoulli distribution with parameter 𝑝 = 0.5. A predictor was 327 

retained in the model if the posterior expectation of its indicator variable was greater than 0.75 328 
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(thus, greater than its prior expectation of 0.5).  329 

 330 

Predictive check. We assessed the fit of the model to the data by posterior predictive checks 331 

(Gelman et al., 2004). Replicated data (𝑦𝑖𝑡𝑗𝑘𝑛
𝑟𝑒𝑝

) generated during the MCMC algorithm from the 332 

model posterior densities were compared to observed data (𝑦𝑖𝑡𝑗𝑘𝑛). The mean value of 333 

𝑃𝑃𝑖𝑡𝑗𝑘𝑛
𝑐ℎ𝑒𝑐𝑘 = 𝑃(𝑦𝑖𝑡𝑗𝑘𝑛 − 𝑦𝑖𝑡𝑗𝑘𝑛

𝑟𝑒𝑝
< 0 | 𝑌), where 𝑌 is the vector of observations, was calculated and 334 

denoted 𝑃𝑃𝑐ℎ𝑒𝑐𝑘. This value indicated the goodness of fit of the model, with a good fit 335 

corresponding at 𝑃𝑃𝑐ℎ𝑒𝑐𝑘 = 0.5, i.e. with equal probabilities of over- and under-estimation 336 

 337 

Variable weight. We assessed the influence of each explanatory variable 𝜃 by calculating its 338 

weight (𝑊𝜃). The weight 𝑊𝜃 was defined as the ratio of 𝑅𝑆𝑆𝑓𝑢𝑙𝑙−𝜃 to 𝑅𝑆𝑆𝑓𝑢𝑙𝑙, where 𝑅𝑆𝑆𝑓𝑢𝑙𝑙 and 339 

𝑅𝑆𝑆𝑓𝑢𝑙𝑙−𝜃 are the residual sums of squares of the full model (i.e. including all the explanatory 340 

variables selected by the variable selection procedure) and of this same model but without the 341 

explanatory variable 𝜃, respectively. 𝑅𝑆𝑆 should be minimal for the full model, so removing an 342 

explanatory variable should increase 𝑅𝑆𝑆: the more information 𝜃 contributes, the greater the 343 

increase in 𝑅𝑆𝑆 and the higher the value of 𝑊𝜃. Conversely, if the information provided by 𝜃 is 344 

negligible, 𝑅𝑆𝑆 is unaffected and 𝑊𝜃 is minimal (i.e. close to 1). In the result tables, we have 345 

calculated the relative weights by dividing individual variable weights by the sum of the weights 346 

of all variables. 347 

 348 

Model comparison. For comparison of the MAI and MMoA models, we calculated the deviance 349 

information criterion, DIC (Plummer, 2013), and the coefficient of determination, 𝑅2. 350 

 351 

Predicted data. We computed predictions of the resistance frequencies for each phenotype 352 

for a given region I, and a given year T (Equation 6). 353 

 354 
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Equation 6 355 

𝑌̂ = [1 − (𝜋̂0𝑇 + 𝜋̂100𝑇)]  ∗  𝑙𝑜𝑔𝑖𝑡−1[𝐷̂𝐼1 + 𝛽̂(𝑇 − 1) + ∑ (𝜌̂𝑃𝐼𝑡 + 𝜅̂𝑅𝐼𝑡 + ∑ 𝜈̂𝑓𝐹𝐼𝑡𝑓𝑓∈ℱ )𝑇−1
𝑡=1 ]  +  𝜋̂100𝑇  356 

 357 

where parameter-hat are parameter estimates (i.e. their posterior mean). We therefore built 358 

maps of resistance status, for known initial frequencies, use of fungicides, yield losses and 359 

areas under organic wheat, from year 1 to year T-1 in region I. 𝑌̂ are then multiplied by 100 to 360 

recover the initial frequency scale. These predicted data included the effect of inflation 361 

parameters 𝜋̂0𝑇 and 𝜋̂100𝑇. 362 

 363 

3 RESULTS 364 

3.1 Overview of model fits 365 

The convergence of the MCMC chain was satisfactory for all models (i.e. the Gelman and 366 

Rubin indicator 𝑅̂ was below 1.1 for all parameters, in all models) and model fit was good 367 

(𝑃𝑃𝑐ℎ𝑒𝑐𝑘 always between 0.498 and 0.511). 368 

 369 

After the selection procedure, no effect was retained for the following models: MAI for the TriHR 370 

resistance phenotype, and MMoA for the TriMR and the TriHR groups of resistance phenotypes. 371 

Thus, the effects of fungicide use, yield losses, and areas of wheat under organic farming were 372 

not significant in these models. The only remaining parameter was the growth constant 373 

(already studied in Garnault et al., 2019). As all estimates of the parameters of interest were 374 

equal to 0, we do not discuss the results of these models, and they do not appear in the result 375 

tables.  376 

 377 

Finally, with Spearman’s method, a few significant correlations were found between some AI 378 

uses (𝐹𝑖𝑡𝑓) in model inputs, but no significant correlation between estimates (𝜈̂𝑓) was found in 379 

model outputs (Supporting Information, Fig. S1). 380 

 381 



15 

 

3.2 Ranking of variable weight 382 

Regional fungicide use appeared to be the major factor driving resistance evolution. In the MAI 383 

models, which explicitly considered each AI, regional fungicide uses systematically had the 384 

highest relative weight. For the StrR and TriMR phenotypes, it accounted for 87.4% and 72.6%, 385 

respectively. It accounted for 53.1% and 43.3% for the TriR6 and TriR7-TriR8 phenotypes, 386 

respectively (Table 2).  For the MMoA models, fungicide use, considered as the sum of AI uses 387 

within the same MoA, was also the major determinant of the StrR phenotype (associated with 388 

qualitative resistance to QoIs), accounting for 79.4% of the sum of variable weights (Table 3). 389 

For the TriMR and TriHR groups of phenotypes, no explanatory variables were selected for 390 

the MMoA models. 391 

 392 

The growth constant was also a major parameter, albeit to a lesser extent. In MAI models, the 393 

weight of the growth constant was lower than that of regional fungicide use by a factor of 5.7 394 

times for TriMR phenotypes, 1.32 for the TriR6 phenotype, and 1.08 for the TriR7-TriR8 395 

phenotypes (Table 2). For the StrR phenotype, the growth constant ranked third, with a weight 396 

lower than that of fungicide use by a factor of almost 20, for both models (Tables 2 and 3). 397 

 398 

The proportion of the area under wheat farmed organically had a high relative weight for the 399 

StrR and TriMR phenotypes, but was not selected for the TriR6 and TriR7-TriR8 phenotypes. 400 

For the StrR phenotype, its effect was ranked second on the basis of relative weight, at 14.6% 401 

and 6.8% in the MMoA and the MAI models, respectively (Tables 2 and 3). For TriMR phenotypes, 402 

the relative weight of the wheat area under organic farming was about 13.3%, a value very 403 

similar to that for the growth constant (Table 2). Yield loss was systematically excluded during 404 

the selection procedure, for all models and all phenotypes.  405 

Sampling data and wheat cultivar, variables reflecting local variability in trials, had only a low 406 

relative weight in models, with values always below 5%, except for the wheat cultivar variable 407 

for the TriR7-TriR8 phenotype, for which the value was 13.4% (Table 2).  408 

 409 
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3.3 Effect of variables at the regional scale 410 

3.3.1 Regional fungicide use 411 

For the StrR phenotype, in the MMoA model, the effect of the overall use of QoI fungicides was 412 

highly significant (𝜈 = 1.07, P < 0.001) and the expected frequency difference (EFD) was 413 

estimated at 6.64%. Thus, an average use of QoIs would have led to an increase of 6.64 414 

frequency point on an average population that would already be composed by 76% of StrR 415 

phenotype (Table 3). 416 

 417 

In the MAI model, two fungicides from the six QoI AIs were selected: kresoxim-methyl and 418 

pyraclostrobin. Their EFDs were similar: 4.26% (𝜈 = 0.7, P < 0.001) and 3.29% (𝜈 = 0.5, P < 419 

0.025), respectively (Table 2). The MMoA and MAI models also had similar adequacies to data, 420 

according to their DIC (3480.2 and 3468.8 respectively) and 𝑅2 values (0.82 and 0.81, 421 

respectively).  422 

 423 

For TriMR phenotypes, the effect of DMI use was estimated only in the MAI model, as no 424 

explanatory variable was selected in the MMoA model. One AI of the nine DMI fungicides was 425 

selected: epoxiconazole (𝜈 = 0.56, P < 0.025) with an estimated positive EFD of 4.82% (Table 426 

2).   427 

 428 

As the TriR6 and TriR7-TriR8 phenotypes were not the most resistant to DMI over the study 429 

period, the effect of fungicide use was not constrained to be null or positive, and was estimated 430 

only in the MAI model. For the TriR6 phenotype, three AIs from the nine DMI fungicides were 431 

selected: prochloraz, with a positive EFD of 4.73% (𝜈 = 0.85, P < 0.001), propiconazole with a 432 

negative EFD of -2.48% (𝜈 = -0.43, P < 0.025) and tebuconazole with a negative EFD of -433 

8.38% (𝜈 = -1.04, P < 0.001). Thus, prochloraz use increased the frequency of TriR6, whereas 434 

tebuconazole counterselected TriR6 strains. For the TriR7-TriR8 phenotype, three AIs from 435 

the nine DMI fungicides were selected: cyproconazole and tebuconazole, with positive EFDs 436 

of 2.6% (𝜈 = 0.58, P < 0.025) at 2.38% (𝜈 = 0.44, P < 0.05), respectively, and prochloraz, with 437 
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a negative EFD of -3.99% (𝜈 = -1.17, P < 0.001). Prochloraz and tebuconazole clearly had 438 

opposite selection effects on TriR6 and TriR7-TriR8 phenotypes.  439 

 440 

3.3.2 Growth constant   441 

The growth constant EFD quantified the change in resistance in the absence of regional 442 

fungicide use and unsprayed refuges, for a mean potential yield loss. It therefore represented 443 

the relative apparent fitness (referred to hereafter simply as fitness) of the resistant phenotype 444 

considered (i.e. how much faster the resistant phenotype would grew compared to the rest of 445 

the population (Hartl & Clark, 1997) in a year without fungicide treatment). A negative growth 446 

constant indicates a fitness cost, whereas a positive growth constant indicates a fitness gain. 447 

For the StrR phenotype, the growth constant provided an indication of the fitness of the 448 

resistant strains relative to the sensitive strains. The estimated fitness costs for this phenotype 449 

were similar in the MAI (-3.74%; 𝛽 = -0.2, P < 0.05; Table 2) and MMoA (-3.23%; 𝛽 = -0.17, not 450 

significant; Table 3) models. DMIs selected a large diversity of phenotypes (TriLR, TriMR and 451 

TriHR groups), and no sensitive strains were detected during the study period. For TriMR 452 

phenotypes, the model was estimated with data from 2007 to 2011, when the frequency of the 453 

TriHR phenotype was still negligible (Fig. 1). Thus, the growth constant for TriMR phenotypes 454 

mostly compared their fitness with that of TriLR phenotypes. It was estimated at -3.94%, of 455 

borderline significance (𝛽 = -0.2, P < 0.1), and was associated with a relative weight of 12.7% 456 

(Table 2). The TriMR group included the TriR6 and TriR7-TriR8 phenotypes. For the TriR6 and 457 

TriR7-TriR8 strains, the model was estimated with data from 2006 to 2017. However, the TriHR 458 

phenotype has been non-negligible since 2014 (Figure 1). Thus, the growth constant for TriR6 459 

strains compared their fitness with that of all the other phenotypes in the population: TriLR, 460 

TriR7-TriR8 and TriHR. The TriR6 growth constant was estimated at 3.58% (𝛽 = 0.15, P < 461 

0.025; Table 2). This result may reflect a balance between a fitness cost of TriR6 relative to 462 

TriLR and TriR7-TriR8 strains, and a fitness gain relative to the TriHR phenotype. This rationale 463 

also applies to the apparent fitness gain of TriR7-TriR8, estimated at +1.63% (𝛽 = 0.09, P < 464 

0.1; Table 2). 465 
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 466 

3.3.3 Wheat area under organic farming 467 

The proportion of the area under wheat management by organic farming methods increased 468 

resistance frequency, with an EFD estimated at 3.95% and 3.26% in the MMoA and MAI models, 469 

respectively, for the StrR phenotype (𝜅 = 0.78 and 0.64, P < 0.001; Tables 2 and 3), and at 470 

2.52% for the TriMR phenotype in the MAI model (𝜅 = 0.37, P < 0.001; Table 2). This variable 471 

was not selected for the TriR6 and TriR7-TriR8 phenotypes. 472 

 473 

3.3.4 Yield losses  474 

The selection procedure did not retain the yield loss variable in any of the models. 475 

 476 

3.4 Prediction maps 477 

We mapped the predicted resistance frequencies for each year and for all phenotypes. Our 478 

maps predicting StrR phenotype dynamics were mostly based on regional QoI fungicide use 479 

and, to a lesser extent, the area under organic wheat, as explanatory variables (Fig. 2). 480 

Predictions mimicked the spatial propagation from the north to the south of France observed 481 

between 2004 and 2011 (as described by Garnault et al., 2019). Based on regional DMI use, 482 

our model accurately predicted (Fig. 3) the observed spatial partitioning of TriR6 strains, which 483 

were found mostly in the north east of France, and TriR7-TriR8 phenotypes, which were mostly 484 

localised in the south west (as described by Garnault et al., 2019). 485 

 486 

4 DISCUSSION 487 

In this study, we developed a model for identifying the determinants of fungicide resistance 488 

evolution at the regional scale. The candidate explanatory variables were regional fungicide 489 

use, pathogen population size (approximated by potential yield losses) and the fraction of 490 

refuges (approximated by the fraction of fields under organic wheat in a region). We analysed 491 

resistance frequencies in Z. tritici populations on winter wheat. Frequencies were monitored 492 

by the Performance trial network over the national territory of French (2004–2017; ∼70 493 
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locations each year). We studied resistance against fungicides with two modes of action: QoIs, 494 

associated with qualitative resistance (StrR phenotype), and DMIs, associated with 495 

quantitative resistance (a continuum of multiple resistance phenotypes forming three main 496 

groups: TriLR, TriMR and TriHR, with low, medium and high levels of resistance to DMIs, 497 

respectively). The TriMR phenotypes encompassed two phenotypes: TriR6 and TriR7-TriR8. 498 

 499 

The regional use of fungicides is the main driver of resistance evolution at the plot scale 500 

We demonstrated that regional fungicide use was a major determinant of the evolution of 501 

resistance. Fungicide use data at regional level, without taking into account the use of 502 

particular fungicides in particular fields, was sufficiently informative to explain resistance 503 

dynamics. Fungicide selection is, therefore, a large-scale process, and an understanding of 504 

the evolution of fungicide resistance requires consideration of the regional use of these 505 

compounds. 506 

 507 

For qualitative resistance (e.g. StrR phenotype), the global use of a MoA (i.e. summed uses of 508 

the AIs of this MoA), can be considered as a good predictor of resistance evolution and 509 

distinguishing the effects of individual AIs within the MoA did not improve the fit of the model. 510 

By contrast, for quantitative resistance, it appeared to be necessary to consider each AI within 511 

the MoA separately, as they may select for different phenotypes (e.g. antagonist effects of 512 

prochloraz, tebuconazole on TriR phenotypes). 513 

 514 

The AIs selected by the model were consistent with the history of fungicide use and/or with the 515 

patterns of cross-resistance described for some phenotypes. For instance, kresoxim-methyl 516 

was one of the first QoIs authorised in France (commercialised in 1997, www.ephy.anses.fr) 517 

and was selected to explain the evolution of StrR strains, whereas more recent QoIs were not. 518 

The fungicides most used over the study period (i.e. epoxiconazole for DMIs, pyraclostrobin 519 

and kresoxim-methyl for QoIs; Supporting Information, Fig. S2-S3), were also selected in 520 

models. The large-scale effect of AIs was also linked to the cross-resistance pattern of the 521 
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phenotypes. The estimated selection effect of epoxiconazole was consistent with resistance 522 

factors (RFs) of TriMR phenotypes to epoxiconazole, being higher than those of TriLR 523 

phenotypes which were the second most frequent resistance phenotype during this period 524 

(RFs described in Supporting Information, Table S1 from Leroux & Walker, 2011). The 525 

selection for TriR6 and counterselection for TriR7-TriR8 strains induced by the prochloraz were 526 

consistent with RFs (6.7 and <1.5, respectively), as well as the effect of counterselection for 527 

TriR6 and selection for TriR7-TriR8 strains by tebuconazole (RF=74 and 91, respectively for 528 

TriR6 and TriR8 strains, TriR7 strains being unfrequent (Huf et al., 2018)). Propiconazole and 529 

cyproconazole were often used together as a mixture, so were strongly correlated (Supporting 530 

Information, Fig. S1). The effects of counterselection for TriR6 strains by propiconazole and of 531 

selection for TriR7-TriR8 by cyproconazole may indicate that their mixture globally promoted 532 

the selection of TriR7-TriR8 strains over TriR6 strains. Again, this is consistent with RFs to 533 

propiconazole (35 and 54, respectively for TriR6 and TriR8 strains) and to cyproconazole (11 534 

and 13, respectively). These findings also confirm that the laboratory characterisation of strains 535 

can be good predictor of resistance evolution in the field, if properly used, as reported by Blake 536 

et al. (2018). 537 

 538 

Our findings highlight the importance of defining precise resistance profile phenotypes. Indeed, 539 

the model fitted slightly better the frequencies on more homogeneous phenotypes (𝑅2 = 0.48 540 

for TriMR vs. 0.56  for TriR6 and TriR7-TriR8 phenotypes). In addition, no significant effect of 541 

the different DMIs was found for the TriHR phenotype group. Indeed, TriHR strains encompass 542 

multiple heterogeneous phenotypes, resulting from combinations of target alteration, target 543 

overexpression and enhanced efflux, as resistance mechanisms  (Leroux & Walker, 2011; Huf 544 

et al., 2018). The tremendous diversity and redundancy of phenotypes observed in the field, 545 

especially for TriHR strains, making it possible to classify strains only approximately. There is 546 

therefore a need to develop molecular tools for quantifying genotypes rather than phenotypes. 547 

Multi-trait high-throughput genotyping provides a more accurate resistance frequency, and 548 

should ultimately lead to improvements in our ability to predict resistance evolution. 549 
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 550 

The proportion of the wheat area under organic farming may be still too limited to 551 

mitigate the evolution of resistance via a refuge effect   552 

Wheat areas managed under organic farming systems are not treated with synthetic 553 

fungicides. They represent a lower bound of the surfaces that are not sprayed for a given MoA, 554 

as some conventional field may also be not sprayed with the considered MoA (which is more 555 

true for QoIs and SDHIs, than for DMIs as they are quasi-systematic fungicides in conventional 556 

wheat farming). Organic areas could act as refuges for “wild” susceptible or less resistant 557 

individuals, which may reproduce, delaying the evolution of resistance by a dilution effect in 558 

mobile species (Gould, 2000). But refuges may also provide a heterogeneous environment, 559 

promoting sink-source dynamics: selection-free wheat areas acting as a source of susceptible 560 

strains that migrate towards areas farmed conventionally. These opposite effects have been 561 

described in studies of the resistance to transgenic crops expressing Bacillus thuringiensis (Bt) 562 

toxins, where non-Bt crops may act as refuges diluting the selection (Huang et al., 2011), or 563 

promoting the evolution of resistance (Caprio, 2001). 564 

 565 

The refuge effect for Z. tritici is, theoretically, weak due to the haploid nature of this organism 566 

(Shaw, 2009), but this has never been studied experimentally. We did not validate the 567 

beneficial effect of refuges, approximated by the area under wheat farmed organically. On the 568 

contrary, we estimated that the selection of StrR and TriMR phenotypes would increase with 569 

wheat areas under organic farming.  However, the weight of this explanatory variable remained 570 

much lower than that for regional fungicide use. This effect was not found significant for the 571 

other phenotypes. 572 

 573 

According to Huang et al. (2011), three conditions must be satisfied for refuge strategies to be 574 

successful: selection at “high dose”, a very low initial frequency of resistance, and sufficient 575 

refuge areas located nearby. In our study, initial frequencies of resistance (i.e. at the very 576 

beginning of our study) were already quite high (up to 85% in some regions, Fig. 1). In addition, 577 
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the area under organic farming may still be too small within the landscape (generally less than 578 

1% until 2010). Nevertheless, since the 2010s, the proportion of wheat under organic farming 579 

has steadily increased (Fig. 1). The effect of the area under organic wheat may become 580 

detectable in those areas, and should be investigated further, particularly for emerging 581 

resistance phenotypes. 582 

 583 

The growth constant reveals a fitness penalty of resistant phenotypes 584 

The growth constant represents the evolution of resistant phenotypes in the absence of 585 

fungicide treatment. It represents the apparent fitness of the phenotype relative to that of the 586 

susceptible phenotype (or other resistant phenotypes, in the case of quantitative resistance). 587 

The term “apparent” is used because this quantification takes place in current crop conditions. 588 

The fitness cost of resistance to drugs is known to be a key parameter driving effective anti-589 

resistance strategies (Andersson & Hughes, 2010; Melnyk et al., 2015; Mikaberidze & 590 

McDonald, 2015). If there is no fitness cost, regardless of the strategy used, it will always result 591 

in the irreversible selection of resistance. However, it remains difficult to infer the global fitness 592 

cost of a mutation throughout the entire life cycle of a pathogen (Hollomon, 2015). 593 

 594 

We inferred an apparent relative fitness penalty for StrR phenotypes, resulting in an annual 595 

decrease of 3.74%. This was consistent with the fitness cost described by Hagerty & Mundt 596 

(2016) using virulence comparison tests. The impact of cyp51 alterations, leading to TriR 597 

phenotypes, on fitness is often evoked to explain the evolution of azole resistance in Z. tritici 598 

populations (Cools et al., 2013; Blake et al., 2018) but it has not been quantified as yet. Our 599 

model is consistent with these assumptions as it also inferred an apparent fitness penalty for 600 

the TriMR group (-3.94% per year). Decreases in the use of QoI and DMI fungicides, and/or 601 

the implementation of strategies favouring the expression of a resistance cost, may help to 602 

slow the evolution of resistance. From our estimates, we can extrapolate a theoretical 603 

equilibrium between resistance cost and selection, which could have led to a null growth of the 604 

StrR and TriMR phenotypes by reducing by 50% the use of QoIs and 18% for DMIs. 605 
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 606 

For the TriR6 and TriR7-TriR8 phenotypes, the growth constant is an integrative value, as 607 

these phenotypes were studied alongside more susceptible phenotypes (TriLR before 2010) 608 

and more resistant phenotypes (TriHR after 2010). The positive growth constants we estimated 609 

for these two phenotypes may indicate a fitness benefit of TriMR relative to TriLR phenotypes 610 

and/or fitness cost of TriHR (i.e. also fitness benefit of TriMR relative to TriHR phenotypes). 611 

Our model could be extended to determine the relative fitnesses of each phenotype in cases 612 

of quantitative resistance. The global informative indicator provided by our model could be 613 

used to guide the design of optimal large-scale fungicide deployment strategies.  614 

 615 

The yield losses caused by STB do not affect resistance evolution 616 

Population size, a major parameter in population adaptation (Good et al., 2012), is generally 617 

positively correlated with resistance evolution (Weber & Diggins, 1990; Anderson, 2005; zur 618 

Wiesch et al., 2011). Indeed, a large population size increases the number of mutants 619 

generated and decreases genetic drift (Linde et al., 2002). We inferred this effect using 620 

potential yield losses caused by STB as a proxy, but no significant effect was detected for any 621 

resistance phenotype. Population size may not be limiting for resistance evolution in Z. tritici , 622 

since even in low abundance year the number of individuals remains colossal (Zhan et al., 623 

2001; Mikaberidze et al., 2017), particularly when considering large scales. Population size 624 

may not be described accurately enough as our proxy variable also depends on the timing of 625 

infection (Shaw & Royle, 1993) and on stubble management (McDonald & Mundt, 2016).  626 

 627 

Predicting resistance evolution over years 628 

Prediction maps can be computed from our model, using only the initial regional frequencies 629 

of the resistant phenotypes, the history of fungicide use (between the initial year and the year 630 

to be predicted) and the history of area under organic farming. Predictions for the StrR 631 

phenotype from 2004 to 2011 highlighted the same colonisation front structure from the North 632 

to the South of France (Fig. 2) as reported by Garnault et al. (2019) albeit the regions are 633 



24 

 

assumed to be fully independent. Besides, the way StrR propagated from North to South, may 634 

indicates that integrating regional interdependencies in the model would improve its 635 

performance. However, this would require a much more complex model and more data to 636 

estimate these flux. Predictions for the TriR6 and TriR7-TriR8 phenotypes also yielded stable 637 

spatial distributions between North-East and South-West France (Fig. 3), as previously 638 

observed in Garnault et al. (2019). 639 

Further analysis will be required to assess the prediction quality of the model. Nevertheless, 640 

this finding supports the global validity of our model and paves the way for an original approach 641 

to predicting resistance evolution in a heterogeneous landscape. 642 

 643 

Conclusion 644 

We developed a model of resistance dynamics, which identified regional fungicide use as the 645 

major determinant of fungicide resistance evolution, and the area under organic farming as a 646 

much weaker explanatory variable. We estimated the apparent relative fitness of resistant 647 

phenotypes, a key parameter for the development of sustainable resistance management 648 

strategies. We also identified active ingredients which use drove  resistance evolution. 649 

In conclusion, we showed here that the determination of resistance evolution occurs at a large 650 

scale and demonstrating that concerted collective action is required, to reinforce individual 651 

initiatives to tackle resistances effectively. 652 
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Phenotype 
First year 

observed 

Number of years 

observed 

Number of regions 

monitored 

Number of regions 

monitored yearly 

Number of 

observations 

StrR 2004 9 16 9 852 

TriMR Total 2005 7 16 13 754 

TriR6 2006 12 16 6 910 

TriR7-TriR8 2006 12 16 6 851 

TriHR 2010 8 14 6 360 

Total     3727 

Table 1 Data from the Performance database used for the statistical analysis.  818 

Each observation corresponds to a resistance frequency measurement. The first column 819 

indicates the year at which frequencies of the given phenotype has been first monitored in the 820 

Performance network. The second column corresponds to the total number of years that the 821 

given phenotype has been monitored, including the first year. The third column gives the total 822 

number of French regions in which the given phenotype has been sampled. The fourth column 823 

is the same as the previous one, but only with regions with at least one observation each year. 824 

All regions were monitored for at least 80% of the years studied. The last column sums up the 825 

total number of data points for each phenotype. 826 

 827 
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Phenotype resistant to QoIs Phenotype resistant to DMIs 

StrR (2004-2012)  TriMR (≤2011) TriR6 (2006-2017) TriR7-TriR8 (2006-2017) 

Variable 
Estimate 

± 1 SD 

EFD 

(𝒑̅=76%) 

Relative 

weight 
 

Estimate 

± 1 SD 

EFD 

(𝒑̅=75%) 

Relative 

weight 

Estimate 

± 1 SD 

EFD 

(𝒑̅=54%) 

Relative 

weight 

Estimate 

± 1 SD 

EFD 

(𝒑̅=21%) 

Relative 

weight 

Growth constant (𝜷) -0.2 * 

± 0.09 

-3.74 0.039  -0.2 · 

± 0.11 

-3.94 0.127 0.15 ** 

± 0.05 

3.58 0.402 0.09 · 

± 0.05 

1.63 0.402 

Fungicide use (𝝂𝒇)  
 

0.874    
 

0.726   0.531  
 

0.433 

QoI Kresoxim- 

methyl 

0.7 *** 

± 0.14 

4.26 
 

DMI Cyproconazole 0 
 

 0   0.58 ** 

± 0.2 

2.6  

 
Pyraclostrobin 0.5 ** 

± 0.17 

3.29 
 

 Epoxiconazole 0.56 ** 

± 0.18 

4.82  0   0   

 
Azoxystrobin 0  

 
 Prochloraz 0   0.85 *** 

± 0.16 

4.73  -1.17 *** 

± 0.17 

-3.99  

 
Fluoxastrobin 0 

  
 Propiconazole 0   -0.43 ** 

± 0.14 

-2.48  0   

 
Picoxystrobin 0  

 
 Tebuconazole 0   -1.04 *** 

± 0.19 

-8.38  0.44 * 

± 0.21 

2.38  

 
Trifloxystrobin 0  

 
 Fluquinconazole 0   0   0   



33 

 

      Hexaconazole 0   X   X   

      Metconazole 0   0   0   

      Prothioconazole 0   0   0   

Yield losses (𝝆) 0 
 

0   0 
 

0 0 
 

0 0 
 

0 

Area under organic 

farming (𝜿) 

0.64 *** 

± 0.14 

3.26 0.068   0.37 *** 

± 0.01 

2.52 0.133 0 
 

0 0 
 

0 

Wheat cultivar (𝝈𝜸) 0.26 ** 

± 0.08 

±4.68 0.005   0.14 * 

± 0.06 

±2.64 0.006 0.21 ** 

± 0.07 

±5.19 0.024 0.37 *** 

± 0.09 

±6.18 0.134 

Sampling date (𝜹𝑺𝟏) -0.41 *** 

± 0.1 

-8.16 0.014   -0.17 ** 

± 0.06 

-3.34 0.008 -0.33 *** 

± 0.08 

-8.23 0.043 0.15 · 

± 0.08 

2.62 0.031 

Table 2 Estimates from the MAI model for the StrR, TriMR, TriR6 and TriR7-TriR8 resistance phenotypes. 828 

For each phenotype, the three subcolumns show parameter estimates (i.e. posterior mean) and their variability (i.e. posterior standard deviation), 829 

expected frequency difference (EFD, i.e. the change in frequency due to the mean value of the variable on a reference population at frequency 830 

𝑝̅), and relative weights (i.e. the contribution of the variable to data variability). The significance thresholds are 0.1, 0.05, 0.025 and 0.001 denoted 831 

by “.”, “*”, “**” and “***”, respectively. Rows represent the different parameters of the models, ordered as follows: growth constant, regional scale 832 

explanatory variables (fungicide use, yield losses and area of wheat under organic farming) and local variation factors (wheat cultivar and sampling 833 

date). “0” means that the parameter was not selected during variable selection. “X” means that the variable was not considered in the model for 834 

the given phenotype. The results for the TriHR phenotypes are not shown as no explanatory variables were retained by the selection procedure. 835 
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 836 

 StrR (2004-2012) 

Variable 
Estimate 

± 1 SD 

EFD 

(𝒑̅=76%) 

Relative 

weight 

Growth constant (𝜷) -0.17 

± 0.13 

-3.23 0.041 

Fungicide use (𝝂) 1.07 *** 

± 0.26 

6.64 0.794 

Yield losses (𝝆) 0  0 

Area under organic 

farming (𝜿) 

0.78 *** 

± 0.16 

3.95 0.146 

Wheat cultivar (𝝈𝜸) 0.31 ** 

± 0.09 

±5.57 0.009 

Sampling date (𝜹𝑺𝟏) -0.35 *** 

± 0.1 

-6.87 0.01 

Table 3 Estimates from the MMoA model for the StrR phenotype.  837 

The three subcolumns show the parameter estimates (i.e. posterior mean) and their variability 838 

(i.e. posterior standard deviation), expected frequency difference (EFD, i.e. the change in 839 

frequency due to the mean value of the variable on a reference population at frequency 𝑝̅), 840 

and relative weights (i.e. the contribution of the variable to data variability). The significance 841 

thresholds are 0.1, 0.05, 0.025 and 0.001 denoted by “.”, “*”, “**” and “***”, respectively. Rows 842 

represent the different parameters of models, ordered as follows: growth constant, regional 843 

scale explanatory variables (fungicide use, yield losses and area of wheat under organic 844 

farming) and local variation factors (wheat cultivar and sampling date). “0” means that the 845 

parameter was not selected during variable selection. The results for TriMR and TriHR 846 

resistance phenotypes are not shown as no explanatory variable was retained by the selection 847 
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procedure. 848 

  849 



36 

 

Fig. 1 Changes in resistance frequencies (left) and explanatory variables (right, top to bottom, 850 

fungicide use, yield losses and area of wheat under organic farming).  851 

Bold lines: mean regional values. Shaded areas: quantiles of regional values (i.e. regional 852 

variability), 25% and 75% (dark grey), 2.5% and 97.5% (light grey). Dotted lines: regional 853 

minimum and maximum values. Fungicide use is expressed in ℎ𝑎𝐷

𝐶

 corresponding to the mean 854 

number of times each mode of action was used for spraying over a cropping season, 855 

regardless of the dose used. Yield losses are expressed in decitons (quintals) per hectare. 856 

  857 
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Fig. 2 Maps of observed and predicted frequencies of the StrR resistance phenotype from 858 

2004 to 2011. 859 

Real observations are represented by dots. The colour within the dot indicates the observed 860 

frequency in trials. The background map color shows the regional prediction from the MAI 861 

model. 862 

  863 
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Fig. 3 Maps of observed and predicted frequencies of TriR6 and TriR7-TriR8 resistance 864 

phenotypes in 2008. 865 

Real observations are represented by dots. The colour within the dot indicates the observed 866 

frequency in trials. The background map colour shows the regional prediction from the MAI 867 

model. Top: TriR6. Bottom: TriR7-TriR8. 868 


