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We propose a novel and efficient iterative two-stage variable selection approach for multivariate sparse GLARMA models, which can be used for modelling multivariate discrete-valued time series. Our approach consists in iteratively combining two steps: the estimation of the autoregressive moving average (ARMA) coefficients of multivariate GLARMA models and the variable selection in the coefficients of the Generalized Linear Model (GLM) part of the model performed by regularized methods. We explain how to implement our approach efficiently. Then we assess the performance of our methodology using synthetic data and compare it with alternative methods. Finally, we illustrate it on RNA-Seq data resulting from polyribosome profiling to determine translational status for all mRNAs in germinating seeds. Our approach, which is implemented in the MultiGlarmaVarSel R package and available on the CRAN, is very attractive since it benefits from a low computational load and is able to outperform the other methods for recovering the null and non-null coefficients.

Introduction

Seed germination is a complex agronomic trait largely influenced by environmental conditions [START_REF] Reed | Seed germination and vigor: ensuring crop sustainability in a changing climate[END_REF]. In cropping systems related to seed production, climatic variations experienced by the mother plant shape the physiological features of seeds, such as dormancy, longevity and germination vigor [START_REF] Iwasaki | Parental and environmental control of seed dormancy in arabidopsis thaliana[END_REF]. Plants grown under different temperature regimes produce seeds with contrasting germination potential. The molecular factors that may explain these phenotypes are still poorly described. It has been previously demonstrated that the translation of mRNAs is a key and essential process for the success of germination [START_REF] Sano | Lost in translation: Physiological roles of stored mRNAs in seed germination[END_REF]. Studying translation in germinating seeds leads to a better understanding of gene expression regulation providing a direct link between transcriptome and proteome rearrangements [START_REF] Galland | Dynamic proteomics emphasizes the emportance of selective mRNA translation and protein turnover during arabidopsis seed germination[END_REF]. Polysome profiling has been developed to infer the translational status of specific mRNA populations [START_REF] Bai | Extensive translational regulation during seed germination revealed by polysomal profiling[END_REF][START_REF] Basbouss-Serhal | Germination potential of dormant and nondormant arabidopsis seeds is driven by distinct recruitment of messenger rnas to polysomes[END_REF]. A rapid polysome formation occurs during early germination process. The combined approaches of polysome profiling and RNA-seq provide a unique opportunity to thoroughly investigate the translational dynamics of germinating seeds produced under different temperature regimes to highlight novel molecular mechanisms related to the physiological quality of seeds in response to the environment of the mother plant.

In this paper we consider a novel multivariate count time series model to study the translational dynamics of germinating seeds. A detailed review of the main approaches for modelling multivariate count time series is available in [START_REF] Fokianos | Multivariate count time series modelling[END_REF]. These approaches can be classified into three model classes described hereafter.

The first class includes integer-valued autoregressive (INAR) models. The first introduction of INAR [START_REF] Aitchison | The multivariate poisson-log normal distribution[END_REF] processes was done by [START_REF] Mckenzie | Some simple models for discrete variate time series[END_REF] and [START_REF] Al-Osh | First-order integer-valued autoregressive (INAR(1)) process[END_REF]. Later it was extended to pth order process in [START_REF] Alzaid | An integer-valued pth-order autoregressive structure (INAR(p)) process[END_REF]. The properties of the multivariate INAR (MINAR) were derived in [START_REF] Franke | Multivariate first-order integer values autoregressions[END_REF] and [START_REF] Latour | The multivariate GINAR(p) process[END_REF]. Further studies of MINAR were done by [START_REF] Pedeli | On composite likelihood estimation of a multivariate INAR(1) model[END_REF] and [START_REF] Pedeli | Some properties of multivariate INAR(1) processes[END_REF]. However, even in the univariate INAR models, the statistical inference is not straightforward, as explained in [START_REF] Davis | Count time series: A methodological review[END_REF], and this is all the more true for higher-order INAR models.

The second class are parameter-driven models. Following the first introduction by [START_REF] Cox | Statistical analysis of time series: Some recent developments [with discussion and reply[END_REF], parameter-driven models are time series driven by an unobserved process. It means that the state vector evolves independently of the past history of the observations. Multivariate state space models are studied in [START_REF] Jørgensen | State-space models for multivariate longitudinal data of mixed types[END_REF] and [START_REF] Jung | Dynamic factor models for multivariate count data: An application to stock-market trading activity[END_REF]. Additional developments are found in [START_REF] Ravishanker | Hierarchical dynamic models for multivariate times series of counts[END_REF]. Although these models are simple to construct, the parameter estimation is computationally expensive, see [START_REF] Jung | Estimating time series models for count data using efficient importance sampling[END_REF].

The third class of models, observation-driven models, do not suffer from computational drawback and are an alternative to parameter-driven models. In these models, the state vector depends on past observations and some additional noise. Univariate observationdriven models were first proposed by [START_REF] Cox | Statistical analysis of time series: Some recent developments [with discussion and reply[END_REF] and further studied by [START_REF] Zeger | Markov regression models for time series: A quasi-likelihood approach[END_REF]. Different kinds of observation-driven models can be found in the literature: the Generalized Linear Autoregressive Moving Average (GLARMA) models introduced by [START_REF] Davis | Modeling time series of count data[END_REF] and further studied in [START_REF] Davis | Observation-driven models for Poisson counts[END_REF], [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], [START_REF] Dunsmuir | Generalized Linear Autoregressive Moving Average Models[END_REF] and the (log-)linear Poisson autoregressive models studied in [START_REF] Fokianos | Poisson autoregression[END_REF], [START_REF] Fokianos | Log-linear poisson autoregression[END_REF] and [START_REF] Fokianos | Nonlinear poisson autoregression[END_REF]. Note that GLARMA models cannot be seen as a particular case of the log-linear Poisson autoregressive models. In the past years many studies were conducted in the framework of multivariate observation-driven count time series models, many of which are based on the copula approach. An example is the Multivariate Autoregressive Conditional Double Poisson model [START_REF] Heinen | Multivariate autoregressive modeling of time series count data using copulas[END_REF], based on the double Poisson distribution with the mean vector being a VARMA process. Another model using copula [START_REF] Bien | An inflated multivariate integer count hurdle model: an application to bid and ask quote dynamics[END_REF] is developed for count time series with a domain Z n , n ∈ N. Here the conditional probabilities of the direction of the process (whether the process is negative, positive or equal to zero) is modeled with the autoregressive conditional multinomial model (ACM). In [START_REF] Fokianos | Multivariate count autoregression[END_REF], the authors impose a copula function on a vector of related continuous random variables to determine the joint distribution of the count time series. Finally, the model in [START_REF] Held | A statistical framework for the analysis of multivariate infectious disease surveillance data[END_REF] can be seen as a Poisson branching process model with immigration. It takes as covariates for the mean of each series at time t the counts of other series at time t -1.

In our context of analyzing RNA-Seq data from polysome profiling experiments, we are interested in performing variable selection in multivariate count time series. However, this problem is not addressed in the exact framework of our interest so far. There exist methods for variable selection for multivariate Poisson data using spike and slab approach [START_REF] Giese | Modeling nematode population dynamics using a multivariate poisson model with spike and slab variable selection[END_REF]. The method is based on extending the Poisson Lognormal model in [START_REF] Aitchison | The multivariate poisson-log normal distribution[END_REF], which is a parameterdriven model, to the multivariate case and relaxing the mean-equal-variance property of the Poisson distribution. Another study in [START_REF] Lee | Bayesian variable selection for multivariate zero-inflated models: Application to microbiome count data[END_REF] performs Bayesian variable selection in multivariate zero-inflated count data.

In this paper, we develop an observation-driven variable selection model, which is an extension of [START_REF] Gomtsyan | Variable selection in sparse glarma models[END_REF] to the multivariate case by considering the following multivariate GLARMA model. Given the past history F i,j,t-1 = σ(Y i,j,s , s ≤ t -1), we assume that

Y i,j,t |F i,j,t-1 ∼ P(µ i,j,t ), (1) 
where P(µ) denotes the Poisson distribution with mean µ, 1 ≤ i ≤ I, 1 ≤ j ≤ n i and 1 ≤ t ≤ T . For instance, Y i,j,t can be seen as a random variable modelling RNA-Seq data of the jth replication of gene t obtained in condition i. In (1)

µ i,j,t = exp(W i,j,t ) with W i,j,t = η i,t + Z i,j,t , (2) 
where

Z i,j,t = q k=1 γ k E i,j,t , with 1 ≤ q ≤ ∞, (3) 
and η i,t , the non random part of W i,j,t , does not depend on j.

Let us denote η η η = (η 1,1 , . . . , η I,1 , η I,2 , . . . , η I,T ) the vector of coefficients corresponding to the effect of a qualitative variable on the observations. For instance, in the case of RNA-Seq data, η i,t can be seen as the effect of condition i (i.e. temperature regime during seed production) on polysome-associated mRNAs t. Assume moreover that γ γ γ = (γ 1 , . . . , γ q ) is such that k≥1 |γ k | < ∞, where u denotes the transpose of u. Additionally,

E i,j,t = Y i,j,t -µ i,j,t µ i,j,t = Y i,j,t exp -W i,j,t -1. (4) 
with E i,j,t = 0 for all t ≤ 0 and 1 ≤ q ≤ ∞. When q = ∞, Z i,j,t satisfies an ARMA-like recursion in (4), because causal ARMA can be written as MA process of infinite order. E i,j,t in (4) corresponds to the particular case of working residuals in classical Generalized Linear Models (GLM) usually defined by E i,j,t = (Y i,j,t -µ i,j,t )µ i,j,t -λ with λ = 1. The resulting model defined by Equations ( 1), ( 2), ( 3) and ( 4) is referred to as multivariate GLARMA model.

The main goal of this paper is to introduce a novel variable selection approach in the deterministic part (η η η ) of the sparse multivariate GLARMA model that is defined in Equations (1), ( 2), ( 3) and (4), where the vector of the η i,t 's is sparse. Sparsity means that many η i,t 's are null, and thus just a few coefficients are significant. The novel approach that we propose combines a procedure for estimating the ARMA part coefficients to take into account the dependence that may exist in the data with regularized methods designed for GLM as those proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and [START_REF] Hastie | Statistical learning with sparsity: the lasso and generalizations[END_REF].

The paper is organized as follows. Firstly, we propose a novel two-stage estimation procedure in multivariate GLARMA models in Section 2.1 and Section 2.2. It consists of first estimating the ARMA coefficients and then estimating the η i,t 's by using a regularized approach. The practical implementation of our approach is given in Section 2.3. Next, in Section 3, we provide numerical experiments to illustrate our method and compare its performance to alternative approaches on finite sample size data. Additionally, in Section 4, we apply our method to RNA-Seq data from polysome profiling experiments to determine translational status for all mRNAs in germinating seeds.

Statistical Inference

Extending the estimation procedure existing in standard univariate GLARMA models described in [START_REF] Davis | Observation-driven models for Poisson counts[END_REF] and [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF] to the multivariate case would consist in estimating δ δ δ = (η η η , γ γ γ ), where η η η is the vector of coefficients and γ γ γ is the vector of the ARMA part coefficients by δ δ δ, which is defined as follows:

δ δ δ = arg max δ δ δ L(δ δ δ). (5) 
In [START_REF] Bailly | The signalling role of ROS in the regulation of seed germination and dormancy[END_REF], L is based on the conditional log-likelihood and is defined by:

L(δ δ δ) = I i=1 n i j=1 T t=1 (Y i,j,t W i,j,t (δ δ δ) -exp(W i,j,t (δ δ δ)),
where W i,j,t (δ δ δ) is defined as in ( 2)-( 4):

W i,j,t (δ δ δ) = η i,t + q k=1 γ k E i,j,t (δ δ δ) with E i,j,t (δ δ δ) = Y i,j,t exp -W i,j,t (δ δ δ) -1. (6) 
However, this procedure is not designed for dealing with a sparse framework where many components of η η η are null. This is the reason why we propose hereafter a novel two-stage estimation procedure described in the following sections.

2.1. Estimation of γ γ γ . In our estimation procedure, we use the Newton-Raphson algorithm to obtain γ γ γ based on the following recursion. For r ≥ 1, starting from the initial value γ γ γ (0) = (γ

(0) 1 , . . . , γ (0) 
q ) and η η η (0) = (η

(0) 1,1 , . . . , η (0) I,1 , η (0) I,2 , . . . , η (0) 
I,T ) : γ γ γ (r) = γ γ γ (r-1) - ∂ 2 L ∂γ γ γ ∂γ γ γ η η η (0) , γ γ γ (r-1) -1 ∂L ∂γ γ γ η η η (0) , γ γ γ (r-1) . (7) 
To obtain ∂L ∂γ γ γ , we shall use that

∂L ∂γ γ γ (η η η (0) , γ γ γ) = I i=1 n i j=1 T t=1 (Y i,j,t -exp(W i,j,t (η η η (0) , γ γ γ))) ∂W i,j,t (η η η (0) , γ γ γ) ∂γ γ γ ,
where details for computing the first derivative of W i,j,t (η η η (0) , γ γ γ) with respect to γ γ γ are given in Appendix A.1.1.

Concerning the Hessian of L, it can be obtained as follows:

∂ 2 L ∂γ γ γ ∂γ γ γ (η η η (0) , γ γ γ) = I i=1 n i j=1 T t=1 (Y i,j,t -exp(W i,j,t (η η η (0) , γ γ γ))) ∂ 2 W i,j,t (η η η (0) , γ γ γ) ∂γ γ γ ∂γ γ γ - I i=1 n i j=1 T t=1
exp(W i,j,t (η η η (0) , γ γ γ)) ∂W i,j,t (η η η (0) , γ γ γ) ∂γ γ γ ∂W i,j,t (η η η (0) , γ γ γ) ∂γ γ γ ,

where details for computing the second derivative of W i,j,t (η η η (0) , γ γ γ) with respect to γ γ γ are given in Appendix A.1.2.

2.2.

Variable selection in η η η estimation.

Variable selection criterion.

To perform variable selection in the η η η of Model ( 2)-( 4), namely to obtain a sparse estimator of η η η , we shall use a regularized approach inspired by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for fitting sparse generalized linear models. It consists in penalizing (with an 1 penalty) a quadratic approximation to the log-likelihood obtained by a second order Taylor expansion. Using η η η (0) and γ γ γ defined in Section 2.1, we obtain the quadratic approximation as follows: and

L(η η η) := L(η 1,1 , . . . , η I,1 , η I,2 , . . . , η I,T , γ γ γ) = L(η η η (0) ) + ∂L ∂η η η (η η η (0) , γ γ γ)(η η η -η η η (0) ) + 1 2 (η η η -η η η (0) ) ∂ 2 L ∂η η η∂η η η (η η η (0) , γ γ γ)(η η η -η η η (0)
∂ 2 L ∂η η η∂η η η = ∂ 2 L ∂η i 0 ,t 0 ∂η i 1 ,t 1 1≤i 0 ,i 1 ≤I 1≤t 0 ,t 1 ≤T .
Let U ΛU be the singular values decomposition of the positive semidefinite symmetric matrix -∂ 2 L ∂η η ηη η η (η η η (0) , γ γ γ) and ν ν ν -ν ν ν (0) = U (η η η -η η η (0) ). Therefore, the quadratic approximation is

L(η η η) = L(η η η (0) ) + ∂L ∂η η η (η η η (0) , γ γ γ)U (ν ν ν -ν ν ν (0) ) - 1 2 (ν ν ν -ν ν ν (0) ) Λ(ν ν ν -ν ν ν (0) ). (8) 
In order to obtain a sparse estimator of η η η we use η η η(λ) defined by minimizing the following criterion:

η η η(λ) = arg min η η η {-LQ (η η η) + λ η η η 1 }, (9) 
for a positive λ, where η 1 = I i=1 T t=1 |η i,t | and LQ (η η η) denotes the quadratic approximation of the log-likelihood. This quadratic approximation is defined by

-LQ (η η η) = 1 2 Y -X η η η 2 2 (10) 
with

Y = Λ 1/2 U η η η (0) + Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) , X = Λ 1/2 U , (11) 
where • 2 is the 2 norm.

Criterion derivation.

Let us now explain how the expression of LQ given in [START_REF] Davis | Count time series: A methodological review[END_REF] was obtained. By [START_REF] Bien | An inflated multivariate integer count hurdle model: an application to bid and ask quote dynamics[END_REF], we get

L(η η η) = L(η η η (0) ) + I i=1 T t=1 ∂L ∂η η η (η η η (0) , γ γ γ)U i,t (ν i,t -ν (0) i,t ) - 1 2 I i=1 T t=1 λ i,t (ν i,t -ν (0) i,t ) 2 = L(η η η (0) ) - 1 2 I i=1 T t=1 λ i,t ν i,t -ν (0) i,t - 1 λ i,t ∂L ∂η η η (η η η (0) , γ γ γ)U i,t 2 
+ I i=1 T t=1 1 2λ i,t ∂L ∂η η η (η η η (0) , γ γ γ)U 2 i,t , (12) 
where the λ i,t 's are the diagonal terms of Λ. Since only the second term of (12) depends on η η η,

-LQ (η η η) = 1 2 I i=1 T t=1 λ i,t ν i,t -ν (0) i,t - 1 λ i,t ∂L ∂η η η (η η η (0) , γ γ γ)U i,t 2 = 1 2 Λ 1/2 ν ν ν -ν ν ν (0) -Λ -1 ∂L ∂η η η (η η η (0) , γ γ γ)U 2 2 = 1 2 Λ 1/2 U (η η η -η η η (0) ) -Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) 2 2 = 1 2 Λ 1/2 U (η η η (0) -η η η) + Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) 2 2 = 1 2 Y -X η η η 2 2 ,
where

Y = Λ 1/2 U η η η (0) + Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) , X = Λ 1/2 U .

Stability selection.

To obtain the final estimator η η η of η η η , we shall consider an approach called stability selection devised by [START_REF] Meinshausen | Stability selection[END_REF], which guarantees the robustness of the selected variables. This approach can be described as follows. The vector Y defined in [START_REF] Davis | Observation-driven models for Poisson counts[END_REF] is randomly split into several subsamples of size IT /2, corresponding to half of the length of Y. The number of subsamples is equal to 1000 in our numerical experiments. For each subsample Y (s) and the corresponding design matrix X (s) , Criterion ( 9) is applied with a given λ, where Y and X are replaced by Y (s) and X (s) , respectively. For each subsampling, the indices i and t of the non-null η i,t are stored. In the end, we calculate the frequency of index selection, namely the number of times each couple of indices was selected divided by the number of subsamples. For a given threshold, in the final set of selected variables, we keep the ones whose indices have a frequency larger than this threshold. Concerning the choice of λ, we shall consider the smallest element of the grid of λ provided by the R glmnet package. It is also possible to use the one obtained by cross-validation (Chapter 7 of [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]). However, based on our experiments, choosing the minimal λ of the grid led to better results.

Practical implementation.

In practice, the previous approach can be summarized as follows.

• Initialization. We take for η (0) the estimator of η obtained by fitting a GLM to the observations Y 1,1,1 , . . . , Y I,n I ,T thus ignoring the ARMA part of the model. For γ (0) , we take the null vector. • Newton-Raphson algorithm. We use the recursion defined in [START_REF] Bentsink | Cloning of DOG1, a quantitative trait locus controlling seed dormancy in arabidopsis[END_REF] with the initialization (η (0) , γ (0) ) obtained in the previous step and we stop at the iteration R such that γ (R) -γ (R-1) ∞ < 10 -6 . • Variable selection. To obtain a sparse estimator of η , we use Criterion [START_REF] Cox | Statistical analysis of time series: Some recent developments [with discussion and reply[END_REF], where η (0) and γ appearing in [START_REF] Davis | Observation-driven models for Poisson counts[END_REF] are replaced by η (0) and γ (R) obtained in the previous steps. We thus get η by using the stability selection approach described in Section 2.2.3.

This procedure can be improved by iterating the Newton-Raphson algorithm and Variable selection steps. More precisely, let us denote by η

(0) 1 , γ (R 1 ) 1
and η 1 the values of η (0) , γ (R) and η obtained in the three steps described above at the first iteration. At the second iteration, (η (0) , γ (0) ) appearing in the Newton-Raphson algorithm step is replaced by ( η 1 , γ (R 1 ) 1

). At the end of this second iteration, η 2 and γ

(R 2 ) 2
denote the obtained values of η and γ (R) , respectively. This approach is iterated until the stabilisation of γ

(R k ) k .

Numerical experiments

This section aims at investigating the performance of our method, which is implemented in the R package MultiGlarmaVarSel available on the CRAN (Comprehensive R Archive Network). We study it both from a statistical and a numerical point of view, using synthetic data generated from the model defined by ( 1)-( 4), where n i = J for all i. The different simulation settings that we considered are given in Table 1. In all the experiments we set the number of non-null coefficients in η η η to 10 and the number of simulations to 50. The non-null values of η η η range from 0.41 to 2.62.

T

J I q γ 50 10 3 1 0.5 50 100 3 1 0.5 200 10 3 1 0.5 200 100 3 1 0.5 50 10 3 2 0.2, 0.5 50 100 3 2 0.2, 0.5 200 10 3 2 0.2, 0.5 200 100 3 2 0.2, 0.5 Table 1. Parameters of simulated datasets used in the experiments.

3.1. Statistical performance.

Estimation of η η η .

Support recovery of η η η . In this section, we assess the performance of our methodology in terms of support recovery, namely the identification of the non-null coefficients of η , and of the estimation of γ .

Figures 1 and3 display the maximum difference between TPR (True Positive Rates, namely the proportion of non-null coefficients correctly estimated as non-null) and FPR (False Positive Rates, namely the proportion of null coefficients estimated as non-null) for q = 1 and q = 2 correspondingly. For each simulation, we considered 9 thresholds ranging from 0.1 to 0.9 in the stability selection step. For each threshold, we calculated the maximum difference between TPR and FPR. Then, from the 9 differences, we took the largest one, which is the best result. It means we did not use the same threshold from one simulation to another. We considered five different approaches: our method with q = 0, q = 1 and q = 2, classical LASSO for Poisson distribution, and our method where we took γ instead of estimating it. More precisely, classical LASSO for Poisson distribution consists in applying the glmnet R package dedicated to Poisson distribution to the Y i,j,t 's for each t. We did not compare our method with glarma package because it does not support the multivariate setting.

In Figures 1 and3 the closer the maximum difference between TPR and FPR is to 1, the better is the performance of the method. Our approach with q = 1 and q = 2 outperforms classical LASSO and the estimation with q = 0. We notice that when J is larger, the estimation is better both for T = 50 and T = 200. Additionally, the performance for the simulation frameworks with T = 50 is better than for the ones with T = 200. In general, our estimation is close to the one with the true value of γ .

Figures 2 and4 display the error bars of TPR and FPR of our method with respect to the threshold for q = 1 and q = 2, respectively. More precisely, the threshold 0.6 achieves a satisfactory trade-off between the TPR and the FPR. The best trade-offs are achieved for T = 50 and J = 100, for both q = 1 and q = 2. q q q q q q q q q q q q q q q q q q q q 0.25 0.50 0.75 1.00 lasso q=0 q=1 q=2 true max(TPR-FPR) Data q q q q q q q q q q q q q q q q T=50, J=10 T=50, J=100 T=200, J=10 T=200, J=100 Error bars of the TPR and FPR for different thresholds associated to the support recovery of η estimated with q = 1 for 4 different simulation frameworks with respect to the thresholds when I = 3, q = 1, 10 non-null coefficients in η η η , and 50 simulations. q q q q q q q q q q q q q q q q q q q q 0.25 0.50 0.75 1.00 lasso q=0 q=1 q=2 true max(TPR-FPR) Data q q q q q q q q q q q q q q q q T=50, J=10 T=50, J=100 T=200, J=10 T=200, J=100 Sign consistency of the estimation of η η η . In Figures 5 and6 we illustrate the TPR of sign recovery of η. For these figures, we looked at the estimation with the threshold of 0.6. The sign recovery is considered as true positive if for negative (positive) it is estimated with a negative (positive) sign and if 0 is estimated as 0. Here again, we can conclude that the best results are obtained for J = 100, similar to the support recovery of η . T=50, J=100 T=200, J=10 T=200, J=100 Data TPR Figure 6. Error bars of the TPR of sign recovery of η estimated with q = 2 for 4 simulation frameworks when I = 3, q = 2, 10 non-null coefficients in η η η , and 50 simulations.

3.1.2. Estimation of γ γ γ . In this section we investigate the performance of the method for the estimation of γ for the simulation frameworks of Table 1. In Figures 7 (resp. 8), boxplots for the estimations of γ in (3) are displayed for q = 1 (resp. q = 2). We can see from these figures that when J = 10, both for T = 50 and T = 200, iterating our approach does not improve the results. However, this is not the case for J = 100: the estimation of γ improves at the second iteration. In the Appendix A.2, we present additional figures for the settings T = 50 with J = 10 and J = 100, and 10 iterations. These plots justify that for a small value of J iterating the method does not improve the estimation, whereas for a large value of J the estimation stabilises and results become better. q q q q q q q q 0.4 0.5 1 2 Iteration γ ^1 q=1 q q q q q q q q 0.40 0.45 0.50 [START_REF] Aitchison | The multivariate poisson-log normal distribution[END_REF] 2 Iteration γ ^1 q=2 q q q q q q q q -0.06 -0.04 -0.02 0.00 1 2 Iteration γ ^2 q=2 Data q q q q q q q q q q q q q q q q T=50, J=10 T=50, J=100 T=200, J=10 T=200, J=100

Figure 7. Boxplots for the estimations of γ in Model (3) for 4 different simulation frameworks when I = 3, q = 1, γ = 0.5, 10 non-null coefficients in η η η , and 50 simulations obtained by q = 1 and q = 2. The horizontal lines correspond to the values of the γ i 's.

q q q q q q q q 0.10 0.15 0.20 1 2 Iteration γ ^1 q=1 q q q q q q q q 0.175 0.200 0.225 0.250 0.275 1 2 Iteration γ ^1 q=2 q q q q q q q q 0.40 0.45 0.50 0.55 0.60 1 2 Iteration γ ^2 q=2 Data q q q q q q q q q q q q q q q q T=50, J=10 T=50, J=100 T=200, J=10 T=200, J=100

Figure 8. Boxplots for the estimations of γ in Model (3) for 4 different simulation frameworks when I = 3, q = 2, γ 1 = 0.2, γ 1 = 0.5, 10 non-null coefficients in η η η , and 50 simulations obtained by q = 1 and q = 2. The horizontal lines correspond to the values of the γ i 's.

3.2. Numerical performance. Figure 9 displays the means of the computational times of our approach implemented in the R package multiGlarmaVarSel for different simulation frameworks. The timings were obtained on a workstation with 32GB of RAM and Intel Core i7-9700 (3.00GHz) CPU. We can see from this figure that the computational time goes from 10 seconds to 5 minutes to process the data for a given threshold and one iteration, when we increase T from 50 to 200 and when q = 1, 2 or 3. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1.0 Figure 9. Boxplots of the log 10 computational times in seconds in the case where I = 3, J = 10, q = q , 10 non-null coefficients in η η η , and different values of T and q , a given threshold and one iteration. We performed 50 simulations.

4. Application to RNA-Seq data 4.1. Biological context and modelling. In order to address the issue related to the influence of the thermal environment of the mother plant on the germination potential of the progeny at the scale of translational regulation, the model plant, Arabidopsis thaliana (Col-0 accession), was cultivated under three temperature regimes (Low, 14-16 • C; Medium, 18-22 • C ; Elevated, 25-28 • C) under a long-day photoperiod. As described in the introduction, the lower the cultivation temperature, the deeper the dormancy of the harvested seeds [START_REF] Penfield | Effects of environmental variation during seed production on seed dormancy and germination[END_REF]. Seeds produced under the three temperature regimes were placed under germination conditions at low temperature (10 • C) to avoid thermo-dormancy. After 72 hours of imbibition, before the first radicle protrusion, the seeds were collected for molecular analyses. Polysome profiling of Arabidopsis seeds was performed as described by [START_REF] Basbouss-Serhal | Germination potential of dormant and nondormant arabidopsis seeds is driven by distinct recruitment of messenger rnas to polysomes[END_REF]. The purified polysomal mRNAs and non-polysomal mRNAs were analysed by RNA-sequencing [START_REF] Stark | RNA sequencing: the teenage years[END_REF].

The data consists of 26725 gene expressions observed in 3 conditions of temperature with 3 replicates for 5 chromosomes and two mRNA populations (polysomal and nonpolysomal). Since the gene expresssions are integer values and since there may be some dependence between them we modeled this data by using Model (1)-( 4). In this model, Y i,j,t is a random variable describing the expression of the jth replication of gene t in temperature i with I = 3, n i = J = 3 for all i and T = 26725. Moreover, η i,t corresponds to the effect of temperature i on gene t.

In this framework, where I and J are very small, according to the numerical results obtained in Section 3, the value of T has to be reduced to obtain satisfactory statistical performance. This is the reason why we preprocessed the data as follows. For each mRNA population and each of the five chromosomes, we used a one-way ANOVA GLM with Poisson distribution to identify the genes on which the conditions have an influence. We kept the genes for which the p-value of the corresponding t-test is smaller than 1/T c,pop where T c,pop is the number of genes present in the chromosome c and in the mRNA population pop (T c,pop ranges from 4074 to 7003). With this filtering, the new values of T c,pop for each mRNA population are given in Table 3 where "Non-poly" (resp. "Poly") refers to non-polysomal (resp. polysomal).

4.2.

Results obtained with the multiGlarmaVarSel R package. This section provides the results obtained by applying our methodology to each of the five chromosomes of each mRNA population. Since I and J are very small in this application, we only focus on q = 1. Based on the results obtained in 3.1.2, we only ran one iteration of our procedure.

The estimation of γ 1 for the polysomal and non-polysomal mRNA populations and the different chromosomes are given in Table 2. We can see from this table that the estimations are similar for the two populations except for chromosomes 3 and 4.

Chromosome γ 1 for non-poly population γ 1 for poly population 1 -0.00369 0.06234 2 0.05617 0.04312 3 0.03314 0.79662 4 0.21809 0.09473 5 0.00574 0.00159 Table 2. Estimation of γ 1 for the 5 chromosomes and the two mRNA populations.

Table 3 provides the number of genes selected by our procedure in the two mRNA populations for the different chromosomes. We can see from this table that the number of selected genes that are common in the two mRNA populations ranges from 1 to 9 and is the highest for the first chromosome.

Chromosome T c,Non-poly

Selected 3. Number of genes selected by our procedure with q = 1 in the two mRNA populations as well as those that are common in the both (Intersection column).

Figure 10 displays the average gene expression values of the 3 replications for each temperature condition (Low, Medium, Elevated). The genes displayed in this figure are obtained by our selection procedure and are common to the two populations (polysomal and non-polysomal). We can see from this figure that the temperature conditions may have a different impact on the expression of the genes. This is the case, for instance, for AT1G48130, AT2G33830 and AT1G14950, on which the low temperature has a positive effect on their expression. Figures 14,[START_REF] Fokianos | Multivariate count time series modelling[END_REF][START_REF] Fokianos | Poisson autoregression[END_REF]17 and 18 in Appendix A.3 display the average gene expression values of all the selected genes for non-polysomal and polysomal populations. It is worth noting that several genes previously described to be involved in the control of seed dormancy and germination were selected by the present statistical method, such as RDO5 (AT4G11040, [START_REF] Xiang | Reduced dormancy5 encodes a protein phosphatase 2c that is required for seed dormancy in arabidopsis[END_REF]), DRM2 (AT2G33830, [START_REF] Iwasaki | Non-canonical RNA-directed DNA methylation participates in maternal and environmental control of seed dormancy[END_REF]), DOG1-like 3 (AT4G18690, [START_REF] Bentsink | Cloning of DOG1, a quantitative trait locus controlling seed dormancy in arabidopsis[END_REF]), MFT (AT1G18100, [START_REF] Xi | MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in arabidopsis[END_REF]), XERICO (AT2G04240, [START_REF] Ko | Upregulation of an arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis[END_REF]) or HAI3 (AT2G29380, [START_REF] Nishimura | Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme[END_REF]). Thus, these genes also seem to be involved in the modulation of germination potential induced by the thermal environment of the mother plant. A gene ontology (GO) analysis from the 229 genes revealed that the top 5 of the biological processes affected were the response to stress (GO:0006950), response to oxygen-containing compound (GO:1901700), defence response (GO:0006952), response to hormone (GO:0009725) and signal transduction (GO:0007165) (Figure 11). This is a pioneering observation showing that the environment of the mother plant not only influences the germinative potential of offspring seeds through hormonal and redox regulation [START_REF] Bailly | The signalling role of ROS in the regulation of seed germination and dormancy[END_REF][START_REF] Shu | Two faces of one seed: hormonal regulation of dormancy and germination[END_REF], but also the ability of germinating seeds to cope with biotic and abiotic stresses. Interestingly, 23 transcription factors were selected by the statistical approach (Table 4). These genes could represent key regulators of the modulation of seed physiological quality in response to various types of biotic and environmental stress during seed production and/or during germination. These results open the door for further research addressing the question of the control of mRNA metabolism during seed germination, notably concerning the selectivity of translational control. The germinating seed is undoubtedly a relevant biological model for exploring the precise mechanisms of combined transcriptional and translational regulation related to gene expression ending with the production of functional protein. For all i 0 ∈ {1, . . . , I} and t 0 ∈ {1, . . . , T } we have

∂W i,j,t ∂η i 0 ,t 0 = ∂ ∂η i 0 ,t 0 η i,t + Z i,j,t = ∂η i,t ∂η i 0 ,t 0 + q∧(t-1) k=1 γ k ∂E i,j,t-k ∂η i 0 ,t 0 = ∂η i,t ∂η i 0 ,t 0 - q∧(t-1) k=1 γ k Y i,j,t-k ∂W i,j,t-k ∂η i 0 ,t 0 exp(-η i,t-k -Z i,j,t-k ) = ∂η i,t ∂η i 0 ,t 0 - q∧(t-1) j=k γ k (1 + E i,j,t-k ) ∂W i,j,t-k ∂η i 0 ,t 0 ,
where E i,j,t = 0 for any t ≤ 0.

For all q 0 ∈ {1, . . . , q}

∂W i,j,t ∂γ q 0 = ∂ ∂γ q 0 η i,t + Z i,j,t = ∂η i,t ∂γ q 0 + ∂ ∂γ q 0 q k=1 γ k E (i) j,t-k = E (i) j,t-q 0 + q∧(t-1) k=1 γ k ∂E i,j,t-k ∂γ q 0 = E i,j,t-q 0 - q∧(t-1) k=1 γ k Y i,j,t-k ∂W i,j,t-k ∂γ q 0 exp(-W i,j,t-k ) = E i,j,t-q 0 - q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂W i,j,t-k ∂γ q 0 ,
where we used the fact that E i,j,t-q 0 = 0 for any t ≤ 0 . We obtain the first derivatives of W i,j,t from the following recursive expressions. For all i 0 ∈ {1, . . . , I} and t 0 ∈ {1, . . . , T }

∂W i,j,1 ∂η i 0 ,t 0 = ∂η i,1 ∂η i 0 ,t 0 = 1, if i = i 0 and t 0 = 1 0, otherwise , ∂W i,j,2 ∂η i 0 ,t 0 = ∂η i,2 ∂η i 0 ,t 0 -γ 1 (1 + E i,j,1 ) ∂W i,j,1 ∂η i 0 ,t 0 =      1, if i = i 0 and t 0 = 2 -γ 1 (1 + E i,j,1 ), if i = i 0 and t 1 = 1 0, otherwise , 
In the same way, for all q 0 ∈ {1, . . . , q} we have ∂W i,j,1 ∂γ q 0 = 0, ∂W i,j,2 ∂γ q 0 = E i,j,2-q 0 , ∂W i,j,3 ∂γ q 0 = E i,j,3-q 0 -γ 1 (1 + E i,j,2 ) ∂W i,j,2 ∂γ q 0 , and so on. Note that

W i,j,1 = η i,1 + Z i,j,1 = η i,1 + q k=1 γ k E i,j,1-k = η i,1 , E i,j,1 = Y i,j,1 exp(-W i,j,1 ) -1 = Y i,j,1 exp(-η i,1 ) -1, W i,j,2 = η i,2 + Z i,j,2 = η i,2 + q k=1 γ k E i,j,2-k = η i,2 + γ 1 E i,j,1 , E i,j,2 = Y i,j,2 exp(-W i,j,2 ) -1 = Y i,j,2 exp(-η i,2 -γ 1 E i,j,1 ) -1.
A.1.2. Computation of the second derivatives of W t . For all i 0 , i 1 ∈ {0, . . . , I} and t 0 , t 1 ∈ {1, . . . , T }

∂ 2 W i,j,t ∂η i 0 ,t 0 ∂η i 1 ,t 1 = ∂ ∂η i 1 ,t 1 ∂η i,t ∂η i 0 ,t 0 - q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂W i,j,t-k ∂η i 0 ,t 0 = - q∧(t-1) k=1 γ k ∂E i,j,t-k ∂η i 1 ,t 1 ∂W i,j,t-k ∂η i 0 ,t 0 - q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂ 2 W i,j,t-k ∂η i 0 ,t 0 ∂η i 1 ,t 1 = q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂W i,j,t-k ∂η i 0 ,t 0 ∂W i,j,t-k ∂η i 1 ,t 1 - q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂ 2 W i,j,t-k ∂η i 0 ,t 0 ∂η i 1 ,t 1 .
For all q 0 , q 1 ∈ {1, . . . , q}

∂ 2 W i,j,t ∂γ q 0 ∂γ q 1 = ∂E i,j,t-q 0 ∂γ q 1 -(1 + E i,j,t-q 1 ) ∂W i,j,t-q 1 ∂γ q 0 - q∧(t-1) k=1 γ k ∂W i,j,t-k ∂γ q 0 ∂E i,j,t-k ∂γ q 1 + (1 + E i,j,t-k ) ∂ 2 W i,j,t-k ∂γ q 0 ∂γ q 1 = -(1 + E i,j,t-q 0 ) ∂W j,t-q 0 ∂γ q 1 -(1 + E i,j,t-q 1 ) ∂W i,j,t-q 1 ∂γ q 0 - q∧(t-1) k=1 γ k -(1 + E i,j,t-k ) ∂W i,j,t-k ∂γ q 0 ∂W i,j,t-k ∂γ q 1 + (1 + E i,j,t-k ) ∂ 2 W i,j,t-k ∂γ q 0 ∂γ q 1 .
To obtain the second derivatives of W t we use the following recursive expressions for all i 0 , i 1 ∈ {0, . . . , I} and t 0 , t 1 ∈ {1, . . . , T }

∂ 2 W i,j,1 ∂η i 0 ,t 0 ∂η i 1 ,t 1 = 0, ∂ 2 W i,j,2 ∂η i 0 ,t 0 ∂η i 1 ,t 1 = γ 1 (1 + E i,j,1 ), if i = i 0 = i 1 and t 0 = t 1 = 1 0, otherwise . 
We also have that for all q 0 , q 1 ∈ {1, . . . , q}

∂ 2 W i,j,1 ∂γ q 0 ∂γ q 1 = 0, ∂ 2 W i,j,2
∂γ q 0 ∂γ q 1 = 0, and so on.

A.2. Additional numerical experiments.

q q q q q q q q q q q q q q q q q q q q 0.3 0.4 0.5 1 2 3 4 5 6 7 8 9 10 Iteration γ ^1 q q q q q q q q q q -0.025 0.000 0.025 0.050 1 2 3 4 5 6 7 8 9 10 Iteration γ ^1 q q q q q 1 2 Figure 12. Error bars for the estimations of γ in Model (2) for I = 3, T = 50, J = 10, q = 1, γ = 0.5, 10 non-null coefficients in η η η , and 50 simulations obtained by q = 1. The horizontal lines correspond to the values of the γ i 's. q q q q q q q q q q q q q q q q q q q q 0.4 0.5 0.6 0.7 1 2 3 4 5 6 7 8 9 10 Iteration γ ^1 q q q q q q q q q q -0.03 -0.02 -0.01 0.00 1 2 3 4 5 6 7 8 9 10 Iteration γ ^1 q q q q q 1 2 Figure 13. Error bars for the estimations of γ in Model (2) for I = 3, T = 50, J = 100, q = 1, γ = 0.5, 10 non-null coefficients in η η η , and 50 simulations obtained by q = 1. The horizontal lines correspond to the values of the γ i 's.

Table 5. Data used for displaying Figure 10 at the different temperature (Low, Medium, ELevated) where ".npoly" (resp. ".poly") are the values corresponding to the non-polysomal (resp. polysomal) population.

A.3. Additional results for the application section. 

AT1G13360 AT1G14760 AT1G14940 AT1G14950 AT1G16510 AT1G18100 AT1G18590 AT1G20015 AT1G20620 AT1G22980 AT1G28230 AT1G32470 AT1G32900 AT1G33220 AT1G33350 AT1G36370 AT1G45145 AT1G47400 AT1G47980 AT1G48130 AT1G52890 AT1G54870 AT1G55550 AT1G61380 AT1G61800 AT1G63320 AT1G66320 AT1G70985 AT1G75490 

Figure 1 .

 1 Figure 1. Error bars of the maximum difference between TPR and FPR for different thresholds associated to the support recovery of η with 5 approaches for 4 simulation frameworks when I = 3, q = 1, 10 non-null coefficients in η η η , and 50 simulations.

Figure 2 .

 2 Figure 2. Error bars of the TPR and FPR for different thresholds associated to the support recovery of η estimated with q = 1 for 4 different simulation frameworks with respect to the thresholds when I = 3, q = 1, 10 non-null coefficients in η η η , and 50 simulations.

Figure 3 .

 3 Figure 3. Error bars of the maximum difference between TPR and FPR for different thresholds associated to the support recovery of η with 5 approaches for 4 simulation frameworks when I = 3, q = 2, 10 non-null coefficients in η η η , and 50 simulations.

Figure 4 .

 4 Figure 4. Error bars of the TPR and FPR for different thresholds associated to the support recovery of η estimated with q = 2 for 4 different simulation frameworks with respect to the thresholds when I = 3, q = 2, 10 non-null coefficients in η η η , and 50 simulations.

Figure 5 .

 5 Figure 5. Error bars of the TPR of sign recovery of η estimated with q = 1 for 4 simulation frameworks when I = 3, q = 1, 10 non-null coefficients in η η η , and 50 simulations.
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 1043 Figure 10. Average gene expression values of 3 replications at each temperature condition (Low, Medium, Elevated) for the non-polysomal (resp. polysomal) population on the left (resp. right). The genes displayed in this figure are obtained by our selection procedure and are common to both populations.

Figure 11 .

 11 Figure 11. Gene ontology (GO) term enrichment analysis of the selected 229 genes based on polysomal-associated mRNA differentially accumulated in germinating seeds produced beforehand under different temperature regimes. Data from PANTHER overrepresentation test (http://www.geneontology.org); Arabidopsis thaliana GO database released March 22 nd 2022 (DOI: 10.5281/zenodo.6399963). Black bars: observed gene number in the selection; grey bars: expected gene number from the reference Arabidopsis genome.

Figure 14 .Figure 15 .Figure 16 .Figure 17 .Figure 18 .

 1415161718 Figure 14. Average gene expression values of 3 replications at each temperature condition (Low, Medium, Elevated) for the chromosome 1 in nonpolysomal population. The genes displayed in this figure are obtained by our selection procedure.

Table 4 .

 4 List of 23 transcription factors selected by statistical analysis based on polysomal-associated mRNA differentially accumulated in germinating seeds produced beforehand under different temperature regimes. Computation of the first and second derivatives of W t defined in (6). A.1.1. Computation of the first derivatives of W t . By the definition of W t given in (6), we have

	TF Family	AGI	Gene TAIR Curator Summary	Gene	TAIR	Gene TAIR
	Name			Short	Descrip-	Aliases
				tion		
	AP2-EREBP	AT1G28360	Encodes a member of the ERF (ethy-	ERF domain pro-	ATERF12,
			lene response factor) subfamily B-	tein 12			ERF12
			1 of ERF/AP2 transcription factor			
			family (ERF12). The protein con-			
			tains one AP2 domain.			
	AP2-EREBP	AT1G75490	Encodes a member of the DREB sub-	Integrase-type		DREB2D,
			family A-2 of ERF/AP2 transcrip-	DNA-binding su-	ERF049
			tion factor family. The protein con-	perfamily protein
			tains one AP2 domain.			
	AP2-EREBP	AT3G16770	Encodes a member of the ERF (ethy-	Ethylene-		ATEBP, EBP,
			lene response factor) subfamily B-2	responsive element	ERF72, RAP2.3
			of the plant specific ERF/AP2 tran-	binding protein	
			scription factor family (RAP2.3).			
			The protein contains one AP2 do-			
			main. Overexpression of this gene in			
			tobacco BY-2 cells confers resistance			
			to H2O2 and heat stresses. Overex-			
			pression in Arabidopsis causes upreg-			
			ulation of PDF1.2 and GST6. It is			
			part of the ethylene signalling path-			
			way and is predicted to act down-			
			stream of EIN2 and CTR1, but not			
			under EIN3.			
	AP2-EREBP	AT5G53290	Encodes a member of the ERF (ethy-	Cytokinin	re-	CRF3
			lene response factor) subfamily B-	sponse	factor
			5 of ERF/AP2 transcription factor	3		
			family. The protein contains one			
			AP2 domain. CRF proteins relocal-			
			ize to the nucleus in response to cy-			
			tokinin.			
	AP2-EREBP	AT5G65510	Encodes one of three PLETHORA	AINTEGUMENTA-	AIL7, PLT7
			transcription factors required to	like 7		
			maintain high levels of PIN1 expres-			
			sion at the periphery of the meristem			
			and modulate local auxin production			
			in the central region of the SAM			
			which underlies phyllotactic transi-			
			tions.			
	C2C2-Gata	AT3G51080	Encodes a member of the GATA fac-	GATA transcrip-	GATA6
			tor family of zinc finger transcription	tion factor 6	
			factors.			
	C2H2	AT2G41940	Encodes a zinc finger protein con-	Zinc finger protein	ZFP8
			taining only a single zinc finger. In-	8		
			volved in GA and cytokinin signal in-			
			tegration.			
	C2H2	AT3G07940	Calcium-dependent ARF-type GT-	Calcium-			AtGAP
			Pase activating protein family	dependent ARF-
				type	GTPase
				activating protein
				family		
	C2H2	AT5G07500	Encodes an embryo-specific zinc fin-	Zinc finger C-x8-	AtTZF6, PEI1,
			ger transcription factor required for	C-x5-C-x3-H type	TZF6
			heart-stage embryo formation.	family protein	
	C2H2	AT5G43540	Encodes a protein containing a zinc	C2H2 and C2HC	ZF-C2H2-type
			finger, C2H2-type domain.	zinc fingers super-
				family protein