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Abstract 

Estimating aboveground biomass is important for monitoring crop growth in agronomic field experiments. Often 

this estimation is done manually, destructively (mowing) or not (counting) on a relatively limited number of sub-

plots within an experiment. In the presence of spatial heterogeneity in experiment fields, sensors developed for 

precision agriculture, have shown great potential to automate this estimation efficiently and provide a spatially 

continuous measurement over an entire plot. This study investigated the suitability of using an unmanned aerial 

vehicle (UAV) for biomass and yield estimations in an agronomic field experiment. The main objectives of this 

work were to compare the estimates made from manual field sampling with those made from UAV data and 

finally to calculate the improvement that can be expected from the use of UAVs. A 6-ha maize field was studied, 

with plot treatments for the study of the exogenous organic matter (EOM) amendment effect on crop 

development. 3D surface models were created from high resolution UAV RGB imagery, before crop emergence 

and during crop development. The difference between both surface models resulted in crop height which was 

evaluated against 38 reference points with an R² of 0.9 and prediction error of 0.16 m. Regression models were 

used to predict above-ground biomass and grain yield (fresh or dry). Dried grain yield prediction with a 

generalized additive model gave an error of 0.8 t ha-1 calculated on 100 in-field validation measurements, 

corresponding to a relative error of 14.77 %. UAV-based yield estimates from dry biomass were 15% more 

accurate than manual yield estimation. 

Keywords Unmanned Aerial Vehicle (UAV) . Crop Surface Model (CSM) . Yield prediction . Photogrammetry . 

Biomass estimation 
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Introduction 

 Precision agriculture (PA) can help to meet the challenge of feeding an increasing population by optimizing the 

use of crop inputs towards a low-input sustainable agriculture (Zhang et al. 2002; Lindblom et al. 2017). 

Quantitative estimation of crop vegetative development and health is a major step in determining both the types 

of interventions and doses of products during crop operations such as fertilization or phytosanitary treatments 

and for yield prediction. Improvements in crop management related to PA are based on measuring and managing 

within-field variability of crop development. These measurements have been made possible using global 

navigation satellite systems (GNSS) and various sensors to exhaustively quantify the current biomass level at 

each location in the plot, in a non-destructive manner. Godwin and Miller (2003) proposed four major categories 

of field factors influencing spatial variations of yield: (i) soil water content, (ii)  topography and micro-climate, 

(iii) soil nutrition and (iv) weeds, pests and diseases. Many sensors have been designed to map those factors as 

well as crop biomass. Ground-based sensors, mounted on a tractor or other land vehicle, provide  information 

“on the go” (Barnes et al. 2003).  In other cases, the sensors are installed on satellites or aircraft, but more 

recently with the increased miniaturization of sensors also on UAVs (Mulla 2013). The main advantages of UAV 

for PA are: a very high spatial and temporal resolution, a low utilization cost and an easily programmed image 

acquisition (Zhang and Kovacs 2012). UAV imagery have been successfully used for monitoring various crops, 

such as wheat (Duan et al. 2017), barley (Bendig et al. 2015), rapeseed (Verger et al. 2014), maize (Castaldi et 

al. 2017) and rice (Zhou et al. 2017). An increasing variety of sensors are used on-board UAVs for agricultural 

applications. Some professional aerial metric cameras have been adapted to UAV such as the IGN Lightweight 

Camera (IGN Lightweight Camera, IGN, Saint-Mandé, France) (IGN 2016) or the iXM-100 Phase One aerial 

camera (iXM-100, Phase one, Copenhagen, Denmark) (Phase one 2018). Despite their performance, they have 

not been used widely due to their high cost. Many studies have shown that quite acceptable results can be 

achieved with standard non-metric RGB digital cameras (Johnson et al. 2003; Poblete-Echeverría et al. 2017). 

As the near infrared spectral range is very interesting especially for monitoring plant biomass, some authors use 

professional multispectral or hyperspectral cameras. However, these cameras have a much lower resolution than 

RGB cameras and are much more expensive. For accurate 3D data acquisition, active LiDAR (light detection 

and ranging) sensors have been integrated on UAVs, such as the Riegl VUX-1UAV (VUX-1UAV, Riegl, Horn, 

Austria), Velodyne HDL-32E scanner (HDL-32E, Velodyne, San Jose, USA) or YellowScan (Vx-20, 

YellowScan, Montferrier sur Lez, France) (Eitel et al. 2016). Concerning UAV platforms, two main categories 

are commonly used: (i) fixed wing aircrafts, that are generally lightweight and therefore can only carry light 

sensors, but with a relatively long flight time (from 30 to 45 minutes); (ii) rotary wing UAV, which are of 

helicopter type, also called multirotor, which provide a great stability of flight, but also shorter flight times. 

Information on crop development has traditionally been studied by satellite-based sensor systems (Pinter et al. 

2003). Aboveground biomass, leaf area index (LAI) and chlorophyll content can be estimated accurately from 

reflectance information and vegetation indices (VIs). Since similar sensors now exist for UAVs, the methods 

have  been adapted for UAVs (Hunt et al. 2010; Verger et al. 2014; Duan et al. 2017). Similarly, 3D 

reconstruction from stereo images has been efficiently adapted to crop monitoring since 2009 through very high 

resolution of UAV imagery (Eisenbeiss 2009). 3D surface reconstruction produces a digital surface model 

(DSM), which is a digital representation of surface topography, including crops on the ground; it is also called a 

crop surface model (CSM) (Bendig 2015). Crop height is commonly used for assessing in-field crop 
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development  (Catchpole and Wheeler 1992; Ganguli et al. 2000). Two main technologies may be used to 

acquire a CSM: (i) LiDAR and (ii) photogrammetry. Terrestrial laser scanning (TLS) was first used to create 

CSMs (Hoffmeister et al. 2010; Liu et al. 2017; Sun et al. 2017). UAV photogrammetry is an inexpensive 

alternative to LiDAR, as it only requires a good quality RGB camera and the UAV  (Hugenholtz et al. 2013). For 

example, Bendig et al. (2014) estimated barley biomass from multi-temporal CSMs over one growing season, Li 

et al. (2016) predicted maize height from low-cost UAV images with an accuracy of 0.11 m, Holman et al. 

(2016) used photogrammetry as a new standard for high-throughput phenotyping of crop heights and Hassan et 

al. (2019) studied growth dynamics in bread wheat. 

In this study, the main objective was to evaluate the benefits of high spatial resolution of crop development 

derived from UAV RGB imagery versus manual estimation on the ground from a limited number of sub-plots, 

for monitoring field agronomic experiments. The approach was based on the calculation of the difference of two 

DSMs created from separate UAV flights: one when vegetation is present, and one over bare soil to capture the 

field topography. The specific objectives were to: (i) determine how accurately plant height can be estimated by 

UAV photogrammetry; (ii) evaluate the quality of maize yield prediction from plant height measurements; (iii) 

assess whether it would be possible to replace the UAV flight over bare soil with DSM available from 

topographical data providers; (iv) compare manual and UAV CSM-based yield predictions. The hypothesis of 

the study was that yield estimation in the different plots of an agronomic experiment is more reliable using a 

UAV than a series of manual measurements that are extrapolated.  

Material and methods 

Study area 

In 1998, the QualiAgro long-term experiment (Inrae 2019) was started within a collaboration between the 

National Research Institute for Agriculture, food and Environment (INRAE) and Veolia Environment Research 

and Innovation. The main objectives of this experiment were to study the effect of repeated applications of 

exogenous organic matter (EOM) on crop development and their impacts on soil and water (Noirot-Cosson et al. 

2016). This 6-ha field is located at Feucherolles in the Paris region, France (48.8965° N, 1.975° E). It is divided 

into 40 plots (each of 10 m x 45 m) (Fig. 1) organized in four repetition blocks. Four EOM have been studied: a 

farmyard manure (FYM), a municipal solid waste compost (MSW), a biowaste compost (BIO) and a co-compost 

of green waste and sewage sludge (GWS). The effects of the EOM were compared to control plots (CTR) that do 

not receive any EOM input. Finally, half of the plots received a minimal additional mineral N dose, while the 

other half of the plots received an optimal one. The study was conducted in 2014, when the field was sown with 

maize on April 22/23, by a Pioneer PR39F58 (Pioneer PR39F58, Pioneer semences, Aussonne, France), with a 

6-row seed drill (row spacing 0.8 m) and a density between 92000 and 95000 seeds ha-1. No pesticides were 

applied during the crop growth.  
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Fig. 1 The 6-ha QualiAgro Field experiment to study the effect of exogenous organic matter applications. (a) 

Location in the Paris region (France). (b) 40 plots in four repetition blocks, farmyard manure (FYM), municipal 

solid waste compost (MSW), biowaste compost (BIO) and a co-compost of green waste and sewage sludge 

(GWS), control (CTR), minimal additional mineral nitrogen (minimal N) and optimal one (optimal N) 

 

The unmanned aerial system 

The UAV platform used was a fixed-wing SenseFly® eBee (eBee, SenseFly Parrot group, Cheseaux-sur-

Lausanne, Switzerland) (Fig. 2), with a weight of 690 g and a 0.96 m wingspan. The battery life was around 45 

minutes enabling coverage of up to 100 ha in one flight at an altitude of 150 m.  

 

Fig. 2 Sensefly fixed wing eBee UAS platform 
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The eBee was launched by hand (without catapult) then an autopilot software flew the UAV according to a 

predetermined flight plan. Position and orientation of the eBee were given by on-board navigation sensors such 

as an inertial measurement unit (IMU) and a GNNS A high-speed optical sensor on the underside of the UAV 

was used to detect the proximity of the ground, during automatic linear landing phases. A ground station 

computer provided UAV flight control by communicating with the eBee using a 2.4 GHz radio modem. The 

ground station software eMotion 2 (“senseFly - eMotion” n.d.) was used for flight control and also for flight plan 

preparation. A Canon IXUS 127 HS 16 Megapixels RGB camera (IXUS 127 HS, Canon, Tokyo, Japan) was 

used for image acquisition. After the flights, eMotion 2 was used to import images and eBee log files to the 

computer. The UAV flight logs were used for geotagging images with GNSS position, and pitch, roll and yaw 

orientation. 

UAV flights and image acquisition  

Two series of flights were done in 2014 on the QualiAgro field with the eBee. The first series was done 6 days 

after sowing, on April 29, on bare soil at 120 m height above ground from 10h16 to 10h25 UTC. 38 images were 

shot corresponding to a 40 mm ground resolution and the final mosaic image was 15659 x 11880 pixels. Second 

series of flights, 126 days after sowing, on August 27, were done in the presence of the maize crop. Two flights 

were realized at 65 m height above ground, for a total of 414 images having a 20 mm resolution. To allow good 

3D reconstructions, overlap rates between successive images were set at 80% forward and 75% side overlap. 

Twelve ground control points (GCPs) were placed in the field and their positions were measured with a 

centimetric Trimble Pathfinder Power DGNSS (Pathfinder Power, Trimble, Sunnyvale, USA), averaging each 

position for one minute . Post-processed differential correction was made with the GPS Pathfinder Office 

software to improve the accuracy of the GNSS positions, using base data in Rinex format, collected at French 

RGP reference stations (GNSS permanent network). 

Photogrammetric 3D reconstruction 

Photogrammetric methods are used to make geometric measurements from aerial images especially to extract the 

3D position of objects (Kraus and Waldhäusl 1998). Considering two successive UAV positions 1 and 2 (Fig. 3) 

separated by a distance b (baseline), where pictures are taken with their optical axes mutually parallel, the 

observed maize plant P appeared on the first image plane (IP1) and on the second one (IP2) respectively at the 

points P1 and P2. These two points projections of the object point P, are called a pair of homologous points. The 

equipolar plane is defined by the O1 P O2 triangle and its intersection respectively with IP1 and IP2 defines the 

two equipolar lines EL1 and EL2. The disparity d is then defined as the distance between P1 and P2 along the 

equipolar lines. Using triangulation calculation, a direct relation could be found between the depth of the point in 

the real word (Zp) and d. It means that 3D structure of rigid objects can be retrieved from their 2D projected 

positions in pictures as demonstrated by Ullman's Structure from Motion (SfM) theorem (Ullman 1979).  
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Fig. 3 Photogrammetric triangulation principle for maize plant 3D reconstruction, for two successive UAV 

positions O1 and O2, P the maize plant position, IP1 and IP2 the image plane positions, P1 and P2 projections of P 

respectively in IP1 and IP2, EL1 and EL2 the equipolar lines, d the disparity (distance between P1 and P2), b the 

baseline (distance between O1 and O2) 

The automatic 3D reconstruction procedure began by the detection of key points in the images and the 

construction of their feature descriptor. Next, a feature matching step found corresponding pairs between images, 

allowing definition of the camera pose and 3D scene structure. In order to be matched, the descriptors need to be 

invariant between pictures. The scale invariant feature transform (SIFT) is one of the most commonly used 

descriptors (Lowe 2004). The resulting output is a 3D points cloud. An extra step is generally carried out to 

densify this point cloud (Fig. 4).  
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Fig. 4 General processing workflow from UAV images to ortho-mosaic and digital surface model (DSM). 

Photogrammetric processing uses, as input, the images as well as the camera positions given by the global 

navigation satellite system (GNNS) antenna. Ground control points (GCP) were placed in the plot, to be visible 

in the images. Their precise position was measured with a differential GNSS (DGNSS) to improve the 

georeferencing of the data. 

An orthophoto was exported based on the 3D model and the original pictures as well as a DSM that represented 

the scene surface in a raster format. In this study, the Agisoft Photoscan Professional 1.2.6 software (“Agisoft 

Metashape” n.d.) was used for the photogrammetric processing. To improve data georeferencing, 12 ground 

control points (GCPs) had been distributed evenly within the field, before each UAV flight. The precise position 
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of each GCP’s center was obtained using a rod-mounted centimetric Trimble Pathfinder Power DGNSS. The rod 

had a spirit level to guarantee a few centimeters accuracy. Photoscan parameters were fixed to: (i) 12 markers 

used to optimize camera positions and orientation data, which allowed better model reconstruction and precise 

georeferencing; (ii) highest accuracy for the "Align Photos" step and (iii) ultra-high quality for the “Build Dense 

Cloud” step with the mild depth filtering mode to preserve small details in the 3D cloud. A Dell precision T7910 

workstation was used, with an Intel dual Xeon 2.4 Ghz processor with 20 cores, 128 GB RAM and an NVIDIA 

Quadro M6000 24 GB graphic card. 

Photogrammetric crop height estimation  

The DSM produced from the flight of April 29 represented the bare soil surface (Zs) (Fig. 5a) and the one of 

August 27 represented the maize surface (Zm) (Fig. 5b). The height of maize plants (Fig. 5c) can then be deduced 

from the difference between Zm and Zs. The bare soil DSM was smoothed within a 1 m neighborhood to limit the 

non-permanent effects of soil labor marks on the topography. Making a flight on bare soil four months before the 

flight on crop is an important operational constraint. To test if the bare soil DSM can be replaced, DEMs 

produced by the French national institute of geographic and forest information (IGN) were tested: the IGN BD 

ALTI® DEM (25 m resolution) (BD ALTI, IGN, Saint-Mandé, France), IGN RGE ALTI® DEM (5 m 

resolution) (RGE ALTI, IGN, Saint-Mandé, France), and the RGE ALTI interpolated to a one-meter resolution 

using the ArcGIS 10.1 (ArcGIS 10.1, Esri, Redlands, USA) resample function with bilinear interpolation. Four 

maize height models (MH) were calculated based on the data used as a topographic reference: (i) MHuav using 

the DSM produced by the UAV, (ii) MHign25 using the 25 m resolution IGN DEM, (iii) MHign5 using the 5 m 

resolution IGN DEM and (iv) MHign1 using the 1 m resolution IGN DEM. 

 

Fig. 5 Photogrammetric maize height estimation method. UAV flight of April 29 to calculate bare soil surface 

(Zs) (a) and the one of August 27 to calculate the maize surface (Zm) (b). Maize height (MH) (c) was the 

difference between Zm and Zs 

Field data collection 

To validate the photogrammetric estimate of the MH, 38 reference measurements (MHref) were done in the 

Qualiagro field (Fig. 6), with a 2.5 m wooden rule, including a spirit level. The plant height was measured from 
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the ground to the base of the flower at the apex of the stem end. The precise position of each measurement was 

obtained using the Trimble Pathfinder Power DGNSS.  

 

Fig. 6 Maize height reference measurements in the field using a rule with a spirit level (a), each measurement 

was precisely located with a centimetric DGNSS (b) 

Manual harvest in 40 plots was conducted on October 22 and 27 for yield estimation. Each plot contained 12 

rows 0.8 m spacing, of which the six central rows were sampled to prevent side effects (Fig. 7). The ears and 

stalks were counted and collected in five sub-plots; each sub-plot consisted of two maize rows over a length of 

2.5 m, which represented a total of 25 m of maize on each of the 40 plots. The geolocation of each sub-plot was 

measured with the Trimble DGNSS. All aerial parts taken from sampled sub-plots were weighed. For each plot, 

a sample of stalks, stems, leaves and grains was also taken to be analyzed. Weighing of grains, stems and leaves 

were made fresh and after drying at 50°C. 
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Fig. 7 Map of the five sampling areas in one of the 40 QualiAgro plots (Fig. 1). The black rectangle is the 

boundary of the plot (45 x 10 m), the white lines represent the 12 maize rows present in the plot. To avoid edge 

effects, analysis was conducted on the six central rows only (lines 4 to 9, blue rectangle). Red rectangles depict 

destructive sampling areas. 

Maize height analysis 

CSMs and MHref layer were analyzed in ArcGIS 10.1. To consider a possible small inaccuracy of the DGNSS 

location, the CSMs were filtered with the maximum value in a circular neighborhood of 0.3 m radius around 

each pixel. MHref measurements were made along the stem which corresponded to the highest point of the leaves. 

The “Zonal Statistics as Table” function, of the ArcGIS 10.1 Spatial Analyst extension, was used to extract MH 

from the filtered CSM pixel closest to each MHref position.  The dataset was divided into two equally sized 

subsets: (i) one for height calibration calculating a linear regression between MH and MHref values, and (ii) one 

for validation between calibrated height MHcal with the previous linear model and MHref values. Linear 

regression equations were built and  the coefficient of determination (R2) was calculated. For validation dataset, 

the root mean square error of prediction (RMSEP) (Eq. 1) and the relative root mean square error of prediction 

(RRMSEP) (Eq. 2) were calculated.  

𝑅𝑀𝑆𝐸𝑃 = √∑ (𝑀𝐻𝑖,𝑟𝑒𝑓 − 𝑀𝐻𝑖,𝑐𝑎𝑙)
2𝑛

𝑖=1

𝑛
                                                                                                                       (1) 

𝑅𝑅𝑀𝑆𝐸𝑃 =
𝑅𝑀𝑆𝐸𝑃 ∗ 100

𝑀𝐻𝑖,𝑟𝑒𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

                                                                                                                                              (2) 

Where MHi,cal is the calibrated maize height obtained by applying the regression equation to the CSM at the ith 

position., MHi,ref is the reference maize height measured in the field at the same ith position, n is the number of 

height measurements and 𝑀𝐻𝑖,𝑟𝑒𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅   is the average reference height.  

Yield data analysis 

To compare the CSMs with the yield measurements acquired during the harvest, the 480 maize rows (12 rows x 

40 plots) were first manually digitized in ArcGIS, using the 20 mm resolution UAV orthophoto. For each maize 

row, a 0.3 m wide buffer polygon was created, with the ArcGIS buffer tool. The buffer zones were then 

intersected with the sampling sub-plots to match the maize harvesting areas (Fig. 8). The raster MHuav, cal values 
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were summarized within the previous areas using the ArcGIS “Zonal Statistics as Table” function. The results 

were compared to yield harvest data on the 40 plots.  

 

Fig. 8 Buffer zones for yield analysis around maize rows (green) are limited to sub-sampling plots (red), 

resulting in limited buffer areas (pink) 

Correlations between maize heights and green biomass or grain yield, both fresh and dry, were analyzed. As 

QualiAgro field is organized in to four repetition blocks, the first two (20 plots) were used as the calibration 

dataset and the remaining ones as the validation dataset. Three regression models were tested: exponential, 

power and generalized additive model (GAM). GAM well adapts the fitted curve to the data in the case where a 

parametric equation does not fit sufficiently. Exponential and power models were calculated with Microsoft 

Excel while GAM was calculated with R 3.3.1 (R Development Core Team 2016) using the mgcv package 

(Wood 2017). In the case of GAM, unlike the exponential and power models, the result of the modelling is not 

an equation. The "predict ()" function was used to build a look up table (LUT) of the predicted yield values. This 

LUT was used for model validation in Excel and for creating yield maps from the GAM model in ArcGIS. The 

"INDIRECT ()" function in Excel was used to extract the yield value from the LUT corresponding to a maize 

height rounded to centimeters. In ArcGIS, the spatial analyst “Reclass by Table” function was used to convert 

the MH raster to a new yield grid using the LUT. Scatter plots were built showing the regression equation, the 

coefficient of determination (R2). The RMSEP and RRMSEP were calculated for the validation dataset for all the 

cases. The different models were compared considering their performance (RRMSEP). 

Spatial analysis of the yield map 

To compare spatial variability, yield maps were derived from destructive sampling and the UAV data, based on 

dry grain yield per plot, divided into five classes. Three yield maps were derived: one from destructive sampling 

in the sub-plots, one from UAV yield estimation based on the GAM model considering the sub-plots, and one 

from the UAV yield estimation considering the entire rows in each maize plot (Figure 8).  The comparison of 

these maps was used to analyze the impact of the yield measurements sampling on the QualiAgro experiment 

predictions, plot by plot. Finally, a 9-class map was created from the UAV-estimated yield map at the pixel 

scale. Two zonal histograms per plot were compared, one calculated in the five sub-sample plots and the other 

over the entire plot. These results were analysed for two contrasting plots. 
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Results and discussion 

After post processing against a reference station, GCP horizontal accuracy was 0.029 m. As the antenna height 

was 3 m, a two degrees maximum error with respect to the vertical caused a ground error of 0.105 m. It is 

reasonable to assume that the total horizontal error was around 0.15 m. 

Photogrammetric reconstruction 

The 3D sparse cloud construction of the maize plot with the highest accuracy, took 8 h and 11 min of processing 

time from 414 images (Table 1) in Agisoft Photoscan. The result cloud contained more than 4 million points. 

The densification step in ultra-high quality took 8 h and 35 min and the final dense cloud contained 676 million 

points. 

Table 1 Parameters report for Photoscan reconstruction with the 414 UAV images taken on August 27th, for 

DSM creation in the presence of maize 

General Cameras Aligned 

cameras 

Markers Coordinate 

system 

 

Rotation angles 

 414 414 12 WGS 84  

 

Yaw, Pitch, Roll 

Point cloud Points Accuracy  Matching time Alignment time 

 

RMS reprojection 

error 

 4,410,369 Highest 7 h 49 min 22 min 47 sec 

 

0.169 

Dense Point 

Cloud 

Points Quality Depth filtering Depth maps time 

 

Dense cloud time 

 676,282,349 Ultra 

High 

Mild 3 h 31 min 5 h 04 min 

 

The final DSM and image mosaic were 29740 x 24220 pixels size with a ground resolution of 20 mm per pixel. 

The mean XY positioning error in the final mosaic estimated by Photoscan was 0.098 m. Figure 9 shows the two 

final mosaics, the one on bare soil (April 29) and the one on crop (August 27). 
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Fig. 9 Final 15659 x 11880 pixels mosaic on bare soil (April 29) with a 40 mm ground resolution (a),  final 

29740 x 24220 pixels mosaic on maize (August 27) with a 20 mm ground resolution (c); (b) and (d) show a 

zoom on an 28 x 16 m area centered on the building containing the measuring sensors of the plot 

Maize Height estimations 

The four MH models were calculated according to the topographic data used: MHuav, MHign25, MHign5 and MHign1. 

Figure 10 presents the MHuav map example using the UAV topographic map. 
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Fig. 10 Maize Height (MHuav) creation (c) from the difference between Zm (b) and Zs (a) 

Figure 11 presents the four calibration equations obtained by linear regression between the MH models and the 

in-field reference maize height measurements. Coefficients of determination (R2) were all between 0.89 and 0.9. 

There was a strong correlation between the maize height models calculated from the UAV data and the in-field 

measurements. In the regression equations, there was a bias between 0.43 and 0.65 m. This bias can easily be 

explained because the height measurements in the field were made from the ground to the base of the top flower, 

while in top view UAV images (20 mm resolution), the flower has little surface and the leaves located a few tens 

of centimeters lower were detected as the top surface. Bendig et al. (2014) also noted this difficulty to compare 

the reference height measure in the field with the height extracted from the CSM in a study on barley. They 

averaged field and CSM height values over an area of a few square meters to compare them, but field 

measurements were made only on the highest part of the plant whereas CSM heights integrate all parts of the 

crop. In this study, unlike Bendig et al. (2014), field height measurements for CSM calibration were plant-level 

point measurements. Comparing the height measurement with the correct CSM pixel required a georeferencing 

with an accuracy of a few centimeters. Adding the GNSS error in the field (0.15 m) to the error related to the 

construction of the image mosaic (0.098 m) gives a total error of 0.25 m. To limit the effect of this error, CMSs 

were filtered with the maximum value in a circular neighborhood of 0.30 m radius around each pixel before 

calibration regression. 
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Fig. 11 Regressions between in field maize height reference measurements and the four MH models: MHuav (a), 

MHign1 (b), MHign5 (c) and MHign25 (d) 

Model validations are presented in Figure 12. The maize height prediction error (RMSEP) was 0.16 m 

(RRMSEP=7.2 %) for the MHuav model. This result is consistent with those found in the literature. Li et al. 

(2016) had similar results using 20 mm resolution UAV images on a maize crop. They also found good 

correlation between UAV derived crop height and field measurements (R2 = 0.88), using a stepwise linear 

regression model. They found an RMSE of 0.16 m (RRMSE=6.40 %). Chang et al. (2017) studied crop height of 

Sorghum with a similar approach. Their result showed an RMSE of 0.33 m. Yue et al. (2017) found a 

satisfactory regression (R2=0.69) between CSM and measured height for winter wheat canopies. Holman et al. 

(2016) compared UAV modelled CSM to crop heights measured from a terrestrial laser scanner (TLS) and from 

a 2 m rule. Their study was conducted on a winter wheat field phenotyping experiment. They obtained good 

results with crop height RMSE ranging from 0.02 to 0.1 m. It is not easy to directly compare the height 

estimation performance of these studies, because they were done on various crops of different size, possibly at 

different phenotypical stages.  
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Fig. 12 Validation of the relationships (Fig. 11) for MH models: MHuav (a), MHign1 (b), MHign5 (c) and MHign25 

(d) 

Height RMSEP obtained with the three IGN models (MHign25, MHign5 and MHign1) ranged from 0.21 to 0.22 m to 

compare with the 0.16 m RMSEP obtained with MHuav model. The UAV DSM gave the most accurate height 

estimate but it was only slightly better than with IGN models. Using DSM topographic data instead of a UAV 

flight on bare soil, can therefore be considered as satisfactory, which simplifies the method. Nearly identical 

performance was obtained regardless of the DEM resolution (from 1 to 25 m). For this, the local topographic 

slope must be small at the scale of the DSM cell, for the error induced on the maize height estimate to be 

negligible. This was the case for the QualiAgro experiment, which was a relatively flat field. For example, for a 

one-meter resolution DSM, to have a maximum error in height of 0.05 m, the local slope must be less than 5%. 

Grain and biomass yield prediction 

Figure 13 presents the scatter plots of the regression models: exponential (a), power (b) and GAM (c) for dry 

grain yield prediction. The performance of all the prediction models for grain and green biomass yields, dry and 

fresh, is presented in Table 2. Whether for grain or biomass yield, fresh or dry, the models are always ranked in 

the same order according to their performance (RRMSEP): the GAM model is the most efficient, followed by 

the power model and finally the exponential one. The results showed that the biomass measurements have a 

strong correlation with the MH estimated by UAV, with R2 ranging from 0.83 to 0.92 for the different models 

and RRMSEP calculated with a validation data subset range from 13.03 to 20.23 %. The best model was 
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obtained for dried biomass prediction using GAM, with a RMSEP of 0.6.1 t ha-1 (RRMSEP = 13.03 %) and an 

R2 of 0.9.  

Fig. 13 Prediction models for dry grain yield. Calibration of the models: exponential (a), power (b) and GAM (c) 

on the first 20 plots. Validation of models: exponential (d), power (e) and GAM (f) 

Li et al. (2016) had similar results with a random forest regression model between MH and dried (85°C) maize 

biomass, with an R2 of 0.78 and an RMSE of 2.7 t  ha-1 (RRMSE = 16.66 %). Their result may be a little over-

estimated as they did not validate it on an external independent dataset. Bendig et al. (2014) achieved a 

RRMSEP of 54.04 % and an R2 of 0.71 for biomass prediction using an exponential regression, in a summer 
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barley experiment.  The quality of yield predictions is undoubtedly dependent on the type of crop and the period 

of measurement. 

Table 2 Performance of grain and green biomass yield prediction models  

Grain (G) 

Biomass (B) 

Dry (D) 

Fresh (F) 

Model R2  

Model 

RMSEP 

validation 

t ha-1 

RRMSEP 

validation 

% 

RRMSEP 

difference 

D - F 

RRMSEP 

difference 

B – G 

G D exponential 0.83 1.20 22.02 % + 0.21 % - 4.54 % 

G D power 0.87 1.10 20.23 % + 0.10 % - 4.83 % 

G D GAM 0.90 0.80 14.77 % + 0.06 % - 1.74 % 

G F exponential 0.83 1.79 21.81 % x - 1.62 % 

G F power 0.87 1.66 20.13 % x - 1.8 % 

G F GAM 0.90 1.21 14.71 % x + 0.36 % 

B D exponential 0.86 0.82 17.51 % - 2.68 % x 

B D power 0.90 0.72 15.40 % - 2.93 % x 

B D GAM 0.90 0.61 13.03 % - 2.04 % x 

B F exponential 0.88 4.07 20.19 % x x 

B F power 0.91 3.70 18.33 % x x 

B F GAM 0,92 3.04 15.07 % x x 

 

There was little difference in performance (RRMSEP) between models built with fresh biomass or grain with 

models built after drying. This difference was less than 0.21 % for grain models and less than 2.93 % for 

biomass models. This negligible difference could be explained by a few humidity variations that have been 

measured. Throughout the QualiAgro experiment, the average grain moisture was 33.99 % with a coefficient of 

variation of 3.95 % and the average biomass moisture was 75.78 % with a coefficient of variation of 2.59 %. In 

contrast, Bendig et al. (2014) found better results with fresh biomass rather than with dried biomass for barley. 

The prediction is still slightly better for the biomass models (lower RRMSEP) compared to the grain models, 

except for the fresh GAM model where the difference is nearly zero (+ 0.36%). This difference ranges from -

 1.62 to - 4.83 %. 

Spatial analysis of the yield maps 

Figure 14 presents maps of mean grain yield in the 40 QualiAgro plots in five classes. The first map (Fig. 14a) 

was calculated from the MH UAV measurements (GAM) and the second one (Fig. 14b) from the field 

measurements. Each of the 40 plots is in the same category for both maps. In the case of the third map (Fig. 14c), 

the yield estimate was based on the maize height measured by the UAV along the entire rows, in contrast to the 

other two maps that were based on measurements in the five sampling sub-plots. Six plots of this third map were 

in a different category compared to the other two maps, because the sampling areas were not the same for this 

map. 
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Fig. 14 Grain yield maps in five classes (mean value per plot) from MH estimated by UAV (GAM model) in (a) 

and from field measurements in (b), estimates based on the five sample sub-plots for (a) and (b), while (c) was 

the same as (a) but using MH and the complete maize rows in each plot. Crosses indicate estimates that are 

different from field measurements (b), (d) numbering of the 40 plots distributed in the four blocks 

 

Figure 15 shows the 40 QualiAgro plot maps made with the GAM model for predicting grain yield (dried) and 

Table 3 presents the mean yields and coefficients of variation calculated from these maps in each plot. The 

average predicted yield over the entire QualiAgro plots was 5.6 t ha-1 while the same average yield measured 

from 200 samples in the field was very close with a value of 5.5 t ha-1. The mean yield per plot ranged from 1.4 

(plot 407 MSW) to 9.2 t ha-1 (plot 104 GWS+N). 
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Fig. 15 Dried grain yield prediction maps in the 40 QualiAgro plots calculated using the GAM model 

Table 3 Basic statistics of grain yield prediction with GAM model per QualiAgro plot (average yield in t ha-1 

and coefficient of variation in percentage) for the different treatments shown in Figure 1 

Plot Avg CV Plot Avg CV Plot Avg CV Plot Avg CV 

401 GWS+N 6.13 40.8 301 MSW+N 4.58 52.4 201 GWS+N 8.41 22.0 101 FYM+N 7.66 28.9 

402 FYM+N 6.96 32.0 302 BIO+N 6.70 42.9 202 MSW+N 7.18 33.1 102 CTR+N 5.87 37.0 

403 BIO+N 7.4 32.3 303 CTR+N 4.76 40.7 203 FYM+N 7.63 25.4 103 MSW+N 8.54 22.6 

404 CTR+N 5.93 37.0 304 FYM+N 7.27 30.5 204 BIO+N 8.94 25.9 104 GWS+N 9.24 20.7 

405 MSW+N 7.76 30.4 305 GWS+N 7.58 28.0 205 CTR+N 4.90 40.6 105 BIO+N 8.90 23.9 

406 GWS 3.69 61.2 306 FYM 4.39 57.3 206 GWS 6.48 37.7 106 CTR 1.72 67.1 

407 MSW 1.38 72.9 307 BIO 3.67 58.8 207 FYM 4.88 43.5 107 MSW 4.16 60.3 

408 BIO 4.37 47.3 308 MSW 3.25 66.0 208 CTR 2.01 69.4 108 GWS 5.27 46.2 

409 FYM 4.95 46.5 309 CTR 1.81 73.6 209 BIO 6.37 40.2 109 BIO 5.92 42.6 

410 CTR 1.89 70.7 310 GWS 6.19 41.3 210 MSW 5.34 46.3 110 FYM 4.14 49.0 

 

The average yield over all the plots that received a minimal additional mineral N dose was 4.1 t ha-1 while it was 

7.1 t ha-1 for the plots that received an optimal one. Fig. 14c and Fig. 15 show the green dominant color in the 

northern part (optimal N) of the field, corresponding to higher yield, and red dominating the southern part 

(minimum N) with lower yield. The calculated plot-per-plot coefficients of variation range from 20.7 to 73.6% 

with an average value of 43.6% reflecting the intra plot variability of the yield. 
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Figure 16 presents an estimated grain yield map in 9 classes for two plots. For each map, two zonal histograms 

were calculated: one for the whole plot maize rows (black rectangle) and one for the five sampling sub-plots 

(blue rectangles). In the case where the five sub-plots are representative of the variability of all the plot rows, the 

two histograms should be identical. For parcel 405, it is nearly the case, there is little difference between the two 

histograms (maximum 23% for class 2); for parcel 208 there are pronounced differences particularly for the 

classes one in red (82%) and two in dark orange (50%). The average yields on the entire plot and in the five sub-

plots were: (i) 7.75 and 7.76 t ha-1 for parcel 405 (0.13 % error) and (ii) 2.01 and 2.51 t ha-1 for parcel 208 (24.86 

% error). Several large red and dark orange areas in parcel 208 explain this error, mainly located in the west and 

south of the parcel, outside the five sampling plots. Classes one and two are thus under-represented in the 

sampling plots. Similarly, classes 8 and 9 are over-represented in sampling plots compared to the whole plot. 

Intra-field spatial variability of yield can be relatively large, especially in the case of a field experiment, where 

different experimental farming practices can lead to contrasting effects. These variabilities can be localized in 

the plot, as for example in the case of attack by destructive pests, crop disease, presence of weeds or errors 

during agricultural practices such as defect of sowing or sub-dose (over-dose) of product. This was particularly 

the case in 2014 on QualiAgro with the presence of many weeds due to the transition to organic farming 

practices that year. The method will be applied again on QualiAgro with a better control of weeds. It is therefore 

very difficult to design a crop monitoring sampling that can take into account these possible spatial variabilities, 

which are almost random. For this case, high spatial resolution UAV imagery is particularly useful.  
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Fig. 16 Estimated grain yield map in 9 classes for plot 405 (a) and for plot 208 (c). For each map, two zonal 

histograms were calculated: one for the whole plot maize rows (black rectangle) and one for the five sampling 

sub-plots (blue rectangles). Histograms for plot 405 (b), histograms for plot 208 (d) 
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Conclusions 

This work shows the potential of using crop height estimation from UAV images to spatially predict maize yield 

for better variability analysis in a field experiment. The method that was used to estimate crop height was based 

on two UAV flights on an agricultural plot, one in the presence of maize and the other on bare soil. A 3D 

photogrammetric approach was chosen for deriving DSMs from the UAV imagery. Crop height was obtained by 

difference of the two DSMs. The obtained maize prediction error was 0.16 m (RRMSEP=7.2 %) based on 38 

ground reference measurements, demonstrating accurate crop height prediction. DEMs produced by the French 

Institute of Geography were also used instead of bare soil flight data. Maize height prediction error obtained was 

0.21 m (RRMSEP=9.2 %). Since little precision is lost (~0.1 m) when using basic topographic data, it is a valid 

alternative as it reduces the number of necessary UAV flights. Based on crop height, exponential, power and 

GAM regression models were used to predict above-ground biomass and grain yield (fresh or dry). The best 

result was obtained with the GAM model with an error of 0.8 t ha-1 (RRMSEP=14.77 %) for dried grain yield 

prediction, based on 100 sub-plot ground validation measurements.  Mean yield value per plot was estimated 

from UAV data in sub-plots, which were also manually harvested, and using all rows within one plot. 

Considering the yield estimate on all the plot rows as the closest to reality, the manual method is less accurate 

with differences of up to 25% on one plot. This case mainly occurs where a local heterogeneity is poorly 

represented in the sub-plots. Overall, 6 out of 40 plots showed a differing yield, when classifying manual and 

UAV-derived yield into five classes. Therefore, the UAV estimate improved overall results by 15%, leading to a 

better comparison of the 10 agronomic treatments of the QualiAgro experiment. 

Monitoring of agronomic experiment such as QualiAgro could be improved by integrating yield estimates using 

UAV with several advantages: (i) automation of biomass measurements; (ii) a better spatial representativeness of 

the measurements per plot, (iii) a detailed sub-plot cartography, (iv) reducing the number of harvesting sub-plots 

(used to calibrate the UAV maps); and (v) allow non-destructive monitoring throughout the cropping season. 
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