

The fate of a suppressed X-linked meiotic driver: experimental evolution in Drosophila simulans

Héloïse Bastide, David Ogereau, Catherine Montchamp-Moreau, Pierre R

Gérard

► To cite this version:

Héloïse Bastide, David Ogereau, Catherine Montchamp-Moreau, Pierre R Gérard. The fate of a suppressed X-linked meiotic driver: experimental evolution in Drosophila simulans. Chromosome Research, 2022, 30 (2-3), pp.141-150. 10.1007/s10577-022-09698-1. hal-03855108

HAL Id: hal-03855108 https://agroparistech.hal.science/hal-03855108

Submitted on 16 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	
1	The fate of a suppressed X-linked meiotic driver: experimental evolution
2	in Drosophila simulans
3	-
4	Héloïse Bastide, David Ogereau, Catherine Montchamp-Moreau and Pierre R. Gérard
5	
6	
7	Authors information
8	Héloïse Bastide
9	Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie,
10	91272
11	Gif-sur- Yvette, France.
12	https://orcid.org/0000-0003-4553-4738
13	
14	David Ogereau
15	Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie,
16	91272, Gif-sur-Yvette, France.
17	
18	Catherine Montchamp-Moreau
19	Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie,
20	91272, Gif-sur-Yvette, France.
21	https://orcid.org/0000-0002-5044-9709
22	
23	Pierre R. Gérard
24	Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR Génétique Quantitative et
25	Evolution, 91272, Gif-sur-Yvette, France.
26	https://orcid.org/0000-0001-5859-3476
27	
28	
29	
30	
31	Corresponding authors:
32	Pierre R. Gérard (pierre.gerard@agroparistech.fr) and
33	Héloïse Bastide (heloise.bastide@universite-paris-saclay.fr)
34	
2	1

- 4
- 35 Acknowledgements: We thank Kevin Poissenot, Fanny Husson for technical assistance, as
- 36 well as Sylvie Nortier for medium preparation. Several lines used in this study were derived
- 37 from flies collected by Jean R. David and Daniel Lachaise. We also thank Quentin Helleu and
- 38 two anonymous reviewers for very helpful discussions. This work was funded by Centre Na-
- 39 tional de la Recherche Scientifique and Université Paris-Saclay. HB was funded by a French
- 40 ministry scholarship.
- 41
- 42 Authors contribution: H.B. conceived and designed the research; H.B., P.R.G. and D.O. per-
- 43 formed research; P.R.G., H.B. and C.M.M. analyzed the data and wrote the paper.

44 Abstract

45 Sex-ratio (SR) meiotic drivers are X-linked selfish genetic elements that promote their own 46 transmission by preventing the production of Y-bearing sperm, which usually lowers male 47 fertility. The spread of SR drivers in populations is expected to trigger the evolution of 48 unlinked drive suppressors, a theoretically predicted co-evolution that has been observed in 49 nature. Once completely suppressed, the drivers are expected either to decline if they still affect the fitness of their carriers, or to evolve randomly and possibly get fixed if the 50 suppressors eliminate their deleterious effects. To explore this issue, we used the Paris sex-51 52 ratio system of Drosophila simulans in which drive results from the joint effect of two 53 elements on the X chromosome: a segmental duplication and a deficient allele of the HP1D2 gene. We set up six experimental populations starting with 2/3 of X chromosomes carrying 54 both elements (X^{SR}) in a fully suppressing background. We let them evolve independently 55 56 during almost a hundred generations under strong sexual competition, a condition known to cause the rapid disappearance of unsuppressed Paris X^{SR} in previous experimental 57 populations. In our study, the fate of X^{SR} chromosomes varied among populations, from 58 extinction to their maintenance at a frequency close to the starting one. While the reasons for 59 60 these variable outcomes are still to be explored, our results show that complete suppression can prevent the demise of an otherwise deleterious X^{SR} chromosome, turning a genetic 61 conflict into cooperation between unlinked loci. Observations in natural populations suggest a 62 63 contrasting fate of the two elements: disappearance of the duplication and maintenance of deficient HP1D2 alleles. 64

65

66

67 Key words: meiotic drive, drive suppression, *Drosophila*, sex ratio, experimental evolution

68

69 Introduction

- 70 X-linked meiotic drivers favor the transmission of their carriers at the expense of the Y
- 71 chromosome in heterogametic males, thus producing female-biased sex ratios. At the
- 72 population level, they are predicted to rapidly spread and eventually lead to extinction if the
- 73 driver is strong and males become too rare.
- 74 However, a stable polymorphism of X-linked drivers has been observed in natural populations
- of several *Drosophila* species (e.g., James and Jaenike 1990; Beckenbach 1996; Dyer 2012).
- 76 Although this could be due to an observational bias, it reveals the existence of mechanisms
- that tend to balance the transmission advantage of the drivers (Jaenike 2001; Helleu et al.
- 78 2015; Price et al. 2020). First, in a number of species, it has been shown that the loss of Y-
- 79 bearing sperm is not compensated by an overproduction of X-bearing sperm, which lowers
- 80 male fertility (e.g., Policansky and Ellison 1970; Hauschteck-Jungen and Maurer 1976; Wu
- 81 1983b; Montchamp-Moreau and Joly 1997; Presgraves et al. 1997). This, and probably other
- 82 pleiotropic effects, makes *Drosophila sex-ratio* (SR) males poor competitors against standard
- 83 males (e.g., Wilkinson et al. 2006; Angelard et al. 2008; Price et al. 2008a). Second, when the
- 84 driver is located in low recombination regions or within inversions, linked deleterious
- 85 mutations can hitchhike and lower the fitness of the carriers, as it has been documented in
- 86 *Drosophila recens* (Dyer et al. 2007). Several adaptations have also been proposed as
- 87 countervailing processes against drivers (Presgraves 2008), such as polyandry (e.g., Angelard
- et al. 2008; Price et al. 2008b 2010a; Pinzone and Dyer 2013; reviewed in Wedell 2013) or
- 89 mate preference (e.g., Wilkinson et al. 1998). The spread of strong X-linked drivers can also

90 be halted by the evolution of drive resistance on the Y chromosome and/or drive suppressors

- 91 on the autosomes (Price et al. 2020). When a population is highly female-biased, any variant
- 92 that produces more males will be favored through a frequency-dependent selective process
- towards a balanced sex ratio (Fisher 1930; Bull and Charnov 1988). In particular, Y-linked
- 94 resistance should rapidly spread to fixation (Thomson and Feldman 1975; Clark 1987) but can
- 95 be maintained at a stable equilibrium depending on frequency-dependent interactions between
- 96 the driving X chromosome (X^{SR}) and the resistant Y (Carvalho et al. 1997) or cycle with the
- 97 X^{SR} (Hall 2004). An autosomal suppressor of drive is also predicted to be selected and reach
- 98 fixation (Hamilton 1967). It can also stay at an equilibrium frequency with the driver when
- 99 there is overdominance in females (Wu 1983a) or when the driver is slightly deleterious (Vaz
- 100 and Carvalho 2004). In the latter case, an autosomal suppressor should go to fixation only if
- 101 the driver is neutral in fitness (Vaz and Carvalho 2004). A similar qualitative prediction can
- 102 be made for a resistant Y chromosome, with an higher fixation probability even in the
- 11

103 presence of a deleterious driver (Carvalho and Vaz 1999). The fate of the driver and 104 suppressor will depend on several parameters, such as the fitness cost associated with drive 105 and suppression in males and females, the time at which the suppressor arises during the spread of the driver, or the population structure (Carvalho and Vaz 1999; Hall 2004; Vaz and 106 107 Carvalho 2004). Under complete suppression, the driver frequency is expected to decline if 108 costly or to evolve stochastically if neutral. This process can generate evolutionary cycles of drive and suppression (Hall 2004), or cryptic meiotic drive systems like the Drosophila 109 simulans Winters system (Tao et al. 2007a,b; Kingan et al. 2010; Helleu et al. 2015). 110 111 Resistant Y and autosomal suppressors have been detected in a number of Drosophila species 112 exhibiting SR drive (e.g., Stalker 1961; Voelker 1972; Carvalho and Klaczko 1993; Carvalho 113 et al. 1997; Cazemajor et al. 1997; Jaenike 1999; Montchamp-Moreau et al. 2001; Courret et al. 2019), but the dynamics of drive and suppression has rarely been assessed in natural 114 populations. In *Drosophila mediopunctata*, X^{SR} frequency had not changed within 10 years in 115 the 1990s, suggesting that the driver was kept at an equilibrium frequency reflecting a balance 116 between partial suppression and natural selection (Carvalho and Vaz 1999). 117 The only documented example of ongoing SR drive/suppression co-evolution in natural 118 119 populations is that of the Paris SR system of D. simulans. In this system, the drive is caused 120 by the joint effect of two X-linked elements: a young segmental duplication, estimated less than 500 years old (Fouvry et al. 2011) and dysfunctional alleles of the HP1D2 gene (Helleu 121 122 et al. 2016). A first survey of natural populations 25 years ago revealed a sharp contrast between sub-Saharan Africa and Indian Ocean, where a complete drive suppression along 123 with various frequencies of X^{SR} (up to 60%) were observed, and the rest of the world where 124 X^{SR} were rare or absent with no or only a slight drive suppression (Atlan et al. 1997). Since 125 then, X^{SR} have been found to steadily decrease in East Africa and Indian Ocean, whereas drive 126 127 suppression has been persistent (Bastide et al. 2011; 2013). In contrast, the driver has been 128 rising in frequency together with drive suppression around the Mediterranean sea, from Middle East to North Africa and Europe (Bastide et al. 2013; Helleu et al. 2019). In the two 129 species *D. mediopunctata* and *D. simulans*, the rise of suppression when X^{SR} is fixed was 130 demonstrated in experimental populations (Carvalho et al. 1998; Capillon and Atlan 1999). In 131 132 contrast, the Paris driver of *D. simulans* was unable to invade laboratory populations when 133 introduced at a 25% (or 67%) frequency and was even lost in very few generations in the absence of suppressors, suggesting the existence of strong deleterious effects (Capillon and 134 Atlan 1999). Yet in nature, X^{SR} chromosomes are able to invade rapidly (Derome et al. 2008; 135 Bastide et al. 2011). We can thus hypothesize that in the wild, Paris X^{SR} are much less 136

13

14 5

- 137 deleterious than in experimental populations where there is a strong competition between
- 138 males, and/or that their detrimental effects are at least partly rescued by the coevolution of
- 139 suppressors. This last assumption is supported by experimental data showing that X^{SR}
- 140 chromosomes have no effect on cyst number or cyst length in the male testis (Montchamp-
- 141 Moreau and Joly 1997).

Here, we have studied the effect of suppressors on the dynamics of the Paris drivers by following the evolution of X^{SR} chromosomes in experimental populations similar to those in Capillon and Atlan (1999) but set up with complete suppression. This means that the drivers did not benefit from any segregation advantage from the beginning. We obtained contrasting results depending on the replicates, which could partly reflect the variable dynamics observed in natural populations. Most importantly, we demonstrate that suppression slows down and can sometimes prevent the elimination of an otherwise deleterious X^{SR} chromosome.

149

150 Materials and Methods

151 **Drosophila strains:**

- 152 SR is a reference strain for the Paris *sex-ratio* system. It originates from flies collected in the
- 153 Seychelles archipelago in 1981 (Atlan et al. 1997). A *sex-ratio* X chromosome (X^{SR}) is fixed
- 154 in the SR strain. It carries the two elements required to induce the drive: the tandem
- duplication Dp^{SR} and a distorter allele at the HP1D2 locus ($HP1D2^{SR}$). It induces a strong
- 156 female-biased sex ratio in a suppressor- and resistance-free background (90% of females in
- 157 the progeny) but the SR strain contains a resistant Y chromosome and autosomal suppressors
- 158 that together make X^{SR} fully suppressed (Cazemajor et al. 1997). The SR stock thus shows a
- 159 1:1 sex ratio.
- 160 Seych1 and Seych3 are two isofemale lines with standard (i.e. non-driving) X chromosomes
- 161 (XST). Each line was obtained from the progeny of a single female collected by D. Lachaise in
- 162 the Seychelles (Mahé island) in 2003. The X chromosomes of Seych1 and Seych3 do not
- 163 carry the Dp^{SR} duplication associated with Paris *sex-ratio* drive but display the same $HP1D2^{SR}$
- allele than the one found in the SR strain (see molecular tests below). While both lines did not
- show any SR activity, they were found to completely suppress the *Paris* sex-ratio drive
- 166 similarly to the SR strain (Table S1, S2 and S3, $\chi^2_{2 df} = 1.06$; P = 0.59).
- 167

168 Experimental populations

- 169 Three replicate populations were set up by crossing 100 virgin females from the SR strain
- 17 6 18

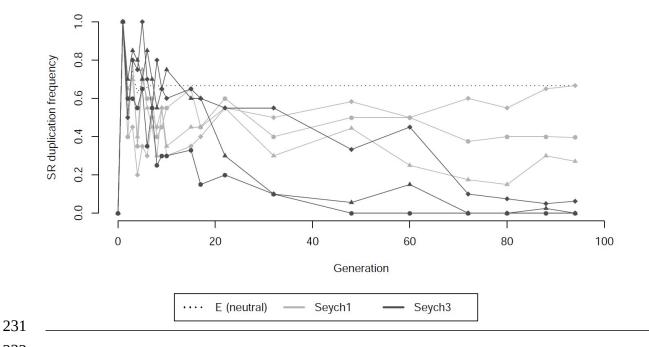
with 100 males from the Seych1 line. The same procedure was used with the Seych3 line to 170 set up three other replicate populations. In all six populations, the initial frequency of the X^{SR} 171 chromosomes was then 2/3. Each population was made evolving with non-overlapping 172 173 generations in a 500 mL bottle containing 100 mL axenic cornmeal-yeast medium (David 174 1962). At each generation, adults were allowed to emerge for a few days before being 175 transferred into a new bottle for egg lying during half a day. At least 500 eggs were then 176 randomly collected in each population to produce the next generation. All six populations were kept at 25°C during the whole experiment. The experimental procedure is described in 177 178 Fig S1.

179 Molecular tests

- 180 Dp^{SR} : DNA was extracted using a classical protocol and a PCR test was performed to detect
- 181 the presence of Dp^{SR} , with primers specific to the junction region between the two paralogous
- 182 segments (Bastide et al. 2011; Fouvry et al. 2011). Individual molecular tests of the presence
- 183 of Dp^{SR} were performed on 20 males per population until G₁₀, and then on 20-60 males per
- 184 population at generations G_{15} , G_{17} , G_{22} , G_{32} , G_{48} , G_{60} , G_{72} , G_{80} , G_{88} and G_{94} .
- 185 In addition, we checked for the *Trf2* gene copy number by real-time qPCR (Bastide et al.
- 186 2013) using subsamples of males with or without the duplication.
- 187 *HP1D2^{SR}*: We sequenced two markers in the second drive element region from the three
- 188 parental strains: the markers GA17 and GA19 spanning a total of 2 kb including the driving
- 189 gene *HP1D2* (described in Table S7 in Helleu et al. 2016).
- 190 Sequences were aligned and edited with Geneious version R6 (Kearse et al. 2012).
- 191

192 Drive and suppression assays

Tests of drive and suppression abilities were conducted using the crossing procedures
previously described (e.g. Montchamp-Moreau and Cazemajor 2002). In short, drive ability
was assessed by measuring the sex ratio in the progeny of males carrying the X chromosome
under study and a drive sensitive background (Y chromosome and autosomes). Suppression
ability was assessed by measuring the sex ratio in the progeny of males carrying the
autosomes and the Y chromosome under study and a reference X^{SR} chromosome.


202 Data analysis

- 203 We estimated the 95% confidence intervals on a binomial distribution of the X^{SR}
- 204 chromosomes (i.e. that carry the SR duplication) with the Wilson's score method (Brown et al.
- 205 2001). We used Pearson's chi-squared tests or Kruskall-Wallis rank sum tests for comparing
- 206 sex ratio and X^{SR} distributions.
- 207 We also estimated selection coefficients in the six replicate experimental populations through
- a maximum likelihood procedure, in the same way as Bastide et al (2011). Briefly, the
- 209 evolution of X^{SR} and X^{ST} frequencies under natural selection is modelled in a classical
- 210 deterministic framework for a biallelic X-linked locus (Haldane and Jayakar 1964). We
- 211 considered recessive deleterious effects of X^{SR} that lower the fitness of homozygous SR/SR
- 212 females or SR males by s. The likelihood of s given the data from experimental populations is
- 213 calculated by multiplying the binomial probabilities of obtaining the observed number of X^{SR}
- 214 in males given the frequency predicted by the deterministic model at every generation
- sampled. 95% confidence intervals were computed with the values of *s* that correspond to a
- 216 log-likelihood drop-off of 1.92 (half of a 1-df chi-squared random variable corresponding to a
- 217 P-value of 5%) on each side of the maximum.
- 218

219 **Results**

220 Evolution of Dp^{SR} in a context of total suppression

- 221 Given that suppression is complete in the SR, Seych1 and Seych3 strains (Table S1, S2 and
- S3) and that all three lines carry the same $HP1D2^{SR}$ deficient allele, the Dp^{SR} duplication was
- 223 used as a proxy to follow the evolution of X^{SR} chromosomes in each of the six populations.
- 224 The results are shown in Figure 1 and Table S6, and a subsample of the data with confidence
- intervals is presented in Table S7. The final Dp^{SR} frequencies in G₉₄ were significantly
- different within Seych1 replicates ($\chi^2_{2 df} = 15.92$; $P < 10^{-3}$) and marginally significantly
- different within Seych3 replicates ($\chi^2_{2 df} = 1.13$; P = 0.047). The distributions of Dp^{SR}
- 228 frequencies were also marginally significantly different between the replicate populations
- from the two lines (Kruskal-Wallis $\chi^2_{1 \text{ df}} = 3.97$; P = 0.046).
- 230

233 Figure 1: Evolution of the frequency of males carrying Dp^{SR} in the six experimental

populations (E: expected frequency if neutral, also corresponding to the frequency of X^{SR}

under a neutral Wright-Fisher model with infinite population size). Large fluctuations were expected during the first five generations, due to the exclusively maternal origin of the X^{SR}

expected during the first five generations, due to the exclusively maternal origin of the X^{SR} chromosome among the founders. Triangles represent the first replicates of each line (Sevch1-

1 and Seych3-1), diamonds the second replicates (Seych1-2 and Seych3-2), and circles the

third replicates (Seych1-3 and Seych3-3).

- 240
- 241
- 242

243 Control of the strict association of the drive phenotype with Dp^{SR}

244 At G₈₈, we checked for the distortion phenotype associated with the X chromosomes carrying

245 Dp^{SR} in the two populations where it was at its highest frequencies (i.e. the two replicates

246 Seych1-2 and Seych1-3). According to the crossing procedure described above, 26 X

chromosomes from population Seych1-2 and 24 X chromosomes from population Seych1-3

248 carrying Dp^{SR} were tested for drive ability and all of them produced significantly female-

249 biased progenies. A sub-sample of X chromosomes that were used as control and were devoid

250 of Dp^{SR} at G₈₈, did not show any sex ratio bias (Tables 1 and 2).

251 Whether an X chromosome is SR or not, recombination occurs freely between the two loci

252 involved in drive (they are located about 1cM apart). Consequently, the complete association

- observed between Dp^{sR} and the SR phenotype after 88 generations of experimental evolution in populations Seych1-2 and Seych1-3 is consistent with our observation that the Seych1 line carries an $HP1D2^{sR}$ allele.
- 256

257 Control of the persistence of complete suppression

- 258 We also checked for the persistence of total suppression in populations Seych1-2 and Seych1-
- 259 3 by measuring the sex ratio in the progeny of males sampled at G_{93} (Tables S4 and S5).
- Among 61 males from population Seych1-2, 44 (72%) were found to carry Dp^{SR} , and thus a
- 261 putative X^{SR} chromosome. The mean percentage of females in progenies was not different
- between Dp^{sR} and non- Dp^{sR} males (51.2% and 51.5% females respectively, Kruskal-Wallis χ^{2}_{1}
- 263 $_{df} = 0.92$; P = 0.34). Similarly we did not find any significant difference between 27 males
- 264 carrying Dp^{SR} and 25 males devoid of Dp^{SR} that were sampled in population Seych1-3 (52.7 %
- and 51,1% females respectively, Kruskal-Wallis $\chi^2_{1 \text{ df}} = 1.40$; P = 0.24).
- 266

267 Are suppressed X^{SR} neutral or deleterious?

- 268 The evolution of Dp^{SR} was very different across populations, especially after the 20th
- 269 generation. It showed a marked decline in all three Seych3 replicates: Dp^{SR} disappeared or
- 270 nearly disappeared from Seych3-1 and Seych3-3 around G₄₈, and became at very low
- 271 frequency in Seych3-2 around G_{70} . In contrast, Dp^{SR} was maintained at a moderate to high
- 272 frequency in the three Seych1 replicates, particularly in Seych1-2 where its frequency stood
- 273 close to the expected value under a neutral Wright-Fisher model (0.66). The mean frequency
- of Dp^{SR} among the six populations headed steady at around 0.25 from G₇₂ to G₉₄.
- 275 We assessed potential deleterious effects of X^{SR} by estimating selection coefficients from Dp^{SR}
- 276 frequency data in every replicate. They are significantly different from 0 for all populations
- but Seych1-2 (Table 3). The estimates range from 0.021 to 0.053 for Seych1-1, Seych1-3 and
- 278 Seych3-2, which correspond to moderate deleterious effects. The estimate for Seych3-2 is
- significantly different from the other two. The estimates for Seych3-1 and Seych3-3 are
- significantly higher (0.1 and 0.201 respectively). It is worth noting that we obtain similar
- values of \hat{s} and of confidence intervals when considering dominant deleterious effects of X^{SR}
- 282 in females (not shown).
- 283
- 284
- 285
- 286
 - 29 10
 - 30

287 Discussion

31

288 Dynamics of drivers and suppressors in experimental populations

289 A few experimental evolution experiments have been carried out to assess the dynamics of SR 290 drive in *Drosophila*. A very valuable piece of work has been made in *D. pseudoobscura*, a 291 species devoid of drive suppressor where it has been shown that SR drive promotes 292 countervailing mechanisms such as polyandry (Price et al. 2008b), which in turn prevents 293 extinction of the populations by strong drive (Price et al. 2010a). In addition, non-SR males from SR populations evolve to suppress female remating when high rates of polvandry occur 294 295 (Price et al. 2010b). In an earlier study in this species, Curtsinger and Feldman (1980) showed 296 that SR drive disappeared very quickly from experimental populations set up with 70% of X^{SR} chromosomes: as early as 7 generations in two cases, the X^{SR} frequency being very low after 297 12 generations in all other cases. The estimated selection coefficients due to deleterious 298 299 effects of the driving chromosomes were very high (0.3-0.4) and mainly associated with fertility defects. In similar experiments with the Paris system of D. simulans, Capillon and 300 Atlan (1999) showed that unsuppressed X^{SR} almost disappeared from experimental 301 302 populations after 17 generations when starting at a 25% frequency, even though it benefited 303 from a strong transmission rate in the carrier males (90% on average). It is supposed to be also lost with an initial frequency of 67% (Capillon and Atlan 1999), but the data are not 304 305 available. Besides, theory that has been developed to describe the population genetics of sex-306 *ratio* systems in *Drosophila* usually considered the drive suppressors as brakes that convert spreading unbalanced distorters into balanced ones (Carvalho and Vaz 1999). This view is 307 based on the assumption that the frequency of X^{SR} chromosomes is primarily controlled by 308 their segregation distortion rate, in other terms that the deleterious effects associated with X^{SR} 309 310 are of a similar magnitude whether drive is suppressed or not. Our results show that it is clearly not the case for the Paris SR system. Here, starting at a frequency of 66%, a 311 completely suppressed Paris X^{SR} still persists at a substantial frequency in half of the six 312 experimental populations after nearly one hundred generations. We do not know how guickly 313 314 it disappeared when unsuppressed and starting at the same frequency (2/3), but we can 315 suppose that it happened earlier than in our experiment. The comparison with D. 316 *pseudoobscura* is probably limited because of a much more ancient origin of the SR drive system in this species. Yet, our selection coefficient estimations seem to be always lower than 317 318 those from Curtsinger and Feldman (1980), where there was no suppressor but supposedly a slight overdominance. 319

- 32 11
- 33

- While deleterious effects associated with X^{SR} are much lower when fully suppressed, they still 320 exist. All estimates of s are positive, and only one is not significantly different from 0 (in 321 Sevch1-2, for which the X^{SR} frequency is close to the starting one at G_{94}). In addition, under a 322 neutral Wright-Fisher model the probability of fixation will depend on the initial frequency 323 324 when we start the experiment. The time to fixation will depend on the effective population size, which in our case would have been moderate (less than 500 individuals). Then X^{SR} is 325 expected to fix in 4 populations and XST in only 2. After almost a hundred generations, X^{SR} 326 has never reached fixation and XST has fixed or nearly fixed in 3 populations. We can surely 327 reject the hypothesis of complete neutrality, and suppose that X^{SR} has deleterious effects *per* 328 se, even if suppression moderates these effects. 329
- 330

331 Comparison with natural populations

332 The Paris driver has been found to decrease in frequency and likely disappear in natural 333 populations where suppression is complete (Bastide et al. 2011). In our experimental 334 populations, estimates of the selection coefficient in 3 replicates are very close to the value estimated in Madagascar on data from a period of 8 years. Only one replicate shows a much 335 336 lower estimate, and the two others show a much higher estimate. We cannot exclude the possibility that X^{SR} dynamics are very similar in natural and experimental populations, but the 337 reasons why they are apparently variable in the latter are unclear. In at least some cases, the 338 339 higher deleterious effects observed could be associated with a higher male competition in 340 bottles (Atlan et al. 2004; Angelard et al. 2008), which could also reduce the effective

- 341 population size.
- Besides, we looked for the presence of Dp^{SR} and surveyed the *HP1D2* alleles in a sample of
- 343 22 F_1 males from 11 isofemale lines (2 F_1 males per line) collected in the Seychelles in 2011.
- None of them carried Dp^{SR} but we found the $HP1D2^{SR}$ allele in all tested males, suggesting a
- 345 persistence of this potentially driving allele even when Dp^{SR} has long disappeared. A sample
- 346 of X chromosomes from 72 males (collected in Mayotte in 2009 by CMM and François
- 347 Wurmser) showed a similar trend, with 6 chromosomes (8%) carrying *Dp*^{SR} while 28
- 348 chromosomes (39%) carried a well-characterized $HP1D2^{SR}$ allele. This is in line with a
- 349 spatiotemporal analysis of molecular data, prior to the characterization of HP1D2 as the
- 350 second driving element of the Paris system (Bastide et al. 2011). This analysis highlighted a
- 351 discrepancy in the evolution of the two drivers, strongly suggesting that the counter-selection
- 352 in natural populations acts mainly, if not exclusively, on Dp^{SR} .
- 353

35 12

354 Conclusion

We conclude that much of the deleterious effects associated with the Paris X^{SR} are a direct consequence of the drive, which is consistent with the high cost on male fertility observed when competition occurs (Atlan et al. 2004; Angelard et al. 2008). Thus, our present knowledge on the Paris system, which is of very recent origin (Fouvry et al. 2011) is consistent with the hypothesis proposed by Keais et al. (2020) about X^{SR} evolution, in which the dynamics of young X^{SR} are primarily governed by fitness consequences in males.

We have obtained here contrasting results depending on the replicates, which could partly 361 362 reflect the variable dynamics observed in natural populations where complete suppression has evolved (Bastide et al. 2011). But importantly, we demonstrate that suppression slows down 363 and could sometimes prevent the elimination of an otherwise deleterious X^{SR} chromosome. 364 This is consistent with the concomitant rise of X^{SR} and drive suppressors observed in the wild 365 (Bastide et al. 2013; Helleu et al. 2019). We can suppose that each of them takes advantage of 366 the presence of the other to increase in frequency. The strongly biased transmission, 367 368 associated with lower deleterious effects entailed by the suppressors, allows the driver to quickly rise in frequency. As for the suppressors, their frequency probably increases by 369 370 frequency-dependent selection associated with drive. Thus, this genetic conflict appears to 371 convert into a cooperation between alleles at unlinked loci.

372

373

375 **References**

- 376
- 377 Angelard C, Montchamp-Moreau C, Joly D (2008). Female-driven mechanisms, ejaculate
- 378 size and quality contribute to the lower fertility of sex-ratio distorter males in Drosophila
- 379 *simulans*. BMC Evolutionary Biology 8, 326. <u>https://doi.org/10.1186/1471-2148-8-326</u>
- 380 Atlan A, Merçot H, Landre C, Montchamp-Moreau C (1997). The Sex-Ratio trait in
- 381 *Drosophila simulans*: geographical distribution of distortion and resistance. Evolution 51(6):
- 382 1886–1895. <u>https://doi.org/10.1111/j.1558-5646.1997.tb05111.x</u>
- 383 Atlan A, Joly D, Capillon C, Montchamp-Moreau C (2004). Sex-ratio distorter of Drosophila
- 384 *simulans* reduces male productivity and sperm competition ability. Journal of Evolutionary
- 385 Biology 17(4): 744–751. https://doi.org/10.1111/j.1420-9101.2004.00737.x
- 386 Bastide H, Cazemajor M, Ogereau D, Derome N, Hospital F, Montchamp-Moreau C (2011).
- 387 Rapid rise and fall of selfish *sex-ratio* X chromosomes in *Drosophila simulans*:
- 388 spatiotemporal analysis of phenotypic and molecular data. Molecular Biology and Evolution
- 389 28(9): 2461–2470. <u>https://doi.org/10.1093/molbev/msr074</u>
- 390 Bastide H, Gérard PR, Ogereau D, Cazemajor M, Montchamp-Moreau C (2013).
- 391 Local dynamics of a fast-evolving sex-ratio system in Drosophila simulans. Molecular
- 392 Ecology 22(21): 5352–5367. <u>https://doi.org/10.1111/mec.12492</u>
- 393 Beckenbach AT (1996) Selection and the "sex-ratio" polymorphism in natural populations of
- 394 Drosophila pseudoobscura. Evolution 50(2): 787-794. https://doi.org/10.1111/j.1558-
- 395 <u>5646.1996.tb03888.x</u>
- Brown LD, Cai TT, DasGupta A (2001). Interval estimation for a binomial proportion.
- 397 Statistical Science 16(2): 101-133. https://doi.org/10.1214/ss/1009213286
- 398 Bull JJ, Charnov EL (1988). How fundamental are fisherian sex-ratios. Oxford Surveys in
- 399 Evolutionary Biology 5:96-13.
- 400 Capillon C, Atlan A (1999). Evolution of driving X chromosomes and resistance factors in
- 401 experimental populations of *Drosophila simulans*. Evolution 53(2): 506–517.
- 402 https://doi.org/10.1111/j.1558-5646.1999.tb03785.x
- 403 Carvalho AB, Klaczko LB (1993). Autosomal suppressors of sex-ratio in Drosophila
- 404 *mediopunctata*. Heredity 71(5): 546–551. <u>https://doi.org/10.1038/hdy.1993.174</u>
- 405 Carvalho AB, Vaz SC, Klaczko LB (1997). Polymorphism for Y-linked suppressors of sex-
- 406 ratio in two natural populations of *Drosophila mediopunctata*. Genetics 146(3): 891–902.
- 407 https://doi.org/10.1093/genetics/146.3.891

- 408 Carvalho AB, Sampaio MC, Varandas FR, Klaczko LB (1998). An experimental
- 409 demonstration of Fisher's principle: evolution of sexual proportion by natural selection.
- 410 Genetics 148(2): 719–731. <u>https://doi.org/10.1093/genetics/148.2.719</u>
- 411 Carvalho AB, Vaz SC (1999). Are Drosophila SR drive chromosomes always balanced?
- 412 Heredity 83(3): 221–228. <u>https://doi.org/10.1038/sj.hdy.6886100</u>
- 413 Cazemajor M, Landré C, Montchamp-Moreau C (1997). The sex-ratio trait in Drosophila
- 414 *simulans*: genetic analysis of distortion and suppression. Genetics 147(2): 635–642.
- 415 <u>https://doi.org/10.1093/genetics/147.2.635</u>
- 416 Clark AG (1987). Natural selection and Y-linked polymorphism. Genetics 115(3): 569–577.
- 417 https://doi.org/10.1093/genetics/115.3.569
- 418 Courret C, Gérard PR, Ogereau D, Falque M, Moreau L, Montchamp-Moreau C (2019). X-
- 419 chromosome meiotic drive in *Drosophila simulans*: a QTL approach reveals the complex
- 420 polygenic determinism of Paris drive suppression. Heredity 122(6): 906–915.
- 421 <u>https://doi.org/10.1038/s41437-018-0163-1</u>
- 422 Curtsinger JW, Feldman MW (1980). Experimental and theoretical analysis of the "sex-ratio"
- 423 polymorphism in *Drosophila pseudoobscura*. Genetics 94(2): 445–466.
- 424 <u>https://doi.org/10.1093/genetics/94.2.445</u>
- 425 David J (1962). A new medium for rearing Drosophila in axenic conditions. Drosophila
- 426 Information Service 36 :128.
- 427 Derome N, Baudry E, Ogereau D, Veuille M, Montchamp-Moreau C (2008). Selective
- 428 sweeps in a 2-locus model for sex-ratio meiotic drive in Drosophila simulans. Molecular
- 429 Biology and Evolution 25(2): 409–416. <u>https://doi.org/10.1093/molbev/msm269</u>
- 430 Dyer KA, Charlesworth B, Jaenike J (2007). Chromosome-wide linkage disequilibrium as a
- 431 consequence of meiotic drive. Proceedings of the National Academy of Sciences of the USA
- 432 104(5): 1587–1592. https://doi.org/10.1073/pnas.0605578104
- 433 Dyer KA (2012). Local selection underlies the geographic distribution of sex-ratio drive in
- 434 Drosophila neotestacea. Evolution 66(4): 973–984. https://doi.org/10.1111/j.1558-

435 <u>5646.2011.01497.x</u>

- 436 Fisher RA (1930). The Genetical Theory of Natural Selection. Claredon Press, Oxford.
- 437 Fouvry L, Ogereau D, Berger A, Gavory F, Montchamp-Moreau C (2011). Sequence Analysis
- 438 of the Segmental Duplication Responsible for Paris Sex-Ratio Drive in *Drosophila simulans*.
- 439 G3 Genes Genomes Genetics 1(5): 401–410. <u>https://doi.org/10.1534/g3.111.000315</u>
- 440 Haldane JBS, Jayakar SD (1964). Equilibria under natural selection at a sex-linked locus.
- 441 Journal of Genetics 59(1): 29-36.
- 44 15

- 442 Hall DW (2004). Meiotic drive and sex chromosome cycling. Evolution 58(5): 925–931.
- 443 <u>https://doi.org/10.1111/j.0014-3820.2004.tb00426.x</u>
- 444 Hamilton WD (1967). Extraordinary sex ratios. Science 156(3774): 477–488.
- 445 https://doi.org/10.1126/science.156.3774.477
- 446 Hauschteck-Jungen E, Maurer B (1976). Sperm dysfunction in sex ratio males of Drosophila
- 447 subobscura . Genetica 46: 459–477. https://doi.org/10.1007/BF00128092
- 448 Helleu Q, Gérard PR, Montchamp-Moreau C (2015). Sex chromosome drive. Cold Spring
- 449 Harbor Perspectives in Biology 7(2): a017616. https://doi: 10.1101/cshperspect.a017616
- 450 Helleu Q, Gérard PR, Dubruille R, Ogereau D, Prud'homme B, Loppin B, Montchamp-
- 451 Moreau C (2016). Rapid evolution of a Y-chromosome heterochromatin protein underlies sex
- 452 chromosome meiotic drive. Proceedings of the National Academy of Sciences of the USA
- 453 113(15): 4110–4115. <u>https://doi.org/10.1073/pnas.1519332113</u>
- 454 Helleu Q, Courret C, Ogereau D, Burnham KL, Chaminade N, Chakir M, Aulard S,
- 455 Montchamp-Moreau C(2019). Sex-Ratio meiotic drive shapes the evolution of the Y
- 456 chromosome in *Drosophila simulans*. Molecular Biology and Evolution 36(12): 2668–2681.
- 457 https://doi.org/10.1093/molbev/msz160
- 458 Jaenike J (1999). Suppression of sex-ratio meiotic drive and the maintenance of Y-
- 459 chromosome polymorphism in *Drosophila*. Evolution 53(1): 164–174.
- 460 https://doi.org/10.1111/j.1558-5646.1999.tb05342.x
- 461 Jaenike J (2001). Sex chromosome meiotic drive. Annual Review of Ecology and Systematics
- 462 32: 25-49. <u>https://doi.org/10.1146/annurev.ecolsys.32.081501.113958</u>
- 463 James AC, Jaenike J (1990). "Sex ratio" meiotic drive in Drosophila testacea. Genetics
- 464 126(3): 651–656. <u>https://doi.org/10.1093/genetics/126.3.651</u>
- 465 Keais GL, Lu S, Perlman SJ (2020). Autosomal suppression and fitness costs of an old
- 466 driving X chromosome in Drosophila testacea. Journal of Evolutionary Biology, 33(5), 619-
- 467 628. <u>https://doi.org/10.1111/jeb.13596</u>
- 468 Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,
- 469 Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012). Geneious
- 470 Basic: an integrated and extendable desktop software platform for the organization and
- 471 analysis of sequence data. Bioinformatics 28(12): 1647–1649,
- 472 https://doi.org/10.1093/bioinformatics/bts199
- 473 Kingan SB, Garrigan D, Hartl DL (2010). Recurrent selection on the Winters sex-ratio
- 474 genes in *Drosophila simulans*. Genetics 184(1): 253.
- 475 <u>https://doi.org/10.1534/genetics.109.109587</u>
- 47 16
- 48

- 476 Montchamp-Moreau C, Joly D (1997). Abnormal spermiogenesis is associated with the X-
- 477 linked *sex-ratio* trait in *Drosophila simulans*. Heredity 79: 24–30.
- 478 <u>https://doi.org/10.1038/hdy.1997.119</u>
- 479 Montchamp-Moreau C, Ginhoux V, Atlan A (2001). The Y chromosomes of Drosophila
- 480 *simulans* are highly polymorphic for their ability to suppress sex-ratio drive. Evolution 55(4):
- 481 728–737. <u>https://doi.org/10.1111/j.0014-3820.2001.tb00809.x</u>
- 482 Montchamp-Moreau C, Cazemajor M (2002). Sex-ratio drive in Drosophila simulans:
- 483 variation in segregation ratio of X chromosomes from a natural population. Genetics
- 484 162(3):1221–1231. <u>https://doi.org/10.1093/genetics/162.3.1221</u>
- 485 Pinzone CA, Dyer KA (2013). Association of polyandry and sex-ratio drive prevalence in
- 486 natural populations of Drosophila neotestacea. Proceedings of the Royal Society B,
- 487 280(1769):20131397. https://doi.org/10.1098/rspb.2013.1397
- 488 Policansky D, Ellison J (1970). "Sex ratio" in Drosophila pseudoobscura: spermiogenic
- 489 failure. Science 169(3948): 888–889. https://doi.org/10.1126/science.169.3948.888
- 490 Presgraves D (2008). Drive and sperm: the evolution and genetics of male meiotic drive. In:
- 491 Sperm biology: an evolutionary perspective (TR Birkhead, D Hosken and S Pitnick, eds),
- 492 pp. 471–506. Academic Press, London.
- 493 Presgraves DC, Severance E, Wilkinson GS (1997). Sex chromosome meiotic drive in
- 494 stalk-eyed flies. Genetics 147(3): 1169–1180. <u>https://doi.org/10.1093/genetics/147.3.1169</u>
- 495 Price TAR, Bretman AJ, Avent TD, Snook RR, Hurst GDD, Wedell N (2008a). Sex ratio
- 496 distorter reduces sperm competitive ability in an insect. Evolution 62(7): 1644–1652.
- 497 https://doi.org/10.1111/j.1558-5646.2008.00386.x
- 498 Price TAR, Hodgson DJ, Lewis Z, Hurst GDD, Wedell N (2008b). Selfish genetic elements
- 499 promote polyandry in a fly. Science 322(5905): 1241–1243.
- 500 https://doi.org/10.1126/science.1163766
- 501 Price TAR, Hurst GDD, Wedell N (2010a). Polyandry prevents extinction. Current Biology
- 502 20(5): 471–475. <u>https://doi.org/10.1016/j.cub.2010.01.050</u>
- 503 Price TAR, Lewis Z, Smith DT, Hurst GDD, Wedell N (2010b). Sex ratio drive promotes
- 504 sexual conflict and sexual coevolution in the fly *Drosophila pseudoobscura*. Evolution 64(5):
- 505 1504–1509. https://doi.org/10.1111/j.1558-5646.2009.00896.x
- 506 Price TAR, Windbichler N, Unckless RL, Sutter A, Runge JN, Ross PA, Pomiankowski A,
- 507 Nuckolls NL, Montchamp-Moreau C, Mideo N, Martin OY, Manser A, Legros M,
- 508 Larracuente AM, Holman L, Godwin J, Gemmell N, Courret C, Buchman A, Barrett LG,

- 509 Lindholm AK (2020). Resistance to natural and synthetic gene drive systems. Journal of
- 510 Evolutionary Biology 33(10):1345–1360. <u>https://doi.org/10.1111/jeb.13693</u>
- 511 Stalker HD (1961). The genetic systems modifying meiotic drive in Drosophila
- 512 paramelanica. Genetics 46(2):177–202. <u>https://doi.org/10.1093/genetics/46.2.177</u>
- 513 Tao Y, Araripe L, Kingan SB, Ke Y, Xiao H, Hartl DL (2007a). A sex-ratio meiotic
- 514 drive system in Drosophila simulans. II: an X-linked distorter. Public Library of Science
- 515 Biology 5: e293. <u>https://doi.org/10.1371/journal.pbio.0050293</u>
- 516 Tao Y, Masly JP, Araripe L, Ke Y, Hartl DL (2007b). A sex-ratio meiotic drive
- 517 system in Drosophila simulans. I: an autosomal suppressor. Public Library of Science
- 518 Biology 5: e292. https://doi.org/10.1371/journal.pbio.0050292
- 519 Thomson GJ, Feldman MW (1975). Population genetics of modifiers of meiotic drive:
- 520 IV. On the evolution of sex-ratio distortion. Theoretical Population Biology 8(2): 202–211.
- 521 Vaz SC, Carvalho AB (2004). Evolution of autosomal suppression of the Sex-Ratio trait
- 522 in Drosophila. Genetics 166(1): 265–277. <u>https://doi.org/10.1534/genetics.166.1.265</u>
- 523 Voelker RA (1972). Preliminary characterization of "sex ratio" and rediscovery and
- 524 reinterpretation of "male sex ratio" in *Drosophila affinis*. Genetics 71(4): 597–606.
- 525 <u>https://doi.org/10.1093/genetics/71.4.597</u>
- 526 Wedell N (2013). The dynamic relationship between polyandry and selfish genetic elements.
- 527 Philosophical Transactions of the Royal Society B 368(1613): 20120049.
- 528 <u>https://doi.org/10.1098/rstb.2012.0049</u>
- 529 Wilkinson GS, Presgraves DC, Crymes L (1998). Male eye span in stalk-eyed flies
- 530 indicates genetic quality by meiotic drive suppression. Nature 391: 276–279.
- 531 https://doi.org/10.1038/34640
- 532 Wilkinson GS, Johns PM, Kelleher ES, Muscedere ML, Lorsong A (2006) Fitness effects of
- 533 X chromosome drive in the stalk-eyed fly, *Cyrtodiopsis dalmanni*. Journal of Evolutionary
- 534 Biology 19(6): 1851-1860. https://doi.org/10.1111/j.1420-9101.2006.01169.x
- 535 Wu CI (1983a). The fate of autosomal modifiers of the sex-ratio trait in Drosophila and
- 536 other sex-linked meiotic drive systems. Theoretical Population Biology 24(2): 107–120.
- 537 https://doi.org/10.1016/0040-5809(83)90035-7
- 538 Wu CI (1983b). Virility Deficiency and the Sex-Ratio Trait in Drosophila pseudoobscura. I.
- 539 Sperm Displacement and Sexual Selection. Genetics 105(3): 651–662.
- 540 <u>https://doi.org/10.1093/genetics/105.3.651</u>

		_	Femal	e %
Dp ^{sr}	chromosome	n	М	SE
	2-7	5	49.4	1.8
	2-10	3	51.8	3.9
-	2-25	5	53.4	7.0
	2-31	4	50.6	8.1
	2-43	3	54.1	7.7
	2-57	2	53.8	3.8
	2-1	5	92.9	2.7
	2-5	3	88.3	8.5
	2-6	6	94.1	1.8
	2-9	5	95.8	1.9
	2-12	5	93.7	1.8
	2-14	3	89.4	6.3
	2-21	5	92.3	5.1
	2-23	5	94.2	3.0
	2-26	4	89.2	6.8
	2-28	4	92.5	3.5
	2-33	3	95.4	2.6
	2-35	3	93.9	3.4
+	2-37	5	95.3	3.2
_	2-38	4	93.3	3.6
	2-39	2	89.2	3.9
	2-41	5	89.8	5.8
	2-44	4	90.9	2.1
	2-47	3	92.3	5.7
	2-49	4	90.4	7.4
	2-51	3	89.4	6.7
	2-52	2	92.7	0.3
	2-53	5	94.8	1.1
	2-54	3	84.9	8.1
	2-58	5	92.5	0.9
	2-59	4	91.3	2.9
	2-60	5	93.7	5.4

Table 1: Assessment of the drive activity of X chromosomes with (+) or without (-) the SR

duplication (Dp^{SR}) in Seych1-2 at G88. *n*: number of full-sib F1 males tested, M: mean

percentage of females in the progeny, SE: standard error.

		Female %		
Dp ^{sr}	chromosome	n	М	SE
	3-6	3	51.5	3.3
	3-15	4	52.2	4.9
	3-25	4	50.7	4.4
	3-37	3	55.7	4.2
	3-45	3	50.3	4.5
	3-60	4	50.8	4.8
	3-1	5	90.9	6.8
	3-3	4	94.6	2.2
	3-8	4	91.3	3.9
	3-9	4	89.8	5.7
	3-10	5	92.4	2.4
	3-16	3	90.9	4.4
	3-19	3	85.5	9.0
	3-20	5	85.9	9.2
	3-22	5	89.5	6.2
	3-24	3	81.0	6.8
	3-27	4	92.6	1.7
+	3-28	5	91.5	7.5
	3-30	3	87.4	8.6
	3-31	3	93.5	3.0
	3-33	3	87.2	5.4
	3-34	5	94.4	1.9
	3-35	4	95.3	1.0
	3-36	5	90.6	7.4
	3-39	5	93.8	3.8
	3-43	3	94.7	1.4
	3-46	5	93.8	2.6
	3-49	3	93.1	3.3
	3-51	4	93.1	5.7
	3-56	3	95.2	1.4

546 Table 2: Assessment of the drive activity of X chromosomes with (+) or without (-) the SR

547 duplication (*Dp*^{SR}) in Seych1-3 at G88. *n*: number of full-sib F1 males tested, M: mean

548 percentage of females in the progeny, SE: standard error.

Strain	Replicate population	Ŝ	CI _{95 %}
	1	0.039	[0.029 – 0.05]
Seych1	2	0.007	[0-0.014]
	3	0.021	[0.013 – 0.029]
	1	0.1	[0.077 – 0.13]
Seych3	2	0.053	[0.04 - 0.067]
	3	0.201	[0.149 – 0.266]

555 Table 3: Estimates of the selection coefficient (\hat{s}) in each of the six experimental populations,

and 95% confidence intervals (see text for details).