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Abstract

Considering the drawbacks associated with fossil-based molecules,
polymers and materials, lignin has acquired immense popularity
owing to its distinct advantages. However, to date it has not been
widely commercialized to produce fossil replacements mainly due
to its complex structure and purification hassle. Constant research
is going on to discover ways to depolymerize lignin to produce
various aromatic chemicals. This highlight review summarizes the
key investigations carried out in the field of lignin valorization,
purification and the valuable products generated from lignin.
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Introduction

Being a promising aromatic biopolymer, lignin has a lot to
offer as a major source of different aromatic chemicals, which are
currently derived from petrochemical sources. The faster depletion
rate of fossil resources unquestionably is a huge factor in the
current scenario. Lignocellulosic biomass contains 1535% of
lignin by weight.1 It is a prime source of aromatic polymer in
nature, inexpensive and renewable indeed.2 Lignin structure
typically consists of three monolignols, which are phenylpropa-
noid units, such as p-coumaryl alcohol (H-unit), coniferyl alcohol
(G-unit) and sinapyl alcohol (S-unit), linked together by strong
C-C and labile C-O-C linkages.3 In the paper-pulp and cardboard
packaging industry, cellulose contents are generally isolated from
the biomass and lignin is treated as waste material, which is
mostly burnt to produce steam energy required for the pulping
process.4 Recently, due to the increasing research interest of lignin
in academia and in industry, the lignin contents are isolated after
delignification of the cellulose pulp and collected as technical
lignins.5 The main types of technical lignin generated in bulk from
the paper industry are kraft lignin, lignosulfonates, soda lignin and
to some extent organosolv lignin.5,6 These isolated lignins from
the paper industry are then taken forward to investigate high-value
applications. However, utilization of this potent biopolymer has
not been straightforward so far mainly due to the challenges
associated with its structure. Indeed, it has a very complex three-
dimensional crosslinked structure with the presence of a variety of
functional groups,7 moreover, the structures of lignin tend to vary
depending on the plant species and their environment.3 The de-
polymerization of lignin to break the structure down to monomeric
level is certainly a difficult task and even if the degradation or
depolymerization is successfully achieved, it mostly provides a
mixture of different compounds whose purification is another
cumbersome process. Numerous investigations and studies have
been carried out in order to find suitable methods for lignin
degradation and depolymerization to utilize this biopolymer in
valuable applications. Herein, we discuss the efficacy of some of
the selected emerging lignin depolymerization techniques pub-
lished in the last decade, focusing the associated advantages and
challenges. In addition to that, a brief discussion of the significant
applications devised by researchers are also emphasized.

Depolymerization Technologies: Merits
and Challenges

Looking at the potential of lignin aromatic structure as a
precursor for bio-based chemicals and polymers, the scientific

research extent on this biopolymer has increased multifold in the
last two decades. According to Chunping et al., the number of
publications on lignin depolymerization in 1990 was 1020,
while in 2013, the number of publications on this topic showed a
substantial increase, which was about 6070,8 furthermore, in
2019 the number was above 200 (Source: Scopus). Such a huge
interest of the scientific community in this biopolymer clearly
shows how impactful it would be if any of the depolymerization
processes became commercialized successfully and provide
valuable aromatic chemicals from waste material.

Several degradation and depolymerization methods have
been explored so far, however, only a few of them have gained
special attention due to specific advantages, and a very few
of them has reached plant-scale production due to the chal-
lenges linked with the depolymerization and separation steps.8

We have selected some of the promising technologies based
on the associated merits, to discuss their inherent potential,
reaction chemistry, generated compounds and accompanying
challenges to highlight the scopes of these technologies for
further development. For example, oxidative depolymerization
methods, photocatalytic methods, microwave-assisted thermo-
chemical methods, reductive methods, and enzymatic depoly-
merization methods have the capability to eventually evolve
into a viable process and have been further discussed in this
study.

The oxidation method is quite popular in the paper industry
for the delignification and bleaching of pulp due to its selectivity
that can target specific bonds and often provides low molecular
weight phenolic mixtures.9,10 The production of vanillin also is
accomplished by the oxidation of lignin. Vanillin production
from sulphite waste water was attempted almost a century ago
and the alkaline air oxidation method reported by Kürschner in
1928 successfully improved the yield of vanillin.11 A Norway-
based company called Borregaard has been producing vanillin at
a commercial level using lignosulfonates via catalytic oxida-
tion.5 However, the vanillin produced from lignosulfonates has
to undergo a stringent purification process, which substantially
reduces the yield of vanillin (³5%).12 Maeda et al. successfully
developed a method where vanillin was produced in the
presence of tetrabutylammonium ion with a maximum yield of
21wt%. The oxidation process mainly proceeds by the electro-
philic sites of the oxidants targeting the highly electron-dense
areas of lignin13 and the conversion of secondary alcohol at
Cα position to ketone occurs [Figure 1].14,15 Due to the complex
structure of lignin, understanding the exact mechanism is
generally difficult and relies upon model compounds to
approximately comprehend the reaction chemistry.16 Several
metal oxides, organometallics, peracids, hydrogen peroxide and
oxygen have been widely investigated and used for oxidative
delignification and degradation of lignin.8,9 Oxygen, however,
is not strong enough to oxidize lignin in its normal state and
requires strong basic conditions for the phenolic groups to
produce phenolate ions.9 Wet air oxidation (WAO) is one such
technique, where lignin can be depolymerized thermochemically
in the presence of oxygen and the chemically active degradation
products can be readily converted to useful materials, such as
platform chemicals and functional aromatic compounds.17,18 In a
similar study, the catalytic WAO method was employed, where
lignin was depolymerized using oxygen in the presence of
copper sulphate pentahydrate as a catalyst to produce alde-
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hydes.16 Catalytic degradation methods can help to cleave the
bonds under mild conditions and the search for proper catalysts
has gained popularity over the years.19 However, catalytic
oxidative techniques break the lignin structures in an uncon-
trolled manner producing a mixture of several compounds.
Recently, Zeng et al. developed an oxidative depolymerization
method using graphene oxide that can selectively oxidize
specific hydroxyl groups and forms a stable enol-ether inter-
mediate. In addition, the radical formation by the phenolic
hydroxyl group can attack and further break the intermediate to
produce guaiacol.20 The solubility issue of lignin in organic
solvents also holds another specific challenge towards the
effective application of the oxidative depolymerization tech-
niques, and ionic liquids have come into the picture of
mainstream research for lignin. Ionic liquids are salts with low
boiling points (<100 °C) and they possess numerous advan-
tages, such as efficient recycling ability, non-flammability and
they can even be designed to dissolve lignin effectively.10,21

Moreover, it is also believed that ionic liquids can catalyse the
modification and fractionation of lignin structure that can,
in turn, help in effective depolymerization.22 One such study
demonstrated that oxidized lignin could be depolymerized by
using a formate ionic liquid, which can act as a catalyst as well
as a solvent and can produce organic solvent-soluble or water-
soluble lignin oligomers. These lignin fragments can be a
valuable source of polyphenols.22 Redistribution mechanisms,
which have been recently investigated in the field of lignin
depolymerization, were found to be effective in breaking down
lignin structure to oligomeric lignin under mild conditions and
these depolymerized lignin oligomers were then used to produce
polyesters.23,24 However, such a reaction needs basic conditions,
which was further optimized by using ionic liquids that can
dissolve lignin without a base.25 Generally, lignin depolymeri-
zation with metal catalyst is very popular, however, it usually
requires high pressure or temperature. To deal with this
challenge, copper complexes with N-based ligands were used
as catalysts in organic solvents and in ionic liquids to produce
lignin oligomers.26 The main challenge associated with the
oxidative method is (1) the radical reactions, which typically
recombine lignin fragments to produce even more complex and
recalcitrant aromatic structures, and (2) the low yield associated
with most of the methods that limits their potential application
for lignin depolymerization at the industrial level.8,27 However,
an attempt to resolve this issue has also been made by
Hafezisefat et al. by using a non-catalytic oxidative method

using oxygen and perfluorodecalin as solvent, which has
excellent oxygen solubility and can reduce repolymerization
by generating radical scavengers and favour the formation of
phenolic compounds.28

Photocatalysis is another method that has been proven
effective for waste-water treatment as it can degrade pollutants
efficiently by using a photocatalyst under irradiation.29 This
method was first applied to kraft lignin by Kobayakawa et al.,
where TiO2 photocatalyst was used under the irradiation of a
500W high-pressure mercury lamp. However, no useful aro-
matic compound could be recovered because of the decom-
position of the structure.30 A lignin photodegradation study with
TiO2 under UV (λ > 310 nm) irradiation was carried out by
Tanaka et al. using UV, GPC, FTIR and NMR techniques. They
found that, during the degradation process, initially aldehydes
and carboxylates were produced, which were then decomposed
further and resulted in complete degradation of lignin struc-
ture.31 A condition optimization of photocatalysis of lignin using
TiO2 under UV (λ > 290 nm) irradiation was reported, that can
successfully degrade lignin to produce vanillin, syringaldehyde,
vanillic acid, catechol and p-coumaric acid.32 However, TiO2

photocatalyst requires UV light that can result in unwanted side
reactions. To deal with such an issue, an effective method of
lignin degradation under visible light was developed, where a
two-step oxidation and photocatalytic reduction method was
employed on several lignin model compounds containing β-O-4
linkages and were able to chemo-selectively cleave the C-O
bonds to provide phenolic compounds.33 Recently, a promising
photocatalytic method for lignin oxidation was reported.
Manganese dioxide (MnO2) was used as a photocatalyst under
blue light (λ ³ 470 nm) and oxygen flow at room temperature.15

The oxidized β-O-4 bonds were broken easily by employing
formate ionic liquid-assisted depolymerization strategy.15,22 The
blue light used here is harmless and MnO2 photocatalyst can be
recycled after a proper reactivation process. Another method
reported lately by Li et al. using metal-free organo-catalyst
perylene diimine can selectively degrade organosolv lignin
under visible light at ambient temperature.34 Despite having
promising results of depolymerization on lignin, more intense
studies are required to evaluate their effectiveness towards
industrial application.

As compared to conventional heating systems, irradiation
under microwaves is more energy-efficient, and as reported by
Gedye et al., certain organic reactions can take place 5 to
1240 times faster, solvents can quickly superheat, and all the
polar compounds absorb energy swiftly under microwaves.35

Furthermore, Yunpu et al. discussed several other merits of
microwave-activation technology for industrial applications, for
instance, they are generally operation-friendly and a very high
heating rate or temperature can be achieved quickly.36 Due to
these inherent advantages, technologies that involve microwave-
assisted heating have gained popularity. Lignin depolymeriza-
tion, which is generally a time consuming and challenging
process, can be efficiently carried out in a short time span under
microwave irradiation. An oxidative depolymerization method
of lignin was explored in the presence of hydrogen peroxide and
copper sulfate, which could produce hydroxyl radicals under
microwaves. This method was able to successfully depolymerize
lignin within 7minutes [Figure 2].37 In addition, being effi-
ciently soluble in water, copper salts allow the depolymerization
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to take place in water (as solvent). The main monomers that can
be generated using this method are vanillin, vanillic acid and
4-hydroxybenzaldehyde. Another interesting method of micro-
wave-assisted pyrolysis of lignin can produce several valuable
compounds, such as phenol, guaiacol, syringol and catechol that
can be extracted as phenol-mixtures from the oil using switch-
able hydrophilicity solvents (SHS). These solvents can switch
their properties with appropriate triggers, for example, in the
presence or absence of CO2.38 In the case of lignin, phenols,
which are weak acids, can be extracted by the basicity of these
solvents and then again can be recovered from these solvents by
switching their properties. However, the heating under micro-
wave irradiation being non-uniform and low diffusion rate in
bulk, has restricted its commercial utilization.39

Reductive depolymerization is another efficient method to
depolymerize lignin which is generally carried out under
hydrogen or using a hydrogen-donating compound in the
presence of a redox catalyst.13 This process mainly relies on
the attack of the ether bonds of the lignin in presence of
hydrogen.40 The main advantage of this method, in contrast with
the oxidative method, is the ability of the redox catalyst to
stabilize the reactive sites, hence preventing any further
repolymerization,13 and thus helps to generate phenols and
BTX compounds (benzene, toluene, xylene).41 Huang et al.
demonstrated a reductive depolymerization method using kraft
lignin in ethanol-water with formic acid as a hydrogen donor.40

Although this method was able to reduce the molecular weight
of the lignin from approximately 10000 g/mol to 1270 g/mol, it

did not provide monomeric lignin-based compounds. Generally,
in the biorefinery, lignin degradation cannot be fully achieved
due to the subsequent re-polymerization reaction. This can be
avoided to some extent either by removing the lignin fractions
immediately or by stabilizing the reactive bonds, such as C=O
and C=C by hydrogenation.42 The latter is known as reductive
catalytic fractionation (RCF). In this approach, lignin degrada-
tion and stabilization take place before cellulose valorization,
thus it can also be termed as lignin-first strategy [Figure 3].43,44

Bosch et al. reported a reductive fractionation of lignocellulosic
biomass in the presence of hydrogen with Ru/C catalyst
in methanol at elevated temperature. This process generated
carbohydrate pulp and lignin oil, which contains phenolic
compounds.45 Further study revealed that by changing the redox
catalyst from Ru/C to Pd/C, OH-content could be increased in
the lignin oil.46 This method was applied to softwood lignin, i.e.
lignin from pine, and a thorough spectroscopic analysis of the
RCF lignin oil was carried out in a separate study.47 Looking at
the promising potential of this RCF technology, a scale-up effort
has been made from lab to pilot scale, however, there are several
aspects to be looked upon before commercialization and further
investigation needs to be carried out to evaluate the hurdles
associated with this technology and eventually try to eliminate
them.48 Another interesting approach to prevent the formation
of the recalcitrant structure is aldehyde-assisted fractionation
(AAF).49 In this method, formaldehyde is used to form
protecting groups during extraction process that can block the
repolymerization of lignin fractions completely before subject-
ing to hydrogenolysis.50 The addition of acetaldehyde and
propionaldehyde were also tested and performances were found
to be comparable to that of formaldehyde.51 This method
demonstrates an extraction process followed by the subsequent
purification and recovery of the stabilized lignin as solid
residue.52 This promising technology was commercialized by
Bloom Biorenewables, a company launched in 2019 that is
working towards utilization of renewable resources effectively.

The chemical depolymerization methods showed interesting
results in many cases, however, catalytic selectivity is a major
issue, which means catalytic methods target lignin molecules
arbitrarily, not in a selective manner.8 Usage of the enzyme is an
alternative way to have better control over the degradation
process. Two types of enzymes are mostly studied in the lignin
degradation process  peroxidases and laccases. The phenolic
group in lignin gets oxidized by the action of these enzymes and
generates free radicals. These radicals are unstable and generally
leads to lignin depolymerization.7 Peroxidases use hydrogen
peroxide as electron acceptor, whereas laccases use molecular
oxygen.53 A mediator, which is typically a compound of small
size, can be useful while using laccase for lignin degradation,
which repetitively gets oxidized by laccase enzyme and gets
reduced by the substrate.54 A recent study carried out using
enzymes from white-rot fungi, two peroxidases and laccase
enzyme to compare the extent of depolymerization, as well as a
different mediator was investigated to assess their performance
and importance.55 This study revealed that the white-rot fungi,
which contain both the enzymes increase the complexity of the
interaction and laccase enzyme with mediators could be a better
substitute to be used in industry. Generally, peroxidase activity
can be affected by hydrogen peroxide concentration and a
controlled feeding mechanism is required for these enzymes to
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work without deactivation.41 Immobilization of enzymes can
also be done to increase the stability of the enzymes in various
conditions, as well as to allow their recycling for further
reactions.41

Lignin-derived Compounds and Their
Separation Techniques

Several phenols, aldehydes and phenolic acids can be
obtained from the aforementioned lignin depolymerization
methods. For example, oxidation of lignin can generate vanillin,
syringaldehyde, p-hydroxybenzaldehyde, vanillic acid, syringic
acid and p-hydroxybenzoic acid.56 Microwave-assisted thermo-
chemical degradation method can provide vanillin, vanillic acid,
4-hydroxybenzaldehyde, syringaldehyde, 4-hydroxybenzoic
acid, 2-hydroxy-3-(4-hydroxyphenyl)propanal, phenol, guaiacol,
syringol and catechol.37,38 Moreover, ferulic acid, p-coumaric
acid, caffeic acid and sinapic acid can be derived from vanillin,
p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde and syrin-
galdehyde, respectively, through chemical synthesis.57 Lignin
degradation compounds are generally obtained as a mixture
whose purification is certainly a hassle. Different separation
techniques, such as extraction, crystallization, precipitation,
evaporation, and membranes-based techniques are constantly
investigated to efficiently separate the degradation compounds.58

However, the process has to be simple and cost-effective for
industrial application and many researchers are aiming to
establish an operation-friendly separation method for lignin
degradation compounds. Lignin depolymerization techniques
commonly generate a mixture of different compounds and only
one separation technique is not sufficient and the process has to
combine different techniques sequentially to successfully sepa-
rate the compounds from the mixture.58 A detailed investigation

is essential to establish an effective separation sequence for the
processes, which are viable for industrial-scale production.

End-use of Lignin-derived Compounds

Once the aromatic phenolic compounds are obtained from
lignin, they can be used to produce various bio-based chemicals,
monomers and polymers. One significant application of lignin-
based compound is the replacement of toxic bisphenol A (BPA),
which is commonly used for the production of polycarbonates,
epoxy resins and polyurethanes. Bio-based bisphenols and
trisphenols production methods from ferulic acid were demon-
strated in one such study59 and process optimization of the
upscaling from lab to kilo lab was also carried out for this potent
method.60 These bio-based bisphenols and trisphenols were then
used to successfully produce different polymers,61 such as
polyesters,62 polyurethanes,63 isocyanate-free polyurethanes64

and epoxy resins.6567 In another work, α,ω-diene monomers
were also synthesized from ferulic acid and were exposed to
acyclic diene metathesis (ADMET) polymerization to produce
poly(ester-alkenamer)s.68 These are renewable polymers with
high thermal stability and tunable glass transition temperature.
Furthermore, the antioxidant properties of the ferulic acid-based
bisphenols and trisphenols were evaluated.69,70 Similarly, si-
napic acid was also explored for the synthesis of bio-based
syringaresinol71 that can be used as BPA replacement and can
also be used to produce α,ω-diene monomers,72 polyurethanes73

and epoxy resins.74 Another extensive investigation category is
the synthesis of bio-based styrene monomers and polystyrenes
from ferulic acid, cinnamic acid, p-coumaric acid and caffeic
acid.7577 Synthetic method of polycarbonates78 and poly(anhy-
dride-ester)s79 from ferulic acid was also explored for different
applications. Liquid crystalline, hyperbranched polymers were
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synthesized using lignin-based phenolic acids.80,81 Benzoxazine
resins were also prepared using p-coumaric acid. Cinnamic acid,
which can undergo [2+2] cycloaddition reaction under the
irradiation of UV light, is a promising compound for the
development of photo-reversible crosslinked polymers.82,83

Vanillic acid, syringic acid can also be utilized to produce
bio-based polyesters,84,85 polystyrenes86 and epoxy resins.87

Vanillin, on the other hand, was explored for the synthesis of
a variety of chemicals, for example, amine and curing agents,88

allyl and acrylate compounds,89,90 formaldehyde-free phenolic
resins,91 epoxy resins,92 benzoxazine resins93 and other dimeric
and trimeric compounds.94,95 There are also increasing demands
for these lignin-based compounds in the cosmetic industry for
usage in skin-whitening, anti-aging products.96 The bisphenols
and trisphenols synthesized from p-hydroxycinnamic acids show
antiradical and antioxidant properties that can be used as
additives in food packaging to prevent oxidative collapse.97

Being a natural anti-UV and antiradical compound, sinapic acid
was utilized via β-β¤ dimerization with improved properties for
applications as a cosmetic ingredient and food additive.98 Ferulic
acid derivatives also found application as additives in contin-
uous hot-melt processing of polylactic acid (PLA) that helped in
improving the thermal and mechanical properties of PLA
blends.99 Another study reported a sustainable synthesis method
of a potential UV filter using lignin-based aldehydes.100 These
aldehydes were also utilized for the production of bio-based
UVA filters that can shield our skin from prolonged solar
exposure and also blue light filters that can protect our eyes from
retinal damage.101 There are several examples available where
lignin-based compounds were utilized to produce effective UV
filters and anti-oxidant compounds.102104

Conclusion

Lignin depolymerization is an effective method to generate
valuable aromatic chemicals from lignin, which can then be
utilized to produce bio-based chemicals and polymers as
alternatives to current fossil-based commercial products. How-
ever, the challenges associated with the depolymerization and
separation technique needs to be taken care of before commer-
cializing any of the processes investigated to date. So far, only
vanillin production from lignin and aldehyde-assisted fractiona-
tion (AAF) have reached commercial production and some
technologies, such as reductive catalytic fractionation (RCF)
have found a path to the pilot-scale level. If the hurdles of the
lignin depolymerization process are eliminated, and efficient
methods are established, there are a lot of application oppor-
tunities already available. However, relentless research is going
on to discover more novel ways of utilization of lignin-based
compounds in various unique areas.
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