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Abstract 

Characterization of variation of experimental results is achieved by repeating experiments. 

Frequently, results are averaged before data are analysed but that may not be the best practice 

because valuable information is then lost. Three other ways to analyze repetitions are: 1) each 

experiment is analyzed on its own (no pooling of data), 2) all experiments are analyzed together in 

one go (complete pooling), 3) data are analyzed together while allowing for similarities as well as 

differences in the result (partial pooling). Multilevel modeling uses partial pooling by partitioning 

variance over more than one level. Level 1 consists of the measurements themselves, higher levels 

consist of groups or clusters of measurements (repetitions, experiments at various temperatures, at 

various pH values, etc.) and parameters are analyzed both at the population and at the group/cluster 

level. 

The approach is applied to a case study in which heat-induced isothermal degradation of ascorbic 

acid was studied with 15 repetitions in an aqueous solution, making it a two-level study. The data 

were analyzed using averaging and complete pooling, complete pooling without averaging, no-

pooling at all, and partial pooling. The kinetic model was established by letting the data decide 

about the order of the reaction, while this was compared to a model where the order was fixed at 1 

(first-order model). Results show that both averaging with complete pooling, as well as complete 

pooling without averaging, strongly underestimate variation. The no-pooling technique 

overestimates variation, while partial pooling partitions variation over the levels and thus gives a 

better impression of the variation involved. The kinetics of ascorbic acid appear to be subject to 

strong variation when each experiment is considered separately because it is a compound that is 

very sensitive to all kinds of experimental conditions. With multilevel modeling it appeared to be 

possible to characterize the uncertainties involved much better than with single level modeling. A 

Bayesian analysis was performed, in which parameters are allowed to be variable, which is useful 

because multilevel modeling leads to characterization of variation of parameters. The Bayesian 

method allows to visualize the posterior distribution of parameters, thereby giving more insight in 

their behaviour. Also, a Bayesian analysis focuses more strongly on predictive accuracy of models, 

including multilevel models. The predictive accuracy of 4 models describing the same ascorbic 

acid data was compared and the multilevel model with reaction order estimated from the data 

performed by far the best in this regard. The pros and cons of multilevel modeling are discussed 

and it is concluded that multilevel modeling is to be preferred whenever the data allow to perform 

such an analysis. 
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1 Introduction 

Variability is an important aspect to deal with in science in general, and in food science in particular 

because of all kinds of variability to which foods are subject. There is, in fact, variability at various 

levels. Foods are usually not homogeneous, their composition depends on growing conditions, 

genetic aspects play a role, the way sampling is done, the analysis method used can have an effect, 

and on top of that there is variation for which the reason is unknown. Obviously, it is important to 

be able to quantify variation as much as possible but it is also important to determine the level at 

which such variation occurs: is it at the level of the actual measurements or at the level of 

treatments. This is where the topic of multilevel modeling comes in. It is perhaps useful to consider 

some concepts a little closer. Accuracy refers to the ability to approach the “true” value of a 

quantity of interest as close as possible, but the problem is that it is usually unknown what the true 

value is (otherwise a measurement would not be needed). Accuracy is something that can only be 

achieved by proper calibration of methods and equipment: systematic bias should be absent. There 

is no statistical method that can correct for inaccuracy and it is the responsibility of the researcher 

that measurements are as accurate as possible. This is different for the concept of precision: this 

refers to how close measurements are together (note that a measurement can be very precise but 

inaccurate, while accurate measurements can be very imprecise). Precision can be estimated using 

statistics by doing repeated measurements. It is known both from experience and statistical theory 

that chemical and physical measurements lead to normally distributed results; this follows from the 

central limit theorem stating that many small errors lead to normally distributed errors. The beauty 

of the normal distribution is that it only needs two parameters, the mean and the standard devation 

(or equivalently the variance) to fully characterize the distribution. In the words of McElreath 

(2020) it is the most simple distribution that yields maximum entropy (in terms of information 

theory). Other measurements such as counts or yes/no scores require other distributions such as the 

Poisson and binomial distribution. Here the discussion is limited to normally distributed 

measurements. There are also variability concepts such as repeatability (variation occurring under 

the same conditions, same lab, same equipment, same operator) and reproducibility (variation 

occurring for the same experimental design in different labs, different operators, etc.). Generally, 
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variation will be lower (better precision) for repeatability studies than for reproducibility studies 

but the concept of precision remains the same: how are measurements spread between each other 

as characterized by variance/standard deviation. 

In publications, food scientists may report that replicate measurements were done, which should 

mean that experiments were repeated in an independent way following exactly the same procedure. 

However, this is not always clearly stated and the danger of ‘pseudo-replication’ is lurking, 

meaning that measurements are thought to be independent when they are actually not (Lazic, 

Clarke-Williams, & Munafò, 2018; Lazic, Mellor, Ashby, & Munafo, 2020). 

It is rather common to average obtained results to be able to deal with variation. This is, 

unfortunately, not a good habit as will be discussed later on, mainly because useful information is 

discarded upon averaging. The goal of this article is to show that there are better ways to deal with 

variation. Variation seems to be considered by many as a nuisance, but it can also be seen as a 

source of useful information that teaches a lot about the system under investigation. That will be 

the approach used here and the method to do that is called multilevel modeling. It is a topic that is 

gaining importance in many branches in science but not so much yet in food science, which is the 

motivation for the current article. Since the concept is not well known yet, a brief introduction on 

the topic follows. The concept will then be illustrated with a case study on heat-induced degradation 

of ascorbic acid. The data set consists of a substantial number of repetitions of experiments with 

exactly the same experimental design (published partly already by Gómez Ruiz, Roux, Courtois, 

and Bonazzi (2018) but supplemented here with additional measurements); moreover, the 

published data were not yet analyzed in a multilevel way. Since the experiments were done by four 

different researchers over a period of five years (2013-2017), using the same equipment and with 

freshly made solutions for each run, this could be classified as a study on reproducibility. 

A very brief introduction to the concept of the multilevel approach is given, first, by explaining the 

differences between no pooling, complete pooling and partial pooling of data. Then, a very brief 

recapitulation about the Bayesian approach and its connection to multilevel modeling follows, 

before the results are discussed. 

 

1.1  A brief account of multilevel modeling 

Experimental designs are obviously important for what can be done in subsequent analysis and 

modeling. In that context, levels are to be understood as follows. Repetitions of similar experiments 

(‘runs’) can be grouped; the measurements within each run form then the lowest level 1, while the 
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runs themselves can be grouped into the next level 2; they can be considered as a subsample of the 

population of all possible runs. Simply said, whenever experiments can be subdivided in groups, 

multilevel modeling is possible. For example, experiments done at various temperatures, or at 

various pH values, or at various water activities can be grouped. Some model parameters are then 

allowed to vary per group around a central value. Response variables at level 1 are always the 

measurements or observations. Response variables at higher levels are regression coefficients from 

the level below that. Examples in food microbiology can be found in Garre, Zwietering, and Den 

Besten (2020) and Van Boekel (2021b), chemical measurements in Hickman, Ignatowich, 

Caracotsios, Sheehan, and D’Ottaviano (2018), Van Boekel (2022) and Van Boekel (2021a). For 

instance, suppose that there are 𝑛 measurements 𝑦𝑖(𝑖 = 1. . 𝑛) in a particular run (level 1), that 

there are 𝑟 runs𝑗(𝑗 = 1. . 𝑟) performed at the same condition (level 2) while runs done at the same 

temperature, for instance, could be grouped at level 3 indexed by the number of 𝑚 different 

temperatures 𝑇𝑘(𝑘 = 1. . 𝑚) (a graphical illustration is shown in Figure S1 in the Supplement as 

an example of a so-called nested experimental design). In the current article, the analysis is limited 

to two levels: level 1 consists of measurements within each run, while the cluster of all runs together 

form level 2, all performed isothermally at one temperature 𝑇 = 70 °C. 

What can be done in further analysis of the obtained data depends on how experiments are 

designed. A first approach could be to pool the results from all repetitions and analyse them as if 

they are all generated without any variation between the repetitions, thus ignoring group structures; 

the remaining variation (i.e., not explained by the model) then piles up in residual variance. This is 

properly called complete pooling. Such an approach may lead to underfitting (Gelman & Hill, 

2007), meaning that not all information in the data is used. A second approach is to average over 

all repetitions at each experimental setting, which results in pooling and averaging. The data are 

then compressed which may lead again to underfitting. A third approach is to analyse each 

repetition on its own, the no pooling approach. This leads to as many modeling outcomes 

(parameter estimates) as there were repetitions. The consequence is that the outcome of one 

repetition is in no way connected to the outcome of another one. When no pooling is applied, group 

means are estimated independently as if the variation between groups is infinitely large; it tends to 

make the groups more different than they actually are and tends to lead to overfitting (Gelman & 

Hill, 2007), i.e., putting too much trust in the data. The fourth approach connects the repetitions 

with each other, characterized as partial pooling. Partial pooling is achieved with multilevel 

modeling; group means are considered a random sample from an overarching distribution called 
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the population. Partial pooling is obviously in between no-pooling and complete pooling; one could 

consider it a compromise between under- and overfitting. One could also consider complete 

pooling and no pooling approaches as subsets of partial pooling. If the standard deviation between 

repetitions is characterized as 𝜎𝑔, then 𝜎𝑔 → ∞ for complete pooling, whereas 𝜎𝑔 → 0 for no 

pooling. With partial pooling, 0 < 𝜎𝑔 < ∞, while the actual value of 𝜎𝑔 can be estimated in the 

multilevel modeling approach. Single level classical regression is in that perspective a special case 

of multilevel regression. 

Another important aspect to consider when analyzing repetitions is that measurements within each 

repetition may not be completely independent from a statistical point of view. Measurements may 

be correlated if samples are taken from within one run. Classical regression of such data is then not 

allowed because of this correlation; it leads to underestimation of variation and biased parameter 

estimates and their uncertainties. A major advantage of multilevel modeling is that it does take 

such correlation into account, leading to unbiased parameter estimates. It counteracts the danger of 

“pseudoreplication” (Lazic et al., 2018, 2020). 

The terminology used in multilevel modeling can be confusing. Parameters describing effects at 

the population level are sometimes named ‘fixed’ while those describing variation at the cluster or 

group level are called ‘random.’ The term ‘mixed effect models’ refers then to a mixture of random 

and fixed effects, a term sometimes used instead of multilevel modeling. The strength of the 

multilevel method is that the levels inform each other; variation between experiments is accounted 

for but it is also taken into account that there are similarities between experiments. Information 

from one experiment is used in the analysis of another. Since one could also see a hierarchy in an 

experimental design, another term used is hierarchical modeling. 

Readers interested in more background of multilevel modeling are referred to Garre et al. (2020), 

Gelman and Hill (2007), Gelman, Carlin, Stern, Vehtari, and Rubin (2013), Kruschke (2015), 

Lambert (2018), McElreath (2020), Van Boekel (2021a), Van Boekel (2021b), Van Boekel (2022) 

and numerous tutorials on the internet. This very short introduction serves as background for the 

approach followed in this paper. As reported elsewhere, the Bayesian approach is well suited for 

multilevel modeling (Van Boekel, 2021a, 2021b, 2022), as opposed to the more traditional and 

common frequentist approach. 
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1.2 A brief account of the Bayesian approach 

Because the principles of the Bayesian approach are explained in the references mentioned above, 

only a very brief account will be given here. The Bayesian approach is the alternative for the 

frequentist approach that is, until now, used in most food science publications. The major 

difference is that in the Bayesian approach the attention is directed towards the plausibility of 

hypotheses and models given the available data, whereas in the frequentist approach the attention 

is on the plausibility of data given an assumed model or hypothesis. As a consequence, parameters 

are considered variable in the Bayesian concept and are allowed to have a probability distribution, 

whereas in the frequentist approach parameters are considered unknown but fixed and therefore 

cannot have a probability distribution. Frequentist confidence intervals, therefore, are not 

statements about probability of parameters, they refer to how often a parameter will be found in or 

out an interval upon (imaginary) frequent repetitions. The interpretation of such a 95% confidence 

interval is that upon 100 estimations a parameter will be in a specified interval in 95 cases and will 

not be in that interval in 5 cases.  Also, frequentist estimation (usually via least-squares regression, 

which is a special case of maximum likelihood estimation) leads to point estimates of parameters 

(an estimate of the unknown but fixed value), Bayesian estimation leads to complete probability 

distributions of parameters (so-called posterior distributions). To distinguish from the frequentist 

concept of confidence intervals, the Bayesian equivalent is called a credible interval: it indicates 

the probability that the parameter is in a specified interval, not how often a parameter will be 

found in an interval as in the frequentist framework. In Bayesian estimation, researchers are forced 

to make their assumptions about parameters and models explicit by having to define so called prior 

distributions for parameters (reflecting expert knowledge on what is already known about 

parameters before data analysis) and a likelihood function for the data (reflecting the assumption 

about how the data are generated). In the frequentist world, this should actually also be done but 

that is rarely the case; it is usually tacitly assumed that assumptions for least-squares regression are 

fulfilled. Briefly, the assumptions are: correct model specification, additive errors, no errors in the 

independent predictor variable, normally distributed errors, mean of errors is zero, and the 

magnitude of errors are the same. These assumptions should be checked but this is, unfortunately, 

not always done, and consequently parameter estimates may be biased.  

Since multilevel modeling considers random variation of parameters, it comes naturally to connect 

multilevel modeling to the Bayesian way of working, though it should be remarked that multilevel 

modeling is also done in the frequentist way, even though the assumption of fixed parameters is 



8 

 

then strictly speaking no longer valid, see Bates et al. (2015), Pinheiro et al. (2017), Matheson 

(2020). In the current publication, only the Bayesian approach is applied. For all but very simple 

problems, posterior distributions cannot be obtained analytically and Markov Chain Monte Carlo 

simulations are needed. This is by now a well established method (Betancourt, 2017) and various 

software packages are available. 

 

1.3 Ascorbic acid kinetics 

Ascorbic acid is, obviously, an important food constituent as a vitamin but also as an anti- and pro-

oxidant. There is a vast amount of literature on kinetics of ascorbic acid during processing, notably 

heating. The literature was extensively reviewed by Gómez Ruiz et al. (2018) and more recently 

by Giannakourou and Taoukis (2021), so that will not be repeated here. Two additional references 

are from Al Fata, Georgé, André, and Renard (2017) and Shen et al. (2021). According to Al Fata 

et al. (2017), there are two degradation pathways, an aerobic one that goes via dehydroascorbic 

acid (a reversible step) leading to formation of 2,3-diketogulonic acid (an irreversible step). The 

other pathway is an anaerobic one in which the lactone ring is hydrolytically cleaved. They 

summarized global ascorbic acid (AA) degradation as depicted in equation (1): 

d[AA]

d𝑡
= −𝑘𝑜𝑥 ⋅ [AA]

𝛼[O2]𝛽 − 𝑘ℎ ⋅ [AA]
𝛾                     (1) 

In this equation, 𝑘𝑜𝑥 is the rate constant for aerobic and 𝑘ℎ for anaerobic (hydrolytic) degradation 

and 𝛼, 𝛽, 𝛾 the partial reaction orders. It shows clearly the kinetic complexity of the reaction. It is 

therefore not a surprise that there is no consensus in literature about kinetic characterization, as 

there are quite some conflicting results. The complex reaction mechanism indicates that ascorbic 

acid is quite sensitive to oxidation and degradation and so, when experimental conditions differ 

only slightly, different results will be obtained. In addition, its stability depends on many factors 

such as pH, metal traces (acting as catalysts), oxygen content, temperature, presence of other 

antioxidants. In other words, there is uncontrolled, and perhaps even uncontrollable experimental 

variation. A recent and comprehensive overview of the many possible kinetic pathways of 

degradation of ascorbic and dehydroascorbic acid can be found in Shen et al. (2021). 

The fact that degradation of ascorbic acid leads to substantial experimental variation, and therefore 

also to variation in the subsequent kinetic analyses, makes it a suitable case to apply a 

multimodeling approach with the goal to characterize and better understand that variation. The data 

used in the current study come from a model system using an aqueous solution, studied under very 
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strict reaction conditions that may not be directly applicable to foods. However, since the reaction 

conditions were strictly controlled, it makes the data very suitable for the goal of the present study: 

to show how variability can be captured and quantified. 

2 Materials and Methods 

2.1 Experimental data 

Heat-induced degradation of ascorbic acid solutions was studied in a reactor as described by Gómez 

Ruiz et al. (2018). There were 15 repetitions done by four researchers over a period of five years 

(2013-2017) using the same experimental settings (initial concentration around 5.6 mM of ascorbic 

acid (1 g/L), a gas mixture of 21% oxygen/79% nitrogen was continuously bubbled through the 

solution, heating temperature 70 °C, in a malate buffer with pH 3.8). Researcher 1 did runs 1-9, 

researcher 2 runs 10-11, researcher 3 runs 12-13, researcher 4 runs 14-15. Solutions with initial 

concentrations varying around 5.6 mM were prepared fresh for each experiment (small variations 

in initial concentration existed because the amount of ascorbic acid powder added was not precisely 

the same). Experiments were done in a batch reactor, and samples were removed at specific time 

points from the reactor over the course of one run. Fifteen repetitions (runs) were done (9 were 

reported before, 6 additional experiments are included here). The full experimental details can be 

found in Gómez Ruiz et al. (2018). These 15 experiments/repetitions are analyzed here. 

Compared to the original paper (Gómez Ruiz et al., 2018), data were recalculated as follows: time 

in seconds was recalculated to hours and concentration in M to mM. This was done to bring the 

numerical values in the same order of magnitude to avoid numerical difficulties in the MCMC 

(Markov Chain Monte Carlo) procedure to approximate the posterior distributions (see below). 

This has no effect on the modelling, only on the units of the resulting parameter estimates. 

 

2.2 Software 

The calculations, plots and writing were done in RStudio (version 1.4.1103) using the R package 

papaja. The R package brms (bayesian regression models using stan, version 2.16.1) was used for 

regression (Bürkner, 2017, 2018). brms uses the probabilistic programming language Stan in the 

background for the MCMC calculations, see the website from the Stan development team 
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https://mc-stan.org/users/documentation/, see also Carpenter et al. (2017). Graphs were produced 

using the R package ggplot. 

MCMC sampling requires thorough checks to be sure that the algorithm converged. In all cases 

described here, four chains were run simultaneously with at least 4000 simulations of which half 

was discarded as warm-up. The standard checks for convergence are: trace plots showing 

graphically whether or not the chains have converged, 𝑅̂ (Rhat) that should be very close to 1 

(showing whether the chains have mixed well), the number of effective simulations showing how 

many of the simulations were effective (there is no clear-cut number for this parameter but if it is 

at least half of the total number of simulations that should be fine). These checks were performed 

for every analysis done and results are only reported if all the checks were OK; examples of such 

checks can be found in previous papers (Van Boekel, 2020, 2021a, 2021b, 2022). The R code used 

as well as the data sets can be found at the GitHub page of the first author: 

https://github.com/TinyvanBoekel/FRI. 

 

2.3 Modelling approaches 

 

A first-order reaction using normalized concentrations (𝑐𝑡/𝑐0) is displayed in equation (2) with 

parameter 𝑘𝑟 as the rate constant: 

𝑐𝑡

𝑐0
= exp(−𝑘𝑟 ⋅ 𝑡)                                                (2) 

Regression in the Bayesian way requires a likelihood function for the data (reflecting the 

assumption of how the data are statistically distributed) and prior distributions for the parameters 

(Van Boekel, 2020). For the likelihood, if a researcher proposes a first-order reaction as shown in 

equation (2), another assumption must be made how the data are generated in the statistical sense. 

When using least-squares regression in the frequentist framework, it is tacitly assumed that data 

are normally distributed. In the Bayesian framework, this must be explicitly stated and this is done 

by stating that the data are assumed to be generated from a normal distribution (symbol 𝒩) 

according to a first-order reaction (more precisely: that the residuals are normally distributed). 

Since the data are normalized, there are only two parameters left to estimate, the rate constant 𝑘𝑟 

and the experimental standard deviation 𝜎𝑒. For the prior of the rate constant, a normal distribution 

is assumed with a mean of 0.5 h-1 and a lower bound at zero (lb=0). The reason to choose a normal 

distribution is that it, according to McElreath (2020), “reflects the most natural expression of the 

2.3.1 Single level modeling with a normalized first-order reaction. 

https://mc-stan.org/users/documentation/
https://github.com/TinyvanBoekel/FRI
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state of ignorance”. Since it is physically impossible that a rate constant is negative, a lower bound 

of zero is added. Other possibilities are to opt for a log-normal distribution or an exponential 

distribution, which also allow only positive values. But since natural processes follow frequently a 

normal distribution this is chosen here. As for numerical values, a very rough rule of thumb in 

kinetic analysis is that 𝑘𝑟 ⋅ 𝑡𝑒𝑛𝑑 ≈ 1 − 10, with 𝑡𝑒𝑛𝑑 the length of time for which the experiments 

were run. In this case, 𝑡𝑒𝑛𝑑 = 6.5 h, hence a value of 0.5 is proposed, but a relatively large standard 

deviation of 0.3 h-1 is given to allow the software to search for quite different values: it expresses 

the uncertainty on the part of the researcher about the value of this parameter. To give such a large 

standard deviation is the mathematical way of stating this uncertainty. In most cases, the data 

(expressed in the likelihood function) will overrule the choices made for the prior. See Gelman et 

al. (2017) for details on the choice for priors; van Boekel (2020) also paid some attention to prior 

choice for kinetic models. For the experimental standard deviation, a half-cauchy distribution was 

used, as is frequently done for standard deviations because it has a large “fat” tail so that unlikely 

high values are still possible should the data suggest that (Van Boekel, 2020). Note that these prior 

distributions are not reflecting the ‘true’ parameter distributions but the uncertainty of the 

researchers. These assumptions will be combined with the information in the data and will result 

in posterior distributions. Displayed in statistical language, these assumptions lead to equation (3): 

𝑐𝑡

𝑐0
∼ 𝒩(𝜇𝑖, 𝜎𝑒)

𝜇𝑖 = exp(−𝑘𝑟 ⋅ 𝑡𝑖)

𝑘𝑟 ∼ 𝒩(0.5,0.3) (lb=0)

𝜎𝑒 ∼ half-cauchy(10)

                                             (3) 

The symbol ‘∼’ should be read as: ‘is distributed as,’ this applies to the likelihood and the priors. 

The model itself is a deterministic equation as indicated by the symbol ‘=,’ indicating that 𝜇𝑖 does 

not need to be estimated but is calculated from the parameters estimated. 

 

 

The equation to estimate the order of a reaction with respect to time is displayed in equation (4) 

(Van Boekel, 2021a): 

𝑐t = (𝑐0
1−𝑛𝑡 + (𝑛𝑡 − 1)𝑘𝑟𝑡)

1
1−𝑛𝑡                                    (4) 

Next to the rate constant 𝑘𝑟 and experimental standard deviation 𝜎𝑒, there are two more parameters 

to estimate in this equation: the initial concentration 𝑐0, and the order of the reaction 𝑛𝑡. The 

2.3.2 Single-level modeling with the 𝒏𝒕𝒉-order model. 
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proposed likelihood function to capture the data generating process is thus given by equation (4), 

which combined with the proposed priors for the parameters results in equation (5): 

𝑐𝑡 ∼ 𝒩(𝜇𝑖 , 𝜎𝑒)

𝜇𝑖 = (𝑐0
(1−𝑛𝑡)

+ (𝑛𝑡 − 1) ⋅ 𝑘𝑟 ⋅ 𝑡𝑖)

1
1−𝑛𝑡

𝑐0 ∼ 𝒩(6,1)

𝑘𝑟 ∼ 𝒩(0.5,0.3) (lb=0)

𝑛𝑡 ∼ 𝒩(1,0.5)

𝜎𝑒 ∼ half-cauchy(10)

                              (5) 

The numerical values for the prior distributions are again based on expert knowledge, namely that 

the initial concentration should be in the neighborhood of 5.6 mM, and that the reaction order will 

be somewhere between 1 and 2. The standard deviations given are quite wide so that the priors 

allow for different values should the data suggest that; these can be considered as weakly 

regularizing priors, meaning that they prevent the software from searching for impossible values 

while they do allow to search for extreme values if the data suggest that. Unless expert knowledge 

suggests it, priors should in general not be dominating, meaning that the posterior distribution 

should not be determined mainly by the choice of prior but by the data. It is preferred to use weakly 

informative or regularizing priors (McElreath, 2020), where the function of the prior is to prevent 

impossible values (such as negative rate constants) but to allow for unlikely but extreme values 

should the data suggest that. Prior predictive checks are a way to find out the effect of priors on 

estimation as well as to test the implications of a proposed model (McElreath, 2020; Van Boekel, 

2021a). These checks were done (results not shown) to be sure that the proposed priors were indeed 

weakly regularizing. Basically, these checks consist of generating plots that show possible 

outcomes of the dependent variable (in this case ascorbic acid concentrations) as a function of time. 

If such plots would show physically impossible values, prior choice should be adapted; it should 

show, however, unlikely values that are extreme but not physically impossible.  

 

 

The likelihood function for the data is again given by equation (4). Prior distributions for the 

parameters requires some extra work for multilevel modeling. Random effects are introduced to 

accommodate the between-experiment variation. This is done by acknowledging that the 

parameters are related because they are estimating the same effect. That is to say, the three 

parameters 𝑐0, 𝑛𝑡 and 𝑘𝑟 are allowed to vary from experiment to experiment, by characterizing that 

variation with the introduction of three new parameters 𝑢, 𝑣, 𝑤. Variation in 𝑐0 is then 𝑐0 ± 𝑢, 

2.3.3 Multilevel modeling with the 𝒏𝒕𝒉 order model. 
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variation in 𝑛𝑡 is 𝑛𝑡 ± 𝑣 and variation in 𝑘𝑟 is 𝑘𝑟 ± 𝑤. The trick is that they are also connected by 

assuming that these three random effects are statistically distributed following a multivariate 

normal distribution MVN as displayed in equation (6): 

𝑢, 𝑣, 𝑤 ∼ MVN(0, 𝛴) 

Σ = (

𝜎𝑢
2 𝜎𝑢𝑣𝜌𝑢𝑣 𝜎𝑢𝑤𝜌𝑢𝑤

𝜎𝑣𝑢𝜌𝑣𝑢 𝜎𝑣
2 𝜎𝑣𝑤𝜌𝑣𝑤

𝜎𝑤𝑢𝜌𝑤𝑢 𝜎𝑤𝑣𝜌𝑤𝑣 𝜎𝑤
2

)                      (6) 

The variance-covariance matrix 𝛴 holds the variances 𝜎𝑢
2,  𝜎𝑣

2, 𝜎𝑤
2   and the covariances 𝜎𝑢𝜎𝑣𝜌𝑢𝑣, 

𝜎𝑢𝜎𝑤𝜌𝑢𝑤, 𝜎𝑣𝜎𝑤𝜌𝑣𝑤. It is a symmetric matrix, i.e., 𝜎𝑢𝜎𝑣𝜌𝑢𝑣 = 𝜎𝑣𝜎𝑢𝜌𝑣𝑢, etc. The symbol  

represents the correlation coefficient. For this particular case study with three random effects, it is 

thus a 3x3 random effects matrix. 𝚺 can be rewritten as in equation (7): 

𝚺 = (

𝜎𝑢 0 0
0 𝜎𝑣 0
0 0 𝜎𝑤

) 𝐑 (

𝜎𝑢 0 0
0 𝜎𝑣 0
0 0 𝜎𝑤

)                                         (7) 

𝐑 holds the symmetric correlation matrix with the parameter correlation coefficient 𝜌: 

𝐑 = (

1 𝜌𝑢𝑣 𝜌𝑢𝑤

𝜌𝑣𝑢 1 𝜌𝑣𝑤

𝜌𝑤𝑢 𝜌𝑤𝑣 1
)                                                               (8) 

Note from equation (6) that it is assumed that on average the random effects are zero. In other 

words, these random effects are considered as deviations from the “grand mean” obtained for all 

data. Noteworthy is also that not 𝑢, 𝑣, 𝑤 will be estimated but rather 𝜎𝑢, 𝜎𝑣, 𝜎𝑤, though 𝑢, 𝑣, 𝑤 can 

be calculated afterwards. Since these are extra parameters, additional priors are needed for them. 

A normal distribution is again proposed for the likelihood function, as well as for the initial 

concentration 𝑐0 and the rate constant 𝑘𝑟 with a lower bound at zero, a half cauchy distribution is 

used for the random effects and experimental standard deviation, and the so-called LKJ prior is 

used for the correlation coefficients between the random parameters (LKJ stands for Lewandowski-

Kurowicka-Joe, the people who proposed this prior, see McElreath (2020) for more information 

on this prior). All this translates to the statistical notation in equation (9): 
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𝑐𝑡 ∼ 𝒩(𝜇𝑖, 𝜎𝑒)

𝜇𝑖 = (𝑐0
(1−𝑛𝑡)

+ (𝑛𝑡 − 1) ⋅ 𝑘𝑟 ⋅ 𝑡𝑖)

1
1−𝑛𝑡

𝑐0 ∼ 𝒩(6,1)

𝑘𝑟 ∼ 𝒩(0.5,0.3) (lb=0)

𝑛𝑡 ∼ 𝒩(1,0.5)

𝜎𝑢 ∼ half-cauchy(10)

𝜎𝑣 ∼ half-cauchy(10)

𝜎𝑤 ∼ half-cauchy(10)

𝜎𝑒 ∼ half-cauchy(10)

𝜌 ∼ LKJ(2)

                                           (9) 

3. Results and Discussion 

 Figure 1 displays all data points in one graph (Figure S2 in the Supplement shows the data per 

experiment). Two things become obvious from the plot in Figure 1 and Figure S2. First, that there 

is considerable variability between each experiment, which is typical for food-related experiments 

(note, though, that these experiments were done in homogeneous aqueous solutions so that there is 

no biological variation in this case). Second, that the degradation follows more or less the same 

pattern, so apart from the variability there is also similarity. These data will now be analyzed in 

various ways. 

 

Figure 1. Overview of the data showing degradation of ascorbic acid (AA) in aqueous solution at 70 °C as 

a function of time: every run (15 in total) is given a different colour. Source: Gómez Ruiz et al. (2018) 
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3.1 Analysis of the kinetics of the normalized, averaged data using the first-order model 

Gómez Ruiz et al. (2018) handled the observed variation in the data in two ways: i) by analyzing 

each dataset separately and studying the variation in obtained estimated rate constants (to be found 

in the Supplement of their article), and ii) by eliminating the variation in initial concentration by 

dividing the momentary concentration by the initial concentration for each experiment, 𝑐𝑡/𝑐0. The 

initial concentration used for normalization was estimated from the individual regressions. Next, 

they averaged the results obtained per sampled heating time from each run and performed nonlinear 

least-squares regression (i.e., in the frequentist way) of these normalized, averaged concentrations 

as a function of heating time according to a first-order model (equation (2)). This will be repeated 

here but then in the Bayesian way, for comparison with subsequent additional analyses. The results 

are shown as a numerical summary in Table 1 and graphically displayed in Figure 2. 

 

 

Figure 2. Bayesian nonlinear regression results of the normalized, averaged and pooled ascorbic acid data 

heated at 70 °C. A: pairs and posterior parameter density plots and correlation coefficient; B: regression line 

with 95% credible interval for the mean (dark blue ribbon, the credible interval is very narrow and 

almost coincides with the regression line) and 95% prediction interval for new values (light blue ribbon), 

the error bars represent the experimental standard deviations calculated for each of the 15 runs; C: residuals; 

D: normal Quantile-Quantile (QQ) plot; E: lag plot. 

 



16 

 

Table 1: Numerical summary of the posterior distribution resulting from Bayesian nonlinear regression for 

the normalized and averaged ascorbic acid data using the first-order model. SE= standard error, the lower 

and upper bound represent the 95% credible interval 

Parameter mean SE lower bound upper bound 

𝒌𝒓 (h
−𝟏) 0.510 0.016 0.478 0.543 

𝝈𝒆 (mM) 0.029 0.007 0.019 0.046 

 

For comparison, Gómez Ruiz et al. (2018) reported a rate constant 𝑘𝑟 = 0.526 ± 0.018 h-1 

obtained by least-squares regression, which is reasonably close to what is found here (the results 

reported in the paper were based on 9 experiments, meanwhile 6 more experiments were available 

included in the current analysis, which may cause slightly different results). The pairs and posterior 

parameter density plots and the correlation coefficient are in Figure 2A, while the resulting fit is in 

Figure 2B. McElreath (2020) coined the term ‘retrodiction’ as an alternative for the term ‘fitting,’ 

indicating how the model compares to the data in retrospect, emphasizing that it is not a prediction 

because it is based upon the same data that were used for establishing the model. The 95% credible 

and prediction intervals for these pooled, normalized and averaged data are also indicated in Figure 

2B (the credible interval is very narrow and almost coincides with the regression line). A credible 

interval is the Bayesian equivalent of a confidence interval and indicates where the mean is 

expected to be found with 95% probability (note that this is different from the frequentist 

interpretation of a 95% confidence interval: this indicates where the mean will be expected in 95% 

of the cases if the experiment will be repeated). The 95% prediction interval indicates where future 

(not yet observed) values can be expected with 95% probability. This prediction interval does not 

cover the experimentally observed error bars, obviously because the model is not informed about 

these error bars. 

The overall fit appears to be reasonable, as are the credible and prediction intervals. However, the 

large experimental standard deviations as shown in the error bars are not taken into account in this 

way: regression was only done on the average values. It illustrates that averaging removes 

information. The 95% credible interval is very tight around the regression line because it is only 

based upon the averages and not on the variation. Also the parameter estimate 𝜎𝑒 is only based on 

the averages and the deviations from the assumed first-order model, not on the experimental 

standard deviations. A remedy could be to do weighted regression where the standard deviations 

form the weights. This was not done in the original article and a different route will be taken here 

to account for the variation. 
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Regression results require model criticism, i.e., by investigating whether the model can stand some 

statistical tests. This can be checked by studying the residuals, normal Quantile-Quantile (QQ) 

plots to check the normality of the residuals and lag plots to check for serial correlation (Van 

Boekel, 2021a); these are displayed in Figure 2C, D, E, respectively. The residuals are clearly not 

randomly distributed; while the QQ plot is not too bad with some deviation from normality in the 

lower tail, but the lag plot suggests serial correlation. Overall, there are signs that the model is not 

performing well. The individual data sets were also analyzed per run using Bayesian nonlinear 

regression assuming first-order kinetics (analysis per run was also done by Gómez Ruiz et al. 

(2018) but then using nonlinear least-squares regression); the results of nonlinear Bayesian 

regression using the first-order model are shown in the Supplement. Reassuringly, the Bayesian 

regression results were numerically comparable to the least-squares regression results (shown in 

the Supplement of Gómez Ruiz et al. (2018)). Figure S3A in the Supplement shows a pairs and 

posterior parameter density plot for run 1 by way of example (other runs showed similar results), 

these plots do not give reason for concern. The individual fits obtained for first-order regression do 

not look bad at first sight (Figure S3B) but the residual plots in Figure S3C definitely show trends, 

similarly as was found for the normalized first-order model displayed in Figure 2C. All these results 

show that the residuals are not randomly distributed when using a first-order model. This is an 

indication that the first-order model is, perhaps, not the most optimal one. So, all in all, the results 

suggest that it could be interesting to take a closer look at the order of the reaction, while there also 

may be a problem due to normalizing and averaging. The next section investigates what happens 

if the data are not normalized and averaged, while also allowing the data to suggest the order of 

reaction, rather than fixing it at a value of 1. 

 

3.2. Analysis of the kinetics of completely pooled data using the nth-order model 

Relaxing the assumption of first-order kinetics prompts to take a closer look at the kinetic model. 

As equation (1) shows, the kinetics of ascorbic acid degradation is complex. For the experimental 

results analysed here, the oxygen concentration was kept constant at 21%. It may therefore be 

assumed that the anaerobic rate constant 𝑘ℎ is virtually zero while the constant oxygen 

concentration combines with the ‘true’ rate constant 𝑘𝑜𝑥 into a pseudo rate constant 𝑘𝑟. What 

remains to be established then is the value of the order parameter 𝛼 in equation (1), which will be 

labeled here as 𝑛𝑡: see equation (4). This equation was also used by Al Fata et al. (2017) but they 

used a linearized form of it and a graphical analysis to estimate the order, so not via regression; 



18 

 

they reported an order of 𝑛𝑡 = 0.83 but it should be noted that their experimental conditions were 

different. Here, nonlinear regression in the Bayesian way will be used to estimate all parameters, 

thereby avoiding having to interpret a graphical plot. As a reminder, the assumption is that the data 

are generated from a normal distribution with a mean 𝜇𝑖 and a (constant) standard deviation 𝜎𝑒 

according to the 𝑛𝑡ℎ-order model: see equation (5). Prior information was, again, that the initial 

concentration is expected to be near 6 mM, while the numerical value for the rate constant was 

again expected to be around 0.5 with a large prior standard deviation as before. Expert knowledge 

suggests that it is reasonable to expect that the order 𝑛𝑡 is not too far from 1, but also here a 

relatively high standard deviation is given. These are, again, weakly regularizing priors. The 

resulting pairs and posterior parameter density plots are in Figure 3A. These plots look alright but 

the rather strong correlation between parameter 𝑐0 and 𝑘𝑟 is noteworthy ( = - 0.941); this is partly 

due to the mathematical model formulation in equation (4). It did not have a major effect on 

parameter estimation because all the diagnostic measures were found to be OK. 

 

 

Figure 3. Bayesian regression results for the pooled (not averaged) ascorbic acid data heated at 70 °C using 

the nth-order model. Pairs and posterior parameter density plots and correlation coefficients (A), regression 

line, dark blue ribbon: 95% credible interval, light blue ribbon: 95% prediction interval (B), residuals (C), 

QQ plot (D) and lagplot (E) 
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Table 2 shows the numerical summary of the posterior. Because the order 𝑛𝑡 appears to be 

somewhat higher than 1, the estimate for 𝑘𝑟 is different from the one in Table 1 because of the 

strong correlation between these two parameters. It appears that, by allowing the parameters 𝑐0 and 

𝑛𝑡 to vary, rather than fixing them, the posterior distribution of the parameter 𝑛𝑡 does contain the 

value of 1 in its 95% credible interval, but the maximum density occurs at a somewhat higher value 

near 1.1 (Figure 3A). By having the initial concentration and order as parameters, the model has 

more freedom to choose the most likely estimates than when the order is fixed. The resulting fit, 

showing in how far the model is able to retrodict the data, is in Figure 3B. Just as with the 

normalized data, the resulting model is well able to describe the fate of the data overall and the 

95% credible interval is again quite narrow (shown as a dark blue ribbon around the regression 

line), suggesting that the model is well able to predict the mean. The 95% prediction interval, on 

the other hand, is much wider than with the averaged data because of the scatter that is now ‘seen’ 

by the model, even predicting (impossible) negative values. In other words, the uncertainty in 

prediction is mainly due to the experimental variation characterized by the standard deviation 𝜎𝑒 

rather than resulting from estimating the mean. 

 

Table 2: Numerical summary of the posterior distribution resulting from nonlinear Bayesian regression of 

the 𝑛𝑡ℎ-order model for the pooled ascorbic acid data. SE= standard error, the lower and upper bound 

represent the 95% credible interval 

Parameter mean SE lower bound upper bound 

𝒄𝟎 (mM) 5.78 0.18 5.44 6.14 

𝒌𝒓 (h
−𝟏) 0.43 0.07 0.31 0.58 

𝒏𝒕(−) 1.14 0.15 0.86 1.44 

𝝈𝒆 (mM) 0.71 0.05 0.63 0.82 

 

Next, in the model criticism phase, the residuals, QQ and lag plot are displayed in Figure 3C, D 

and E, respectively. The residuals look OK, indicating a better model fit than with the first-order 

model. The QQ plot looks also OK but the lag plot still shows rather strong signs of serial 

correlation. This is, in hindsight, to be expected because of the way the experiments were done: 

taking samples from the same solution in the same reactor in the same experimental run introduces 

dependencies in the data obtained for that run. Hence, one of the conditions for regression, 

independence between collected data, is violated, possibly leading to statistical bias. 
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So, by pooling (analyzing all the data together), the experimental scatter is taken into account but 

does not acknowledge that there may be dependencies in the data, resulting in too much trust in 

them. With complete pooling, the model is not informed that the experiments come from different 

runs. Variation is only accounted for in the residual standard deviation/variance, capturing the 

remaining variation not explained by the model. This is shown in Table 2 by 𝜎𝑒, which is estimated 

as a parameter with its own uncertainty. The parameter estimates are sometimes mentioned as being 

at the “fixed effect level,” fixed because they are supposed to describe the behaviour at the 

population level. The question is, though, whether or not fixed effect parameters obtained by 

complete pooling of data are a good indication for what is going on. That is what will be 

investigated next in this case study. The opposite of complete pooling is to use no pooling and to 

apply regression on each dataset separately. That is described in the next section. 

 

3.3 Analysis of the kinetics of each run using the nth-order model (no pooling) 

On the way to partial pooling, it may be instructive to compare complete pooling (as done in the 

previous section) with no pooling at all, i.e., studying the individual experiments separately. The 

parameters 𝑐0, 𝑘𝑟 and 𝑛𝑡 are then estimated for every experiment separately, resulting in 15 

estimates of the order of the reaction, the initial concentration and the rate constant, using again 

the 𝑛𝑡ℎ-order model (no-pooling was in fact already done with the individual runs using the first-

order model as described in the Supplement (Figure S3) but the extra step taken here is to use the 

𝑛𝑡ℎ-order model rather than fixing the order at 1). The same priors were used as displayed in 

equation (5). The pairs and parameter posterior density plots and parameter correlation coefficients 

for each run did not give reason for concern (Figure S4 in the Supplement shows run 1 by way of 

example, similar plots were obtained for the other runs). However, as found with complete pooling, 

parameters 𝑘𝑟 and 𝑛𝑡 are quite strongly negatively correlated, so a lower value of 𝑛𝑡 is compensated 

by a higher value of 𝑘𝑟 by the software to find the most likely fit; the strong correlation did not 

affect parameter estimation though. The individual fits with 95% prediction intervals are shown in 

Figure 4A and the residuals in Figure 4B. The fits look OK with well-behaved residuals. The 

resulting 15 posterior parameter distributions can be shown in several ways, one way is via so-

called forest or ridgeline plots: see Figure 4C, D , E for the parameters 𝑐0, 𝑛𝑡 and 𝑘𝑟, respectively. 

Ridgeline plots compare posterior parameter densities for each category (runs in this case) and 

show in a glance how they differ. 
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Figure 4. Bayesian regression of each run using the nth-order model for the degradation of ascorbic acid 

(AA) at 70 °C (no pooling). A: Fits for each run (blue ribbon: 95% prediction interval); B: residuals for each 

run; C, D, E: ridgeline plots for parameters c0, nt, kr for each run, green shapes: posterior parameter densities, 

dots and black lines: mean + 95% highest posterior density interval. 
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The variation in 𝑐0 per run as displayed by the marginal posterior distribution is mainly due to 

variation in the way experiments were done: each repetition had a slightly different initial 

concentration, this is “real” variation. The estimation process leads to uncertainty in the value of 

the parameter and this uncertainty is also expressed as variation, and both types of variation cannot 

be separated. The result for 𝑛𝑡 clearly shows the considerable variation in order per run, some very 

different from 1, but it also shows why on average an order around 1 was found for the pooled 

results. Furthermore, the posterior densities for parameter 𝑛𝑡 show wide tails and skewed 

distributions. As for the parameter 𝑘𝑟, the distributions overlap but show also a wide variation. 

However, in performing individual regressions like so, information that might be common between 

individual regressions is not shared: each regression starts without ‘knowing’ anything from the 

previous or next regression. With multilevel modeling on the other hand it is possible to incorporate 

such information. Moreover, it acknowledges the serial correlation within experiments where 

samples cannot be independent in the statistical sense (these are so-called longitudinal data in 

statistical jargon). A next logical step is therefore multilevel modeling. 

 

3.3 Multilevel modeling: partial pooling using the nth-order model 

Multilevel modeling means that there are, in this case, two levels (in other cases there might be 

more, see for instance Garre et al. (2020), Van Boekel (2021a), Van Boekel (2021b), Van Boekel 

(2022). Level 1 is at the level of individual measurements within each experiment (the samples 

taken at certain time points during each run), level 2 is formed by grouping of the runs (15 in total 

in this case). Each run can be seen as a subsample of the population of all possible runs. The 

parameters derived from each run can also be seen as a representation of the population of all 

possible parameter values. It is thus attempted to characterize the random variation within each run 

as well as between runs. That is why the term random effect (in contrast to a fixed effect) is 

sometimes used, while the term mixed effect refers to the fact that there is a mixture of random and 

fixed effects. The terminology is somewhat confusing but the approach is not. Its strength is that 

the levels inform each other; room is given for individual variation but it is also acknowledged that 

there are similarities. Multilevel modeling can be done both in the Bayesian and frequentist 

framework but the Bayesian approach is more natural where parameters are considered to be 

random anyway, whereas they are considered fixed in the frequentist way, so then there is a bit of 

a tension to consider them random. The frequentist method uses a specific maximum likelihood 
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method called restricted maximum likelihood (REML), interested readers are referred to Bates et 

al. (2015) and Pinheiro et al. (2017). 

The pair plots and posterior densities are displayed in Figure 5A. The output shows, in addition to 

what was shown before, the random effects displayed as standard deviations and correlation 

coefficients with a posterior density. The plots look OK without serious parameter correlation. The 

numerical summary of the multilevel analysis is in Table 3. 

 

 

Figure 5. Multilevel modeling (partial pooling, nth-order model) of the ascorbic acid data. A: Pairs and 

density plots + correlation coefficients; B: regression line (solid line) + 95% credible interval (dark blue 

ribbon), compared to regression line (dotted line) + 95% credible interval (light blue ribbon) from 

completely pooled data; C, D, E: ridgeline plots for parameters c0, nt, kr, posterior densities: blue, black dots 

and lines: mean + 95% highest posterior density interval. 
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Table 3: Numerical summary of the posterior distribution resulting from bayesian multilevel modeling with 

varying initial concentration, reaction order, rate constant and correlation between them of the ascorbic acid 

data. SE = standard error, the lower and upper bound reflect the 95% credible interval 

parameter mean SE lower bound upper bound 

𝒄𝟎 (mM) 5.858 0.107 5.651 6.073 

𝒏𝒕 (−) 0.913 0.113 0.686 1.134 

𝒌𝒓 (h
−𝟏) 0.615 0.039 0.539 0.697 

𝝈𝒖 (mM) 0.370 0.108 0.198 0.618 

𝝈𝒗 (−) 0.406 0.092 0.263 0.624 

𝝈𝒘 (h
−𝟏) 0.098 0.055 0.007 0.218 

𝝆𝒖,𝒗 0.248 0.251 -0.278 0.685 

𝝆𝒖,𝒘 0.174 0.330 -0.511 0.749 

𝝆𝒗,𝒘 -0.067 0.323 -0.640 0.606 

𝝈𝒆 (mM) 0.186 0.016 0.158 0.221 

 

 

Table 3 might require some further explanation. The parameter estimates for 𝑐0, 𝑛𝑡, 𝑘𝑟 are the 

overall estimates, which could also be called the population mean, or grand mean, resulting from 

multilevel modeling of all data sets (i.e., partial pooling). Note that the point estimate for the order 

𝑛𝑡 is now lower than 1 (though with a wide credible interval), in contrast to the result for completely 

pooled data. This is because the regressions have ‘learned’ from each other, information is shared, 

and some runs are more informative than others. The standard deviations 𝜎𝑢, 𝜎𝑣, 𝜎𝑤 are the 

estimates for the random effects of the respective parameters, they estimate how much the 

parameters vary between repetitions (where the variation in 𝑐0, in this case, is mainly due to slightly 

different experimental starting values). The correlation coefficients 𝜌𝑢,𝑣, 𝜌𝑢,𝑤 , 𝜌𝑣,𝑤 indicate the 

correlations between the random effect parameters. The correlation coefficients for the fixed effect 

parameters at the population level were already shown in the pairs and density plots in Figure 5. 

𝜎𝑒 summarizes the residual standard deviation not explained by the model. An impression is thus 

obtained of the uncertainty in the random effect parameters characterizing the variation between 

repetitions. The correlation turns out to be rather low, but with quite some uncertainty. Also note 

that the residual standard deviation 𝜎𝑒 has decreased from 0.71 when the pooled data were analyzed 

(see Table 2) to 0.19 with the partially pooled data. This is because most of the variation is now 

accounted for in the standard deviations describing the random effects. This is one of the benefits 

of multilevel modeling: a better characterization of the sources of variation. 

The resulting overall fit is in Figure 5B, compared to the fit obtained from completely pooled data 

with the 95% credible interval for the average (grand mean) effect. As a reminder, the credible 

interval reflects the uncertainty in estimating the mean at the population level. Three effects are 
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worth noting when comparing to the fit obtained from complete pooling. First, the regression line 

has shifted downwards going from regression using completely pooled to partially pooled data 

(also reflected in the different estimates for 𝑐0, 𝑛𝑡 and 𝑘𝑟 in Table 3 as compared to Table 2). This 

is due to the ‘borrowing effect,’ experiments have ‘informed’ each other, resulting in a shift of 

parameter values. It illustrates the compromise that is reached between underfitting and overfitting: 

partial pooling combines all information that will give the best estimate of parameters. The second 

effect is that the 95% credible interval for the mean is much wider for regression with partially 

pooled data than for regression with completely pooled data. This does not mean that the situation 

has worsened because of applying multilevel modeling, it actually reveals that regression with 

completely pooled data underestimates the variation involved in estimating the mean. The reason 

behind that is that with completely pooled data dependencies are ignored, neglecting the fact that 

the data come from different repetitions and considering them all equal, thereby putting too much 

trust in the data. It is an important advantage of multilevel modeling that variation is much better 

characterized, and thus comes to more realistic estimates. 

Figure 5C, D, E show the ridgeline plots for parameters 𝑐0, 𝑛𝑡 and 𝑘𝑟, respectively. These ridgeline 

plots can be compared to the ones obtained from no-pooling results (Figure 4D, E, F) and the 

differences are due to sharing information between runs. It is seen that especially the parameter 𝑛𝑡 

varies relatively more than the other two. The variation in estimated initial concentrations is rather 

small and fluctuates around the aimed value of 5.6 mM. The order of the reaction varied per 

experiment as shown in the 𝑛𝑡 forest plot also after multilevel modeling. It should be realized that 

the order and rate constant are to some extent correlated, so variation in one parameter has an effect 

on variation in the other. The 𝑘𝑟 forest plot shows the variation in the rate constant per run. If the 

reaction is exactly the same in each run, one would expect no variation here. But of course there is 

variation and it goes to show that there are, most likely, slightly uncontrolled (or uncontrollable) 

different varying conditions per run, which are reflected back in the value of the rate constant. It is 

known that ascorbic acid is quite sensitive to conditions like presence of transition metals, pH, and 

also oxygen, of course, though the oxygen concentration was kept constant in these experiments at 

21%. Note, however, that the variation in 𝑘𝑟 is less when applying multilevel modeling than when 

analyzing each experiment separately (compare Figure 5C, D, E with Figure 4C, D, E). 

So, the lesson learnt here is that the rate constant as well as the order of reaction are quite sensitive 

to slightly varying conditions that apparently happen within each run. Even though the nature of 

these variations is not known exactly, there is at least a quantitative impression of how sensitive 
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the parameters are and it does pinpoint more clearly the type of variation in the repetitions (note 

the decrease in unexplained variance 𝜎𝑒 in going from the completely pooled data to partially 

pooled data). In passing, it may be good to realize what the difference is between the standard 

errors for the parameters and the values of the random effect standard deviations (note the 

difference in terminology). The standard errors and their associated credible intervals indicate the 

uncertainties in parameter values (given the data and the model), they do not indicate the actual 

variation. However, the standard deviations for the random effects attempt to estimate the actual 

variation in the population of parameters. It is a rather subtle but very important distinction. Note 

also that these standard deviations have a standard error of their own, indicating the uncertainty 

with which these parameters are estimated. What has been achieved with this multilevel modeling 

exercise is that the variation observed in a plot like Figure 1 is quantitatively and explicitly 

characterized. 

 As discussed above, variation in the value of the reaction order 𝑛𝑡 has its consequences also for 

the value of the rate constant 𝑘𝑟 because the two parameters are correlated. The results so far 

suggest that, overall, the order of reaction is not too far from 𝑛𝑡 = 1 and it could therefore be 

interesting to compare the performance of the first-order model to that of the 𝑛𝑡ℎ-order model also 

with complete pooling and with multilevel modeling. Fixing the order eliminates its correlation 

with the rate constant and will therefore show the effect of no-pooling, complete pooling and partial 

pooling on the rate constant more clearly (the price to be paid for that is a lesser fit with trends in 

the residuals). The complete analysis is described in the Supplement: Figure S5 shows the results 

for complete pooling and Figure S6 for partial pooling with pairs and posterior parameter density 

plots, fits, and forest/ridgeline plots for the partially pooled results. Studying the multilevel 

modeling results using the first-order model, the variation in parameter 𝑐0 is comparable to that 

with the nth-order model but the one for 𝑘𝑟 is, obviously, different because of fixing the order at 

𝑛𝑡 = 1, showing how the rate constant parameter varies between runs at a fixed order 𝑛𝑡 = 1. This 

variation is seen to be considerable, almost a factor 2, although it is also clear that run no. 9 is 

deviating strongly from the rest. The variation seen in 𝑘𝑟 reflects the variation by unexplainable 

causes as it is ‘felt’ by and reflected in the rate constant. It is also striking to see that higher values 

of 𝑘𝑟 go along with wider posterior densities. A higher 𝑘𝑟 values reflects a higher reaction rate, so 

if the reaction goes faster it is apparently more difficult to estimate 𝑘𝑟. Perhaps, this could be 

remedied by adjusting the experimental design, such as taking more samples at the very beginning 

of the reaction. 
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3.4 Posterior predictive checks, model comparison and predictive accuracy 

 

Several models have now been tested and evaluated: the completely-pooled, single level nth-order 

model, the partially pooled, multilevel nth-order model, the completely pooled single level first-

order model, and the partially pooled multilevel first-order model. It might be interesting to 

compare their performances. Posterior predictive checks basically measure how well predicted 

responses based on the posterior distribution correspond to what was actually measured: see Figure 

6 where the empirical cumulative distribution function (ecdf) is compared between the actual data 

and simulated predictions. From these plots, the best predicting model seems to be the multilevel 

nth-order model, followed by the first-order multilevel model while the difference between the two 

single-level models does not look too big. In other words, these latter two models, based upon 

complete pooling, seem to be less capable in predicting new values as compared to their multilevel 

companions. 

 

 

Figure 6. Posterior predictive checks of the 4 models describing degradation of ascorbic acid at 70 °C: 100 

draws from the posterior predictive distribution (yrep=replicated from posterior distribution) providing 

empirical cumulative distribution function results (light blue lines, y-axis: density) compared to that of the 

data (dark blue lines, y). 

 
 

Besides posterior predictive checks, models can be compared in their predictive performance. The 

recommended technique by statisticians is to use loo-cv (leave-one-out-cross-validation) (Vehtari, 

3.4.1 Posterior predictive checks. 

3.4.2 Model comparison. 
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Gelman, & Gabry, 2017). This is a technique in which one sample is left out from the data set, the 

model is then refit without this one sample and it is evaluated how well the left-out observation is 

predicted. This is repeated for each data point. Because this is computationally expensive, an 

approximation is used called ‘Pareto-smoothed importance sampling cross-validation’ (PSIS in 

short). Details can be found in Gabry, Simpson, Vehtari, Betancourt, and Gelman (2019) and 

Vehtari et al. (2017). This technique was applied here, the software for doing this (the R package 

loo) is taken up in the R package brms. It is actually a test in how far models are able to predict 

new values and the errors they make in doing that. The metric output is the elpd-value (‘expected 

log predictive density,’ a measure of predictive accuracy, Bürkner, Gabry, and Vehtari (2021)), the 

model yielding the higher elpd value is performing better, according to this criterion; in addition, 

a standard error on the elpd values is also provided so that it can be judged in how far various elpd 

values really differ. Here, they are made visible in a plot, see Figure 7A. This analysis shows that 

the 𝑛𝑡ℎ-order multilevel model performs the best, followed by the multilevel first-order model, 

while the two less performing models are the single-level models based on completely pooled data. 

That the 𝑛𝑡ℎ-order model performs best is probably due to the fact that it allows more flexibility to 

find the most likely fit and prediction because it has one parameter more (𝑛𝑡), and is therefore 

better able to predict future observations. This result also goes to show that the well-known 

modeling rule called Ockham’s razor (cut down the number of parameters as much as possible) 

may not always be true in the case of multilevel models. According to McElreath (2020), the most 

important aspect to consider is finding the right balance between over- and underfitting, and 

multilevel modeling does exactly that. 

A further advantage of the loo-cv-criterion is that it alerts for possible “problematic observations”; 

this happens if the “pareto-shape parameter k” is higher than 0.7. What this basically means is that 

the software is able to pinpoint observations that are very influential on the outcome. When 

applying this to the 4 models tested, the output for the two single-level, completely pooled models 

did not show a warning and reported that “All Pareto k estimates are good (k<0.5).” However, for 

the two multilevel models there were warnings. These outputs report 12 “bad cases” for the 

multilevel nth-order model and 6 for the multilevel first-order model. A graphical output is given 

in Figure 7B, C for the multilevel models. It is even possible to ask the software specifically for 

the “bad cases.” When this is done, it is striking to see that most of these cases concern the first 

measured values. The question is what to do with this information. The higher the Pareto-k-values, 

the more influential the data point is. For k-values > 0.7 they are considered problematic. One 
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possibility is to omit the pinpointed data points but that is only recommended when there are very 

good reasons to do so, for instance, if it is clear that something went wrong with these data points. 

That information is not available, so that will not be done here. In any case, these “bad cases” make 

the results less trustworthy. 

 

 

Figure 7. A: Plot of the elpd-loo values and their standard errors for the four ascorbic acid models. B: 

Diagnostic plot for the multilevel nth-order model. C: Diagnostic plot for the multilevel first-order model. 

Plots B and C identify data that are troublesome according to the “Pareto Smoothed Importance Sampling 

(PSIS)” criterion. Values higher than 0.7 are considered problematic. 

 

Yet another way of model comparison is to calculate relative weights according to WAIC (widely 

applicable information criterion). This kind of model comparison is based upon information theory; 

a well-known measure in the frequentist world is the Akaike Information Criterion (AIC). In the 
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Bayesian world, however, WAIC is the (more powerful) equivalent (McElreath, 2020). Weights 

can be used as a relative measure. When applying this method to the four models tested, the result 

is that the multilevel nth-order model gets weight 1, and the other three get all weight 0, thus 

confirming the outcome of the loo-cv calculations. Despite the difficulties with the high pareto-k 

values in the loo-cv method, it can be concluded that the multilevel 𝑛𝑡ℎ-order model performs best. 

Incidentally, a less performing model should not be immediately discarded, it does not mean it is 

a bad model, only that it is less accurate in predicting. 

 

3.4.3 Multilevel model prediction 

An important goal of modeling is to make predictions, for instance, to predict process conditions 

and shelf life. Several graphs above showed already 95% prediction intervals. However, prediction 

becomes a bit more intricate in the case of multilevel models. It depends on which research question 

one wants to answer. Is it to predict new, not yet observed experiments? Or is it to predict the 

average effect on the population level rather than an individual experiment? Both possibilities exist. 

Figure 8A shows the 95% prediction interval at the population level and is compared to the one 

obtained from completely pooled data. The 95% prediction interval is much narrower with 

multilevel modeling using partially pooled data. This is due to the ‘borrowing effect’ where partial 

pooling has reduced the residual standard deviation (as already mentioned above: from 0.71 to 

0.19) which consequently reduces the uncertainty in predicting new values at the population level. 

It is different, however, for predicting a global mean value (rather than new, not yet observed 

data). To illustrate that, a simulation is done to calculate the global mean ascorbic acid value after 

1 h heating at 70 °C, with its uncertainty expressed as a probability density curve, using three 

models: based upon averaged-normalized data, completely pooled data and partially-pooled data. 

The results are shown in Figure 8B. It shows clearly that the uncertainty increases in going from 

averaged-normalized to completely pooled to partially pooled. It illustrates that the model based 

upon averaged-normalized data, and to a lesser extent the one based on completely pooled data, 

underfits; these two models do not use all the information that is present in the data. The partially 

pooled model leads to the highest uncertainty for estimating the population mean because it makes 

optimal use of all the information in the data and takes dependencies in the data into account. It 

thereby gives the most realistic impression of the uncertainty involved. 
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Figure 8. Multilevel modeling result (nth-order model) for the ascorbic acid data. A: Partially pooled data, 

population level regression line (solid line) + 95% prediction interval (dark blue ribbon), compared to 

regression line (dotted line) + 95% prediction interval (lightblue ribbon) of completely pooled data; B: 

Global predicted value using models based upon averaged-normalized data (red), completely pooled data 

(blue), partially pooled data (turquoise). C: Regression result for the partially pooled individual level (blue 

lines) and population level (grand mean, red line). 

 

Besides the fact that there is now detailed information about the population level, this is also the 

case for the individual runs. In other words, there are estimates for the three parameters available 

for each of the runs, based on sharing information between the runs. Since the individual parameter 

estimates are also available, the individual fits can be shown for each run: see Figure 8C. The blue 

ribbons reflect the 95% prediction intervals around the individual regression line. The individual 
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fits resulting from partial pooling look quite good, including their prediction intervals, but it also 

shows that some individual fits deviate substantially from the grand mean. It is instructive to see 

how far these fits deviate from the individual fits where the information between runs is not shared 

(no-pooling). This shows whether or not the phenomenon of “shrinkage” has occurred: the partially 

pooled regression line for an individual run is shifted (“shrunk”) towards the grand mean. This is 

best shown for runs that were quite different from the grand mean, for instance run 5 and 9: see 

Figure 9. 

 

 

Figure 9. Regression lines according to the nth-order model for experiment 5 (A) and 9 (B), showing the fits 

resulting from regression of the individual dataset (no-pooling, hyphenated line), the regression line 

resulting from the partially pooled data (solid black line) and the grand mean regression line resulting from 

the partially pooled data (red line). 

 

In run 5, shrinkage is seen most clearly at the end as the partially pooled regression line (solid 

black) being pulled slightly down towards the grand mean regression line (red line) as compared 

to the individual regression line (black hyphenated). In experiment 9 the partially pooled regression 

line (solid black) is moved up a little towards the grand mean regression line (solid red line) as 

compared to the individual regression line (hyphenated blue). The shrinkage effect is not too strong 

in this particular case of ascorbic acid degradation because each run contains quite a number of 

data points, which will keep the partially pooled regression line close to the individual regression 

line. Should there have been runs with less data points, shrinkage would have been more clear for 

such runs. This shrinkage effect is desired because it counteracts the phenomenon of over- and 

underfitting. It illustrates that with multilevel modeling the emphasis is less on fitting 
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(“retrodiction”) because the global fit for each group is less in comparison to each individual fit, 

but it will be much more powerful in prediction. Shrinkage is the result of a trade-off of a poorer 

fit at the individual level and better predictive power at the global level (McElreath, 2020). 

Moreover, if so desired, fits at the individual level can also be obtained and they are shown to be 

quite good. 

4 Conclusion 

This article has illustrated the application of multilevel modeling to kinetic data analysis. The data 

sets available for ascorbic acid degradation are unique in the sense that 15 different experimental 

runs were available at the same conditions. In actual practice, that many runs will not be available 

often but a number of, say, 5-6 runs is already enough to do multiresponse modeling. The case 

study illustrates various aspects: 

• kinetic analysis of averaged results is not recommended because it is like throwing away 

useful information with the result that actual variation is strongly underestimated 

• analysis of completely pooled data also underestimates actual variation 

• analysis of data that are not pooled overestimates actual variation 

• multilevel modeling of partially pooled data allows to partition variance over parameters, 

thereby diminishing unexplained variance and characterizing variation of parameters in a 

realistic way 

• predictions using multilevel modeling estimates lead to less uncertainty (better precision) 

for new, to be observed data because of reduction of unexplained variance but to more 

uncertainty (lower precision) for global mean values because of increased variance of 

parameters 

These results have implications for calculations like shelf life estimations. Such predictions will be 

done for global mean values and then it is important to have a realistic impression of the 

uncertainties involved, an impression that is best obtained by multilevel modeling using partial 

pooling. It has been shown that models based on averaged-normalized data and completely pooled 

data do lead to underestimation of the uncertainties involved. Though the magnitudes of such 
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effects depend of course on the problem at hand, it is a principled approach to apply multilevel 

modeling whenever possible. 

Clearly, multilevel modeling requires more work. A substantial amount of repetitions is needed (5-

6 at least), the modeling exercise is more difficult and requires some programming expertise. 

However, the reward of investing in this is that much more insight is obtained and results become 

more useful and trustworthy. The insight in sources of variation resulting from multilevel modeling 

may help to design experiments to reduce such variation if that is required. The emphasis on 

predictive accuracy of models cannot be underestimated when modeling results need to be used in 

practice, such as shelf life modeling. 

Furthermore, this paper has illustrated how Bayesian regression can help in visualizing posterior 

parameter distributions so that the researcher gets an impression of their behaviour. Also, working 

in the Bayesian way forces researchers to be explicit about their modeling assumptions, which 

would be a good development as these assumptions are usually not specified. Bayesian regression 

leads to better insight in the implications of the assumptions than the frequentist approach. Most 

importantly, predictive capacity and accuracy of models can be tested quantitatively, making it 

possible to go beyond fitting/retrodiction to which most food science publications seem to limit 

themselves. Uncertainties in parameters cannot only be characterized as such but also be used 

quantitatively in further calculations where these uncertainties are propagated. 

There are, as yet, not many data published in food science literature that allow further exploration 

of the concept presented here. This article is meant to inspire researchers to pay attention to this 

important aspect of variation now that the modeling techniques are available. In the words of 

McElreath (2020), “When it comes to regression, multilevel regression deserves to be the default 

approach.” 
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