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Abstract

This work focuses on variable selection for spatial regression models, with loca-

tions on irregular lattices and errors according to Conditional or Simultaneous

Auto-Regressive (CAR or SAR) models. The strategy is to whiten the residuals

by estimating their spatial covariance matrix and then proceed by performing

the standard L1-penalized regression LASSO for independent data on the trans-

formed model. A result is stated that proves the sign consistency for general

dependent errors provided that the transformed design matrix fulfills standard

assumptions for the LASSO procedure and that the estimate of the residual

covariance matrix is consistent. Then sufficient conditions on the weight ma-

trix of the SAR or CAR model are given that ensure those conditions hold. A

simulation study is driven that shows this method gives good result in terms

of variables selection, while some underestimation of the coefficients is noted.

It is compared to a strategy that estimates both the regression and the covari-

ance parameters in a LARS procedure. Coefficient are better estimated with

the Least Angle Regression (LARS) procedure but it gives in some cases much

more false positive in the variable selection. The application is on the regres-

sion of income data in rural area of Uruguay on a set of covariates describing

socio-economic characteristics of the households.
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1. Introduction

Thanks to new technologies, data acquisition is nowadays much easier and

the challenge is now to process this mass of data. Variable selection is one of the

aspects of the question, the number of covariates is often so large that it must be

reduced in order to avoid numerical problems and gaining interpretability. The5

LASSO (Least Absolute Shrinkage and Selection Operator, [1]) method which

cancels the small coefficients of the regression thanks to a `1 penalty, has become

very popular and has experienced many theoretical and practical developments

: [2], [3] state the basics of the method, [4] establish the asymptotics, [5] the

oracle properties, [6] a consistency result, [7] extend to group-LASSO amongst10

many others.

In many domains, environment, climate, econometric, agronomy, data are geo-

referenced and their modeling includes an error term with a spatial dependence.

It is well known that this dependence must be taken into account to avoid mak-

ing errors, whether in the estimation of parameters or their significance. In15

these domains, the increase in the size of the data is also a reality, even if it

does not reach the magnitudes that can be observed in biology for example.

Variable selection by LASSO in spatial models has been studied by several au-

thors : [8] develop an additive model, [9], [10], [11] consider the geostatistical

framework, while [12], [13] and [14] consider lattice models. Depending on the20

case different contexts either on the form of the spatial dependence, or on the

approach considered, by maximum likelihood or by minimizing a least squares

criterion are handled. We show in this work a sign consistency result, which

guarantees to recover asymptotically the true support of the regression param-

eters, for dependent data. We give necessary conditions on the weight matrix25

when the spatial model incorporates CAR or SAR errors for the conditions of

the theorem to be verified. These two results are presented in section 2 along

with the procedure for implementing the selection. In section 3 we compare

this method with the method in [13] which regularizes the full likelihood on the

same models, on simulated data in several situations. Knowledge of household30
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income is essential for setting public policy. In developping countries such as

Uruguay it may be difficult to collect direct data on income especially for some

specific population such as in rural areas and it may be convenient estimating

it from covariates easier to collect describing the socio-economic characteristics

of the household as well as the comfort level and the satisfaction of their basic35

needs. In section 4 we compare the two approaches on a survey data in order

to explain the per capita income of households from Uruguayan rural areas by

covariates A discussion and conclusions are given in section 5.

2. Variable selection for dependent errors, the spatial case

Let us consider a linear model

Y = Xβ + ε (1)

where Y is a n× 1 vector of outputs, X is the n× p design matrix of covariates,

with p that can be very large, β is a p× 1 vector of unknown parameters and ε

is a n× 1 random vector with E(ε) = O and V ar(ε) = Σ.

Without loss of generality, it can be assumed that X and Y are standardized

with 0 mean.

One is willing that the fitted model fulfills two properties : it has good predic-

tive ability, it is interpretable that is if the number of covariate is large only

a few of the associated coefficients are significant. The LASSO (Least Abso-

lute Shrinkage and Selection Operator, [1]) procedure minimizes the following

penalized criterion

L (β) = ‖Y −Xβ‖22 + λ‖β‖1 for some λ > 0 (2)

The penality λ‖β‖1 as being a Lγ norm with γ ≤ 1 has the nice feature to cancel

parameters when λ is growing, and selects by this means variables. When γ = 1,

the minimization problem is convex, hence it is computationally tractable. Re-

garding the predictive performance of LASSO, it has been shown that it is

equivalent to other penalized methods such as ridge or bridge regression ([2])
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and these two features good performance prediction and providing sparse mod-

els make the LASSO procedure very popular and efficient for fitting models

especially for large number of covariates, even larger than the observation num-

ber.

We assume that the true support of the vector β, denoted A∗ = {j : βj 6= 0, 1 ≤

j ≤ p} is size |A∗| = p∗, 0 < p∗ ≤ p, and we denote A∗c the A∗ complementary,

|A∗c| = p− p∗.

The aim of variable selection is to determine the set A∗ and estimate the corre-

sponding parameters {βj , j ∈ A∗}.

Theoretical results for the LASSO procedure are mainly stated for models with

independent errors (Σ = σ2Id), a way to deal with correlated errors is to trans-

form the model in order to remove the correlation :

Σ−1/2Y︸ ︷︷ ︸
Ỹ

= Σ−1/2X︸ ︷︷ ︸
X̃

β + Σ−1/2ε︸ ︷︷ ︸
ε̃

(3)

with ε̃ ∼ N(0, Id) and the procedure may be driven on the transformed model.

When λ = 0 the estimator of β is then the GLS estimator β̂ = (X̃
′
X̃)−1X̃

′
Y =

(X ′Σ−1X)−1X ′Σ−1Y . When Σ is not known but may be estimated by Σ̂, a

plug-in approach leads to consider the model

Σ̂
−1/2

Y︸ ︷︷ ︸
Ỹ

= Σ̂
−1/2

X︸ ︷︷ ︸
X̃

β + Σ̂
−1/2

ε︸ ︷︷ ︸
ε̃

(4)

In the following we state conditions under which the estimator of β is sign

consistent as defined in [6], that is:

lim
n→∞

P (sign(β̂) = sign(β)) = 1

Sign consistency insures the support of the β estimate is asymptotically the true

support.

Without loss of generality , model (1) can written:

Y = [XA∗ XA∗c ]

 βA∗

βA∗c

+ ε (5)
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where βA∗ = {βj , j ∈ A∗}, XA∗ = ((X·j))j∈A∗ , where X·j is the jth column of40

X.

The following theorem is an adaptation to model (1) with correlated errors of

the results stated in [6] for models with independent errors.

Theorem 1 (Condition for strong sign consistency when errors are dependent).

Considering the model (4), and β̂ the LASSO estimator for this model, if there45

exist positive constants M1, M2, M3, M4, M5, M6 and M7 and c1, c2 with

0 ≤ c1 ≤ c2 ≤ 1/2 such that the following conditions are:

1. 1
nX′·jΣ

−1X·j ≤M1 ∀ j

2. ρmin( 1
nX′A∗Σ

−1XA∗) ≥M2

3. p∗ = O(nc1/2)50

4. n(1−c2)/2 min
1≤j≤p∗

(|βj |) ≥M3

5. it exists a constant positive vector δ such that

| 1nX′A∗cΣ
−1XA∗(

1
nX′A∗Σ

−1XA∗)
−1sign(βA∗)| ≤ 1− δ where 1 is a p−p∗

vector of 1, and the inequality holds element-wise.

6.
λ√
n
→

n→∞
∞ and

λ√
n

= o(n(c2−c1)/2)55

7.
∣∣∣∣∣∣(X ′X)/n

∣∣∣∣∣∣
∞ ≤M4

8. ρmax(Σ−1) ≤M6

9. ρmin(Σ−1) ≥M7

10.
∣∣∣∣∣∣∣∣∣Σ−1 − Σ̂−1

∣∣∣∣∣∣∣∣∣
∞

= OP ( 1√
n

) when n→∞

where ρ(X) is the vector of eigenvalues of X, ρmin(X) and ρmax(X) are respec-60

tively the minimum and maximum eigenvalues, |||X|||∞ = max
1≤i≤n

(
n∑
j=1

|Xij |

)
.

Then the strong sign consistency property is achieved for the LASSO estimator

β̂, that is, lim
n→∞

P (sign(β̂) = sign(β)) = 1.

Condition 5 is the so-called [6] strong irrepresentable condition for matrix

X̃ in model (3).65

Conditions 3, 4 and 6 are present in the result for the independent errors case,

while conditions 1, 2 and 5 are analog but for X̃ of model (3) instead of X.
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Conditions 8 and 9 indicate that eigenvalues of Σ are positive and bounded and

condition 10 states that Σ̂ is a good estimator for Σ.

The proof of this Theorem is highly related to that of the one presented in70

[15] established for the multivariate responses case, when the error vector for

one observation are dependent, but the errors for different observations are

independent. The proof is available in the supplementary material.

2.1. Spatial case

We focus now on spatial models and investigate conditions on the error co-

variance matrix in order to fulfill the conditions for strong sign-consistency in

Theorem 1 . Specifically we deal with models on lattice, focusing on autore-

gressive CAR or SAR models, with weights matrix W . More precisely the CAR

(Conditional Auto Regressive) model is written

E(Zi|Zj : j 6= i) =

n∑
j=1

cijZj V ar(Zi|Zj : j 6= i) = σ2

The Z covariance matrix is

ΣCAR = (Id−C)−1V

C = θW , |θ| < 1, V = diag(σ2).

The SAR (Simultaneaous Auto Regressive model) model is written

Z = CZ + ν

where ν is a iid random vector with 0 mean and variance σ2.

The Z covariance matrix is

ΣSAR = (Id−C)−1V(Id−C′)−1

with same as for the CAR model.75

We seek for conditions on W that guarantee conditions 8, 9 and 10 of The-

orem 1 .

To bound ρmax(Σ−1) using inequalities results in ([16]) for positive definite

matrices

ρmax(Σ−1) ≤ γ(Σ−1) ≤
∣∣∣∣∣∣Σ−1∣∣∣∣∣∣∞ (6)
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where γ(X) is the spectral radius of X and decomposing Σ−1 in a product of

matrices and bounding each term we obtain for both ΣCAR and ΣSAR

∣∣∣∣∣∣Σ−1∣∣∣∣∣∣∞ ≤ 1

σ2

1 + |θ| max
1≤i≤n

 n∑
j=1

|wij |

2

and the condition 8 holds if max
1≤i≤n

(
n∑
j=1

|wij |

)
does no depend on n.

To bound ρmin(Σ−1) using the same arguments we obtain for both ΣCAR and

ΣSAR

ρmin(Σ−1) ≥

(
1− |θ| max

1≤i≤n

(
n∑
j=1

|wij |

))2

σ2

and condition 9 holds if max
1≤i≤n

(
n∑
j=1

|wij |

)
does not depend on n and |θ| max

1≤i≤n

(
n∑
j=1

|wij |

)
<

1. Let Ĉ = θ̂W , and V̂ = diag(σ̂2) for the CAR model we have

∣∣∣∣∣∣∣∣∣Σ−1CAR − Σ̂−1CAR

∣∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣ 1

σ2
− 1

σ̂2

∣∣∣∣+

∣∣∣∣∣ θ̂σ̂2
− θ

σ2

∣∣∣∣∣ max
1≤i≤n

 n∑
j=1

|wij |


If
√
n(θ̂ − θ) = OP (1) and

√
n
(

1
σ̂2 − 1

σ2

)
= OP (1), and max

1≤i≤n

(
n∑
j=1

|wij |

)
is

bounded, condition 10 holds for the case CAR.

80

For the SAR model

∣∣∣∣∣∣∣∣∣Σ−1SAR − Σ̂−1SAR

∣∣∣∣∣∣∣∣∣
∞

= max
1≤i≤n

(∣∣∣∣∣
n∑
k=1

w2
ik

(
θ2

σ2
− θ̂2

σ̂2

)
+

1

σ2
− 1

σ̂2

∣∣∣∣∣
≤

∣∣∣∣ 1

σ2
− 1

σ̂2

∣∣∣∣+

∣∣∣∣∣ θ2σ2
− θ̂2

σ̂2

∣∣∣∣∣ max
1≤i≤n

 n∑
j=1
j 6=i

n∑
k=1

|wikwkj |

+

∣∣∣∣∣2θ̂σ̂2
− 2θ

σ2

∣∣∣∣∣ max
1≤i≤n

 n∑
j=1

|wij |


If
√
n(θ̂ − θ) = OP (1),

√
n
(

1
σ̂2 − 1

σ2

)
= OP (1), and both max

1≤i≤n

(
n∑
j=1

|wij |

)
,
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max
1<≤i≤n

 n∑
j=1
j 6=i

n∑
k=1

|wikwkj |

 are bounded, hypothesis 10 holds for the case SAR.

Table 1 displays the conditions that are to be fulfilled on the weights wij in

order to guarantee hypotheses 8 to 10 of Theorem 1 for covariance matrices of85

type CAR and SAR.

Identifier Condition H.8 H.9 H.10 Apply to

1 max
1≤i≤n

(
n∑
j=1

|wij |

)
< c yes yes yes CAR-SAR

2 |θ| max
1≤i≤n

(
n∑
j=1

|wij |

)
< 1 no yes no CAR-SAR

3 max
1≤i≤n

 n∑
j=1
j 6=i

n∑
k=1

|wikwkj |

 < c no no yes only SAR

Table 1: Conditions on weights wij of matrix W.

Let B a binary weight matrix, such that each location has a bounded number

of neighbours (for instance stemming from a triangulation neighbour structure),

then the following W weight matrix fulfills the 3 conditions of Table 1:

wij =

 min
(

1
|N (i)| ,

1
|N (j)|

)
if j ∈ N (i) (equiv. i ∈ N (j))

0 in other case
(7)

where N (i) = {j : Bij = 1} This can be verified bounding max
1≤i≤n

(
n∑
j=1

|wij |

)

and max
1≤i≤n

 n∑
j=1
j 6=i

n∑
k=1

|wikwkj |

. Considering different situations according to the

relative sizes of N (i) and N (j), we obtain

max
1≤i≤n

 n∑
j=1

|wij |

 = max
1≤i≤n

 n∑
j=1

1

max (|N (i)|, |N (j)|)

 ≤ 1
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and condition 1 is verified. Condition 2 is verified because |θ| < 1.90

We denote N2(i) the neighbours of order two of i, and |N ′
2 (i)| =

∑
j∈N (i)

|N (j)− {i}|.

We have

max
1≤i≤n

 n∑
j=1
j 6=i

n∑
k=1

|wikwkj |

 ≤ max
1≤i≤n

(
|N ′

2 (i)|
|N (i)|

)

|N ′
2 (i)|

|N (i)| can be interpreted as the mean quantity of neighbours that have a i-

neighbour (without i), and we expect that max
1≤i≤n

(
|N ′

2 (i)|
|N (i)|

)
is bounded for a

variety of neighbourhood structures, such as the triangulation one for instance.95

A simulation study showed empirically that for n ∈ {100, . . . , 40000}, 100 repli-

cates for each n, and a triangulation neighbourhood structure the quantity

max
1≤i≤n

(
|N ′

2 (i)|
|N (i)|

)
although increasing slowly with n remains less than 9 and we

may consider that condition 3 holds. Parameters θ and σ are estimated from

the residuals of model without correlation. They can be estimated by maximum100

likelihood [17], or by the generalized moments procedure. In the latter case [18]

establish the consistency of the estimator so the condition 10 of Theorem 1

holds. To summarize, the procedure to select and estimate the parameters for

model 5 is the following:

• Step 1: Fit a LASSO model (Standard LASSO) as if there was no spatial105

dependence.

• Step 2: Test the spatial autocorrelation of the residuals, using for instance

the Moran or Geary index.

• Step 3: If the null hypothesis of no correlation is rejected, consider CAR

and SAR models, estimate parameters θ and σ2 by maximum likelihood110

or generalized moments and plug them in Σ̂CAR or Σ̂SAR

• Step 4: Eliminate the spatial dependence using the estimated matrix of

the previous step applying 4.
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• Step 5: Estimate the LASSO model to the transformed data, selecting the

parameter λ by cross validation. This model is named Spatial LASSO.115

3. Simulations

In order to investigate how performs the procedure designed in the previous

section we proceed to simulations according to several scenarios.

n locations irregularly spaced are randomly drawn, p = 20 random variables

N(0, 1) are simulated forming the n× p design matrix X. The output Y is set120

as Y = X1 +X2 +X3 +X4 + ε, with ε ∼ N(O,Σ), that is p∗ = 4.

We consider 2 distinct situations, namely

• Problem 1 : random variables (Xj , 1 ≤ j ≤ 20) are independent

• Problem 2 : random variables (Xj , 1 ≤ j ≤ 20) are correlated with

cor(Xi, Xj) = 0.9|i−j|.125

In each case we check that the conditions on the matrix X̃ in Theorem 1, that is

conditions 1, 2, 5 and 7 hold, and to investigate the asymptotic side of the con-

sistency result we vary n to large numbers. The distinct scenarios correspond to

a specific value of n, σ2, model error (CAR or SAR), the parameter θ is fixed.

Values for n, σ2 and θ are n ∈ {100, 200, 400, 800}, σ2 ∈ {0.5, 1, 1.5, 2, 5, 10},130

θ = 0.9. For each scenario 100 replicates are drawn.

The procedure described in the previous section named “Spatial LASSO” is

compared to the “Standard LASSO” procedure for independent errors and to a

procedure named “LARSm” described in [13] which selects the significant vari-

ables by regularizing the complete likelihood of the model, that is including135

parameters β, θ and σ2.

Simulations were driven in R using packages glmnet, lars, MASS, spdep, expm

and TruncatedNormal ( [19], [20], [21], [22], [23], [24] and [25]). The neighbour-

hood structure was designed following reference [26].

Table 2 displays the average number of selected variables (Vars), the True Posi-140

tive and False Positive for each method, according to different parameters of the

scenarios. All the detailed results are available in the supplementary material.
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scenario
Vars True Positive False Positive

St LS Sp LS LARSm St LS Sp LS LARSm St LS Sp LS LARSm

CAR 4.26 4.28 4.83 3.87 3.89 3.89 0.40 0.39 0.94

SAR 4.13 4.28 4.87 3.72 3.91 3.87 0.41 0.37 0.99

Problem 1 4.31 4.38 5.21 3.79 3.90 3.92 0.52 0.48 1.29

Problem 2 4.09 4.17 4.49 3.80 3.89 3.85 0.29 0.28 0.64

n = 100 4.40 4.38 5.17 3.88 3.89 3.94 0.52 0.49 1.24

n = 200 4.21 4.38 5.24 3.70 3.92 3.90 0.52 0.47 1.34

σ2 = 1 4.55 4.52 5.20 4.00 4.00 4.00 0.55 0.52 1.20

σ2 = 2 4.52 4.44 5.11 3.98 4.00 4.00 0.54 0.44 1.11

All simulations 4.20 4.28 4.85 3.80 3.90 3.88 0.40 0.38 0.97

Table 2: Average number selected variables(Vars), True positive, False Positive for Standard

LASSO (StLS), Spatial LASSO (SpLS) and LARSm, according to different scenarios

The average number of selected variables is slightly overestimated for the

three methods, but more for the LARSm one. The True Positive are well recov-

ered for Spatial LASSO and LARSm, Standard LASSO is lower. False Positive145

are much higher for LARSm, almost twice than Standard LASSO and Spatial

LASSO, the latter being slightly lower.

Results for CAR and SAR error models are not very different and none give

systematically better results. Results are systematically better for Problem 2

than for Problem 1 regardless the method, this kind of decreasing correlation150

in the covariates help selecting the true support. As expected when n increases

or σ2 decreases the three indicators improve.

Let us consider the euclidian distance between the pair (TP,FP) and the op-

timal situation (4,0) for each scenario in order to rank the three procedures.

According to this criterion Spatial LASSO ranks first with 46% scenarios, then155

LARSm with 33% and standard LASSO with the remaining 21%. These re-

sults are not really different according to the problem or the n value. When the

error model is CAR, Spatial LASSO and LARSm perform similarly, when the

error model is SAR, Spatial LASSO is much better. Spatial LASSO performs

better for intermediate values of σ2, LARSm for high values of σ2.160

Estimations of the parameters βj are as expected underestimated by the Stan-
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dard LASSO and Spatial LASSO, the bias decreases when n increases. LARSm

gives better estimations for the first 4 coefficients with value 1, but not for the

null coefficients as it produces much more False Positive. This is illustrated in

Figure 1 for Problem 2 and SAR error model. Regarding the spatial parame-

−
1

0
1

2
−

1
0

1
2

−
1

0
1

2

0 5 10 15 20

−
1

0
1

2

0 5 10 15 20 0 5 10 15 20

i

β̂ i
Standard LASSO Spatial LASSO LARSm

n 
=

 1
00

n 
=

 2
00

n 
=

 4
00

n 
=

 8
00

0.5 1 1.5 2 5 10

Figure 1: βj , j = 0 . . . 20 estimations for Problem 2, SAR error model. Colours are for different

σ2 values.
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ters θ and σ2 they are better estimated by the LARSm procedure than by the

Spatial LASSO one.

As a conclusion on this simulation study we can assert that the procedure Spa-

tial LASSO recovers better the parameters β support while LARSm gives better

estimations of all the parameters at the cost of a greater number of False Posi-170

tive. More figures and results are available in the supplementary material.

4. Real case : income in rural areas in Uruguay

Knowing the income level of a household is fundamental to determine when

it can apply for the different public policies in a country, such as access to hous-

ing, food allowances, etc. In the simplest situation, the household’s income is175
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determined by taking into account all the regular income of each member of

the household, through the documentation requested. However, in developing

countries, as is the case in Uruguay, and particularly for some specific popula-

tions such as rural areas, it is not at all simple to collect this data, since many

households receive informal and/or very irregular income, so that in many cases180

there is no formal documentation to prove the declared income. In these cases,

indirect methods can be used to approximate income, such as the level of con-

sumption or the degree of comfort of the household. The characteristics of the

territory, the political and economic reality and the moment also influence the

determination of income, and identifying the most important variables in the185

modeling carried out in a spatial analysis framework makes sense, because of

their correlations.

We apply the three methods described in the previous sections to an Uruguayan

socio-economic dataset including per capita income in rural areas, variables de-

scribing labour market (activity, employment, unemployement) and comfort190

items. The data are from the survey ECH (Encuesta Continua de Hogares) in

Uruguay conducted by INE (Instituto Nacional de Estad́ıstica).

We use a subset of the survey corresponding to year 2018, including 933 house-

holds in rural areas which are not owning their housing and have at most one

basic need1 not satisfied. The microdata of the ECH are freely accessible and195

are available on the INE website; however, for confidentiality reasons, the geo-

referencing of the surveyed households is not available. In order to proceed a

spatial analysis, and for academic purposes, it was decided to impute to each

household a random location drawn within the census tract area to which each

household belongs. The spatial location of the households considered, identi-200

fying the quartile of per capita income to which they belong, is presented in

Figure 2.

1measure the lack of access of the population to certain goods and services considered

critical for human development: access to decent housing, electricity, potable water, sanitary

services, comfort items and access to education
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1st quartile
2nd quartile
3rd quartile
4th quartile

Figure 2: Uruguay map, with households spatial locations and quartiles per capita they belong

to.

With the information available in the survey we seek to explain the per

capita household income (without rental value and without domestic service),

expressed in RU (Readjustable Units2), according to a set of quantitative vari-205

ables, reflecting the main socio-economic characteristics of the household as well

as its level of comfort. The 29 covariates are listed in Table 3, they include in-

formation on the household members (number, gender, education, occupation)

and comfort elements (cars, laptop, mobile phone ...). On real data it is not

possible to check that the conditions in Theorem 1 hold as the real covariance210

matrix Σ is unknown. In particular in our case as the covariates are highly cor-

related it is doubtful that condition 5. (the irrepresentability condition) which

roughly states that variables in the support are weakly correlated to variables

out of the support, is fulfilled. Nevertheless it is interesting using this variable

selection procedure having in mind that likely we are not in the good framework215

2It is a unit of measurement, its value is periodically adjusted according to the Average

Salary Index, quantifying the variations in the previous twelve months
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to investigate what could be the relevant covariates. The weight matrix W is

driven from a triangulation neighborhood structure and weights are set accord-

ing to 7. In addition to the packages already mentioned, we use shapefiles, sp

and rgdal ( [27], [28] and [29]).

According to this structure each household has a number of neighbours in the220

range (3, 12) the average number is 5.94.

Table 3 gives the βj selected and estimated for Standard LASSO, Spatial LASSO

and LARSm.
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Variable Parameter
Standard

LASSO

CAR SAR

Spatial
LARSm

Spatial
LARSm

LASSO LASSO

intercept β̂0 6.14 0.64 -0.91 0.65 5.80

number of Household Members (HM) β̂1 -0.90 -0.80 - -0.81 -0.31

proportion of Income Earners (IE) β̂2 8.57 9.00 10.15 8.99 4.33

proportion of male IE β̂3 - - - - 0.17

average age of not IE β̂4 - - - - -

average age of male IE β̂5 - - - - 0.01

average age of female IE β̂6 - - - - -

average years formal education IE β̂7 0.01 0.005 - 0.01 -

average years formal education male IE β̂8 - - - - -

average years formal education female IE β̂9 - - - - -

proportion HM receiving social benefits β̂10 -0.21 -0.19 - -0.19 -

average age HM receiving social benefits β̂11 - - - - -

proportion of employed (E) β̂12 0.51 0.36 6.10 0.37 5.46

average age male E β̂13 - - - - -

average age female E β̂14 - - - - -

proportion male E β̂15 - - - - -

average years formal education E β̂16 - - - - -

average years formal education male E β̂17 - - - - -

average years formal education female E β̂18 - - - - -

average number hours worked among E β̂19 0.09 0.09 - 0.09 -

average hours worked by male E β̂20 - - - - -

average hours worked by female E β̂21 - - - - -

number unsatisfied basic needs β̂22 -0.39 -0.35 - -0.35 -

number comfort elements β̂23 0.06 0.06 - 0.06 -

number cars β̂24 2.18 2.08 2.02 2.08 0.43

number motorcycles β̂25 - - - - -

number laptops β̂26 2.06 1.96 1.30 1.96 1.50

number air conditioners β̂27 - - - - -

number colour televisions β̂28 - - - - -

proportion HM with mobile phone β̂29 1.20 1.32 5.86 1.32 3.65

θ̂ - 0.41 0.36 0.21 0.22

σ̂2 - 48.02 55.05 48.29 57.17

Table 3: Estimated parameters by Standard LASSO, Spatial LASSO and LARSm, CAR and

SAR errors.

The optimal parameter λ calculated by leave one out procedure is equal to

0.575 for Standard LASSO and 0.082 for Spatial LASSO.225

Standard LASSO and Spatial LASSO (both CAR and SAR errors model) se-

lect the same 11 variables from the 29, they are mostly related to the income

16



earners, their education, their employment and some comfort elements. LARSm

method, selects 5 with the CAR model and 8 variables with the SAR model.

The variables selected included in the set of 11 variables selected by standard230

and Spatial LASSO.

Both Spatial LASSO and LARSm results depend on initial values of the pa-

rameters. These values are drawn at random and introduce randomness in the

results. To evaluate the sensitivity to the initial parameters we draw for each

method 100 initial values and examine how vary the estimates. While β es-235

timates obtained with Spatial LASSO do not vary much, those obtained with

LARSm vary greatly, some of them even change signs. Even the number of se-

lected variables may change either with the CAR or the SAR error model. On

the other hand θ and σ2 estimates don not vary much for either Spatial LASSO

and LARSm.240

To compare the different models we calculate, the Nagelkerke pseudo R2 ([30]),

the AIC and the BIC for each method and type of error model. The models

are re-estimated according to the following criteria: a lineaTable 4 shows that

Spatial LASSO (both CAR and SAR models) obtain the highest pseudo R2,

and the lowest value of both AIC and BIC.245

Indicator

CAR SAR

Standard Spatial
LARSm

Spatial
LARSm

LASSO LASSO LASSO

pseudo R2 0.442 0.447 0.373 0.447 0.392

AIC 6277 6270 6375 6270 6352

BIC 6340 6338 6413 6338 6405

Table 4: Goodness-of-fit indicators of the estimated models.
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Figure 3: Fitted values versus observed values according to the estimated models.

The LASSO method (both Standard and Spatial by both error models)

selected one third of the available variables, while the LARSm method selected

5 variables with the SAR model and 8 variables with the CAR model. Figure

3 shows the fitted values versus the observed values according to the 3 models.

Except for specific cases, in general there is no substantial change in the point250

estimation of the parameters by the three methods. Comparison according to

indicators such as the pseudo R2, AIC and BIC suggests that the Spatial LASSO

has a better fit than the others. While all variables a priori could be eligible

to explain per capita household income in the extended rural environment, it

is understood that those selected by LASSO form a reasonable subset of those255

with the greatest explanatory power, even in a context of variables that are

not independent of each other. The LARSm method further narrows the set of

variables selected by LASSO, but the drawback is that the results are sensitive

to the initial values, the tolerance and the maximum number of steps considered.
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5. Discussion and conclusion260

In this work we established a result giving conditions to ensure the sign con-

sistency of the LASSO estimator for dependent data. This result guarantees

to recover asymptotically the true support of the regression parameters. The

conditions involved in this result relate to the design matrix and the error co-

variance matrix and may be difficult to check in some cases. We focus on the265

particular case of spatially dependent data on irregular lattice according to a

CAR or a SAR model and we give sufficient conditions on the weight matrix

for some of these conditions to be satisfied. These conditions are obtained by

straightforward calculations, some lighter conditions might be obtained by more

precise methods. In a geostatistical framework, properties of the most popular270

covariance functions could be used to derive similar conditions to the error co-

variance matrix satisfy the theorem assumptions.

A simulation study shows for the situations investigated that the support is well

recovered for sufficient sample sizes and reasonable noise levels. This simulation

study also shows that the recommended method: estimate first the parameters275

in an independent setting and identification of the covariance structure on the

residuals and then implementation of the procedure for dependent data using

the estimated covariance matrix is more efficient than the method consisting in

regularizing the likelihood involving both the regression parameters and the co-

variance parameters. It would be worthwhile to study more extensively various280

situations of dependence in errors to determine to what extent the exact sup-

port of the parameters can be recovered. Other error models can be considered

with higher autoregressive order or for data in a continuous domain instead of

irregular lattice.

The application of these methods to a socio-economic dataset, with the objective285

of explaining the per capita income of rural households in Uruguay, showed that

these two approaches give significantly different results nevertheless the usual

goodness-of-fit criteria give the advantage to the plug-in method which selects a

larger number of variables than the maximum likelihood method. It should be
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noted that this dataset, as the covariates are highly correlated, likely does not290

fulfill the conditions of the theorem, which may explain this discrepancy. Meth-

ods taking into account correlation or other kind of proximity in the covariates

such as Elastic-Net ([31]), Fused-LASSO ([32]) or Group-LASSO ([33]), should

be investigated considering models for data with spatial dependence.

Supplementary material can be download at295

https://www6.inrae.fr/mia-paris/Equipes/Membres/Liliane-Bel/SM
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