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From Biomass-Derived
p-Hydroxycinnamic Acids to Novel
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Phenolics-Based UV-Filters: A
Multidisciplinary Journey
Benjamin Rioux1†‡, Jeanne Combes1†‡, Jack M. Woolley2†‡, Natércia d. N. Rodrigues2,3†‡,
Matthieu M. Mention1†‡, Vasilios G. Stavros2*† and Florent Allais1*†

1URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France, 2Department of Chemistry, University of
Warwick, Coventry, United Kingtom, 3Lipotec SAU, Barcelona, Spain

Although organic UV-filters are extensively used in cosmetics to protect consumers from
the deleterious effects of solar UV radiation-exposure, they suffer from some major
drawbacks such as their fossil origin and their toxicity to both humans and the
environment. Thus, finding sustainable and non-toxic UV-filters is becoming a topic of
great interest for the cosmetic industry. A few years ago, sinapoyl malate was shown to be
a powerful naturally occurring UV-filter. Building on these findings, we decided to design
and optimize an entire value chain that goes from biomass to innovative biobased and non-
toxic lignin-derived UV-filters. This multidisciplinary approach relies on: 1) The production
of phenolic synthons using either metabolite extraction from biomass or their
bioproduction through synthetic biology/fermentation/in stream product recovery; 2)
their functionalization using green chemistry to access sinapoyl malate and analogues;
3) the study of their UV-filtering activity, their photostability, their biological properties; and
4) their photodynamics. This mini-review aims at demonstrating that combining
biotechnology, green chemistry, downstream process and photochemistry is a
powerful approach to transform biomass and, in particular lignins, into high value-
added innovative UV-filters.

Keywords: p-hydroxycinnamic acids, synthetic biology, biotechnology, in stream product recovery, green
chemistry, Knoevenagel, UV-filter, photodynamics

1 INTRODUCTION

Faced with the damage accrued to coral reefs which has been linked to toxic UV-filters, such as
oxybenzone and octinoxate, many territories, including Hawaii in 2018, have banned the use of
sunscreen lotions containing such UV-filters (Ouchene et al., 2019). Besides being harmful to the
Environment, these chemicals are also suspected to be hazardous to Humans, with potential
toxicities toward thyroid, testosterone level, kidney function and pubertal timing (Suh et al.,
2020). Time is therefore ripe to find non-toxic alternatives to these UV-filters. One strategy to
tackle this challenge consists in mimicking photoprotection molecules derived from Nature
(i.e., “nature inspired”); specifically, UV-filters involved in plant-defense mechanisms. Indeed,
Zwier and co-workers, demonstrated that sinapoyl malate, a plant metabolite, exhibited potent
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UV-filtering activity (Dean et al., 2014). Targeting non-toxic UV-
filters has considerable potential, and thus synthesizing these via a
sustainable synthetic route could be transformative to the
skincare industry. Indeed, although octinoxate could be bio-
sourced from p-coumaric acid (one of the 4 main
p-hydroxycinnamic acids found in Nature), it is entirely
petrochemical-based and its synthesis involves fossil fuel-
reagents, meaning it is far from being considered as a green
process with regards to the 12 principles of Green Chemistry
(Anastas and Warner, 1998).

Building on these findings, we decided to design sustainable
synthetic pathways toward novel non-toxic sinapoyl malate
analogues, starting from biomass-derived building blocks
(i.e., 2nd generation sugars, p-hydroxycinnamic acids and
corresponding benzaldehydes). This ambitious project, that
aims at designing and optimizing a value chain that goes from
biomass to innovative bio-based UV-filters, relies on a
multidisciplinary approach that combines expertise in
synthetic biology, fermentation, downstream process, green
chemistry and photochemistry. This mini-review describes, in
sequence, the different stages of this value chain: 1)
microorganism metabolic engineering and in situ product
recovery for the bioproduction of p-hydroxycinnamic acids
and corresponding p-hydroxybenzaldehydes, 2) the design of
innovative sustainable synthetic routes toward new nature
inspired UV-filter starting from the p-hydroxybenzaldehydes,
3) the assessment of the biological properties of these UV-
filters, as well as 4) their physico-chemical properties. It is
worth mentioning that, to the best of our knowledge, such an
integrated approach has never been reported in the literature.
Therefore we specifically focus on our own groups’work but draw
reference, where appropriate, to complementary studies by other
groups.

2 DISCUSSION

2.1 Bioproduction of p-Hydroxycinnamic
Acids and Corresponding
p-hydroxybenzaldehydes
2.1.1 Heterologous Bioproduction of
p-Hydroxycinnamic Acids
As microorganisms are able to produce de novo aromatic amino
acids (AAAs)—i.e., L-Tyrosine (Tyr) and L-Phenylalanine (Phe)-
through the shikimate pathway, they are a promising
heterologous producer of derived molecules. Hence, a great
deal of research has been carried out on this topic, as
illustrated by the number of recent reviews from leading
researchers in the field (Suástegui and Shao, 2016;
Huccetogullari et al., 2019; Averesch and Kayser, 2020; Cao
et al., 2020; Liu et al., 2020; Shen et al., 2020; Dickey et al., 2021).

p-Hydroxycinnamic acids are AAA derived molecules and,
therefore, can be produced de novo through the heterologous
expression of the relevant phenylpropanoid pathway enzymes
presented Figure 1 (Vargas-Tah and Gosset, 2015). Chemical
synthesis or extraction from plant biomass are two additional

routes to access these p-hydroxycinnamic acids; however, they
have drawbacks that biotechnological routes do not have. A
recent review by Allais and co-workers discusses these three
routes, with specific focus on the promising aspects of the
biotechnology route (Flourat et al., 2021).

The latter heterologous biosynthesis using microorganisms
starts with the deamination of Tyr and Phe by ammonia lyases to
produce, respectively, p-coumaric acid (p-CA) and cinnamic acid.
Cinnamic acid can then be hydroxylated into p-coumaric acid by
a cinnamic acid 4-hydroxylase. p-CA is the first
p-hydroxycinnamic acid of the pathway and it has been
heterologously produced at industrially relevant titers. In fact,
DuPont produced significant amount of p-CA from D-glucose in
a two-step patented process using two engineered Escherichia coli
strains with the final aim of producing 4-vinylphenol (Ben-Bassat
et al., 2005; Sariaslani, 2007). Moreover, Liu et al. in 2019 reached
a final production of 12.5 g.L−1 of p-CA from D-glucose in a fed-
batch fermentation using an engineered Saccharomyces cerevisiae
strain. Although p-CA production has been reported in various
other promising microorganisms including Pichia pastoris (Chen
et al., 2021), Pseudomonas putida (Nijkamp et al., 2007; Calero
et al., 2016), (Nijkamp et al., 2007; Calero et al., 2016), a S.
cerevisiae that can use xylose as a sole carbon source (Borja et al.,
2019) and Yarrowia lipolytica (Gu et al., 2020), the productions
did not reach an industrially attractive titer yet and need further
development.

The expression of a p-CA 3-hydroxylase allows the formation
of caffeic acid from p-CA. The highest de novo bioproductions
are, once again, with engineered E. coli and S. cerevisiae strains:
766.7 mg L−1 and 569.0 mg L−1 of caffeic acid, respectively
(Huang et al., 2013; Zhou et al., 2021).

Following this, a caffeic acid O-methyltransferase allows the
bioconversion of caffeic acid into ferulic acid. Kang et al., in 2012,
(Kang et al., 2012), obtained the highest de novo ferulic acid
biosynthesis published to-date: 196 mg L−1 from D-glucose with
an engineered E. coli. Since this finding, most of the work focuses
on producing de novo ferulic acid-derived molecules.

To the best of our knowledge, no work has been published yet
on de novo heterologous production of 5-hydroxyferulic acid and
sinapic acid in any microorganism.

To summarise, most of the work concerning de novo
bioproduction of p-hydroxycinnamic acids focuses on rewiring
carbon flux towards Tyr and Phe synthesis through metabolism
engineering, deletion of competing pathways, relief of feedback
inhibitions, overexpression of rate-limiting enzymes and
heterologous expressions of the relevant genes. However, some
limitations are not straightforward to address with such
strategies. Indeed, since hydroxycinnamic acids are
hydrophobic compounds, their solubility in aqueous solutions
such as fermentation media is low (Mota et al., 2008), they are
also known to be antimicrobial agents (Alves et al., 2013; Pernin
et al., 2019), hence, their accumulation in the broth leads to
toxicity towards the producer microorganism (inhibition). In a
previous study, a different strategy was proposed to
simultaneously address all these concerns, by focusing on the
intensification through process optimization and, more precisely,
on the implementation of an in situ product recovery (ISPR)
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(Combes et al., 2021). The continuous recovery of heterologously
synthesized p-CA through liquid-liquid extraction was
implemented (Figure 2), enabling the detoxification of the
medium and the enhancement of accumulation limits. This
ISPR process coupled to fermentation is called biphasic
fermentation, and in this particular case, oleyl alcohol was
used as the extractant solvent.

Within this work, an endogenous decarboxylation of p-CA
into 4-vinylphenol from the engineered S. cerevisiae strain was
highlighted. The continuous removal of p-CA prevented this
competitive pathway as well, intensifying further p-CA de novo
production. This work demonstrates the importance and
intensification capacities of process optimization for the
heterologous microbial production of p-hydroxycinnamic
acids. This approach will help engineer a viable
biotechnological process, as it also eases the separation steps.

Through strain engineering using the many tools and
strategies of molecular biology and using process engineering
and intensification, the heterologous bioproduction of
p-hydroxycinnamic acids appears to be a promising, efficient

FIGURE 1 | p-Hydroxycinnamic acids biosynthesis pathway. (PAL: phenylalanine ammonia-lyase, TAL: tyrosine ammonia-lyase, C4H: cinnamate-4-hydroxylase,
C3H: p-coumarate-3-hydroxylase, COMT: caffeic acid O-methyl transferase, F5H: ferulic-5-hydroxylase).

FIGURE 2 | Continous recovery through liquid-liquid extraction (from
Combes et al., 2021).

FIGURE 3 | UV-Vis spectra in EtOH (C = 10 µM) of each series of p-hydroxycinnamic derivatives with octinoxate as reference and their respective loss of
absorbance upon 1 h of UV radiation (λ = 300 nm, p = 8.32 W/m2, stirring, T = 35°C).
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and sustainable route (Krömer et al., 2020). p-Hydroxycinnamic
acids are platform molecules and notably, allow easy access to the
corresponding p-hydroxybenzaldehydes as detailed in the next
section.

2.1.2 Biotransformation of p-hydroxybenzaldehydes
From p-Hydroxycinnamic Acids
Vanillin (4-hydroxy-3-methoxybenzaldehyde), the most
important flavoring agent in the industry, is a
p-hydroxybenzaldehyde derived from ferulic acid. The
significance and market size of vanillin, and especially natural
vanillin, has led to very active research towards its
biotechnological production, as extraction from plant biomass
could not meet the market demand (Priefert et al., 2001). One
popular strategy to biotechnologically produce natural vanillin is
to use ferulic acid as substrate of the biotransformation. Some
microorganisms are able to metabolize ferulic acid, and vanilla is
one of the degradation intermediates. Indeed, since 2000, Rhodia
(now Solvay) uses a wild Streptomyces setonii strain to bioconvert
Rhovanil Natural (natural vanillin) from ferulic acid. The latter
was obtained through a technology developed by Givaudan
comprising the metabolism of ferulic acid by the strain, and
the separation of the different products including vanilla, up to
16 g L−1 (Muheim et al., 1998). Although the main strategy
consists in using strains able to metabolize ferulic acid into
vanillin, other strategies exist, including: 1) Genetically
engineering those strains to increase their capacities; 2)
heterologously expressing the enzymes of interest in other
strains; and 3) producing de novo vanillin, combining previous
detailed pathway (Section 2.1) and the enzymes enabling the
biotransformation of ferulic acid into vanillin (Martău et al.,
2021). Many reviews cover published strategies of successful
ferulic acid biotransformations into vanillin and we refer the
reader to these for further information (Priefert et al., 2001;
Walton et al., 2003; Gallage andMøller, 2015;Martău et al., 2021).

For other corresponding p-hydroxybenzaldehydes, there is
less published work, due to smaller industrial interest. Yet,
there is evidence that the aforementioned strategy works for
p-CA and sinapic acid biotransformation into their
corresponding p-hydroxybenzaldehyde form,
p-hydroxybenzaldehyde and syringaldehyde, respectively
(Estrada Alvarado et al., 2001; Nimura et al., 2010).

Unfortunately, there are two major bottlenecks for this
biotechnological approach: The formation of undesired by-
products (e.g., oxidation of p-hydroxybenzaldehydes), often
overcome by deletion of the enzymes of interest, and the
toxicity of the p-hydroxybenzaldehyde. The latter has been
overcome first by choosing tolerant strains, but also by the
implementation of an in-stream product recovery process to
the biotransformation (Hua et al., 2007; Sciubba et al., 2009).
Such implementation could also resolve the issue related to
competitive metabolic pathway as previously described for the
case of p-CA decarboxylation and the biphasic fermentation
study (Section 2.1).

To summarize, in one-step or two-step biotechnological
approaches, p-hydroxybenzaldehydes can be produced from
glucose, and it is well established for the ferulic acid-vanillin

route. For the other p-hydroxycinnamic acids, there is still much
work to be done to create viable routes, as they remain at the
proof-of-concept stage. In other words, these biotechnological
processes open the way for the production of novel UV-filters
from simple sugar using engineered microorganisms.

Now that the bioproduction of p-hydroxybenzaldehydes has
been addressed, we move to discuss the synthesis of UV-filters
from these biotechnologically-generated phenolics building
blocks.

2.2 Synthesis of UV Bio-Based Filters From
Corresponding p-hydroxybenzaldehydes
p-Hydroxycinnamic acids are available in a variety of common
vegetables, especially in Brassicaceae (e.g., mustard, rapeseed,
kale) (Cartea et al., 2011). Extraction of phenolic compounds
from those vegetables by-products would be of great interest to
obtain natural alternatives to synthetic molecules. However, their
extraction remains a challenge as those phenolic compounds are
sensitive to drastic conditions of high-temperature, oxygen and
pH (Charlton and Lee, 1997). Several methods of extraction are
described in the literature (Esclapez et al., 2011; Galanakis et al.,
2013; Flórez et al., 2015), but the phenolic compounds recovered
remains in low concentration, requiring further purification steps
and leading to process which are not yet economically viable at
industrial scale (Xu and Diosady, 2002; Prapakornwiriya and
Diosady, 2014). Therefore, the synthesis of p-hydroxycinnamic
derivatives, with regards to the 12 principles of green chemistry,
remains the primary pathway to obtain new phenolic UV-filters.
The main synthetic route to access p-hydroxycinnamic acids in
high yield and large scale consists in the condensation of malonic
acid with p-hydroxybenzaldehydes through the
Knoevenagel–Doebner reaction, which has been known for
decades. Originally, this reaction involved using a large
amount of pyridine as solvent, and amine as catalyst
[i.e., aniline or piperidine (Knoevenagel, 1894)]. To enhance
yields, reduce reaction time, and limit/avoid the use of a toxic
solvent (Pollock et al., 1943) or catalyst, several optimizations
were carried out in the presence of alternative solvents and
catalysts (e.g., DMSO (Hedge et al., 1961), DMF (Shi et al.,
2000), ionic liquids (Forbes et al., 2006; Hu et al., 2016),
water/ethanol with cobalt ferrite nanoparticles (Rajput and
Kaur, 2013), water with 3-aminopropylated silica gel (Isobe
et al., 2005), ammonium salts (van Schijndel et al., 2017) or
L-tyrosine (Thirupathi et al., 2012)] or activated under
microwave to drastically shortened the reaction time (Singh
and Kaur, 2011; Mouterde and Allais, 2018). More recently,
sustainable Knoevenagel condensation procedures, based on
green chemistry principles (Anastas and Warner, 1998), have
been applied to synthesize p-hydroxycinnamic acids. For
instance, pyridine and aniline were substituted by ethanol and
L-proline as solvent and catalyst, respectively, both of which are
safe for human health and eco-friendly (Peyrot et al., 2019; Rioux
et al., 2020). This provided access to natural p-hydroxycinnamic
acids in high yield and at large scale with a green and sustainable
synthesis. Moreover, these p-hydroxycinnamic acids exhibited
very interesting UV-filtering properties for both the UV-B
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(280–315 nm) and the UV-A (315–400 nm) regions of the
electromagnetic spectrum and are known for their potential to
act as UV-filters or boosters (i.e., to enhance the photoprotective
properties of anti-UV formulations) (Peres et al., 2018). For
example, p-hydroxycinnamic acids (sinapic, ferulic, caffeic, and
coumaric) were used in formulation and proved comparable or
better than commercial filters (Peres et al., 2018; Surendran et al.,
2019; Sauce et al., 2021). Such UV-filtering properties derive from
the conjugated backbone (shown in red) of these natural
compounds (Scheme 1) and the steric hinderance applied on
the β position of the C=C double bond, which are essential for
good absorption and photostability upon UV exposure. On the
other hand, substituents R1-2, as well as the carboxylic function
and the β position, can be readily modulated to access the
corresponding esters, thus allowing to fine tune the properties
of those molecules.

The aforementioned green Knoevenagel-Doebner
condensation procedures unlocked a quick and easy access to
natural p-hydroxycinnamic acid derivatives (3) (Scheme 1), such
as sinapoyl-L-malate (Peyrot et al., 2020c), identified in the leaf to
be responsible for photoprotection, or sinapine (Mouterde et al.,
2020), mainly accumulated in roots, the two most common esters
of sinapic acid in plants (Nićiforović and Abramovič, 2014).

Based on those natural structures, several modifications
were implemented around the phenol and the β position in
order to further modulate the UV-filtering properties
(Figure 3). The presence of a free phenol provided

opportunity to perform biomimetic radical-mediated
reactions in green solvent (i.e., Cyrene®) leading to β-β
dimers of sinapoyl esters (4) (Scheme 1) (Mention et al.,
2020). Such molecules turned out to provide a full coverage of
the UV-A and UV-B regions of the electromagnetic spectrum,
by increasing the conjugation throughout a longer backbone.
It is noteworthy to mention that the free phenol can also be
functionalized in order to be grafted onto
materials—providing them with anti-UV properties (Peyrot
et al., 2020a; Joram Mendoza et al., 2020; Mendoza et al.,
2021a; Mendoza et al., 2021b)—or even be used for
polymerization to directly provide anti-UV materials
(Sasiwilaskorn et al., 2008). As previously mentioned, an
increased steric hinderance on the β position is a key
factor to improve absorption and stability against UV
radiation exposure. One way to easily introduce a
substituent on the β position is to perform a classic
Knoevenagel condensation (i.e., no decarboxylation step)
to offer a second carboxyl group (2) (Rioux et al., 2020)
that can be functionalized further by (trans)esterification
(Horbury et al., 2019). The compounds resulting from this
modification exhibited drastically improved stability toward
UV radiation exposure, while retaining their initial
wavelength coverage and level of absorption (Figure 3),
making them promising, nature-inspired UV-filters.
Furthermore, some strong Brønsted acids, such as
Meldrum’s acid or (thio)barbituric acid can also be used to

SCHEME 1 | Synthesis of p-hydroxycinnamic acids (1) and their derivatives: p-hydroxycinnamic diacids (2), p-hydroxycinnamic esters (3), β-β dimers (4),
p-hydroxycinnamyl barbiturics (5), and p-hydroxycinnamyl Meldrum’s (6) (R1 and R2 = H, OH or OMe).
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synthesize highly hindered compounds (Peyrot et al., 2020b;
Abiola et al., 2021a; Abiola et al., 2021b; Rioux et al., 2022).
The high acidity of their hydrogen at the β positions of the
two carbonyls allows the implementation of base-free
synthetic procedures perfectly fitting green chemistry by
using water as solvent and catalyst at room temperature
and without the need of purification, as
p-hydroxycinnamyl (thio)barbiturics (5) and Meldrum’s
(6) readily precipitate in water (Scheme 1). The symmetric
structures of (5) and (6) lead to a bathochromic shift in
absorbance (380–500 nm), as well as covering both the UV-A
and UV-B (Figure 3). Naturally occurring phenols
(i.e., p-hydroxybenzaldehydes and p-hydroxycinnamic
acids) proved to be promising starting materials to obtain
compounds of interest as replacements for the current
petroleum-based filters used in cosmetics, exhibiting
favourable properties—which can be readily modulated
through precise modification of their structure—as UV-
filters.

Having discussed the synthesis of p-hydroxycinnamic acid
derivatives through green procedures and discussed their
UV-filtering capacity, we now move to evaluate their
biological properties, with specific focus on antioxidant
activity, tyrosinase inhibition and endocrine disruption.

2.3 Biological Properties of the Novel UV
Bio-Based Filters
UV-filters are of interest in a wide range of applications either to
directly protect the consumer against UV radiation exposure or to
prevent degradation of goods caused by exposure to UV
radiation. In recent years, several molecules widely used in
sunscreen formulations have been subject to criticism, mainly
due to their potential toxicity towards human (Matta et al., 2019;
Matta et al., 2020) and environmental health (Schneider and Lim,
2019). As a consequence, the need to provide safe, bio-based and
eco-friendly alternatives has grown exponentially. One way to
restrain the risks is to limit the number of compounds used in the
formulation with multifunctional molecules that can cover
different facets at the same time (e.g., UV-filter, antioxidant)
while retaining biological properties of more complex
formulations.

2.3.1 Antioxidant Activity
Antioxidants are essential to prevent damage from UV radiation
exposure by neutralizing the Reactive Oxygen Species (ROS) that
may form (Krutmann, 2003; Liebel et al., 2012). ROS, in the form
of free radicals, are highly reactive species capable of degrading
materials and inducing cellular damage in living organisms
(i.e., inflammation, oxidative stress or even carcinogenesis)
(Pillai et al., 2005; Austin et al., 2018). Phenols, especially the
aforementioned p-hydroxycinnamic acids and their derivatives,
are known to exhibit interesting antioxidant activity through their
high conjugation, facilitating their ability to neutralize free
radicals (Peyrot et al., 2020a; Peyrot et al., 2020c; Mention
et al., 2020; Mouterde et al., 2020; Rioux et al., 2020; Abiola

et al., 2021a; Abiola et al., 2021b). Such molecules have proven to
be competitive (Figure 4, notably those derived from caffeic,
ferulic and sinapic acid), against the antioxidants conventionally
used and that are strongly criticized for their suspected endocrine
toxicity and carcinogenic effect like BHA (butylated
hydroxyanisole), BHT (butylated hydroxytoluene) or Trolox
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid).
With their ability to scavenge ROS, paired with a capacity to
absorb UV radiation, these p-hydroxycinnamic acids derivatives
are compounds of choice to protect from UV radiation exposure
and its consequences.

2.3.2 Tyrosinase Inhibition Activity
Excessive exposure to the sun can also induce hyperpigmentation
in the form of age spots on the exposed skin (Vashi and Kundu,
2013). This negative effect caused by cell degeneration is due to an
abnormal production of melanin, a pigment usually produced to
tan the skin and protect it against UV radiation exposure. One
way to reduce the effect of this disorder is to inhibit tyrosinase
activity, responsible for the production of melanin during
melanogenesis. Tyrosinase inhibition, widely described in the
literature, can be carried out using fungal tyrosinase to mimic
human tyrosinase, allowing the in vitro identification of potential
inhibitors (Chakraborty et al., 1998; Chawla et al., 2008; Minsat
et al., 2021). By using Kojic acid as a reference (Neeley et al., 2009;
Minsat et al., 2021), some compounds proved to have great
potential as tyrosinase inhibitors, in particular
p-hydroxycinnamyl Meldrum’s (6) (Figure 5) (Peyrot et al.,
2020b). This secondary activity, paired with their UV-filter
activity and antioxidant properties, allows p-hydroxycinnamic
acid derivatives to offer further protection against an over
exposition to the sun.

2.3.3 Endocrine Disruption Activity
As mentioned in the introduction, petroleum-based molecules
currently used in formulations are criticized for their potential
toxicity, both on humans and the environment. One of the main
criteria required for the novel bio-based alternatives to efficiently

FIGURE 4 | Examples of EC50 for each series of p-hydroxycinnamic
acids derivatives relating to free radical inhibition in ethanol, compared to
antioxidants conventionally used: BHA and BHT.
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replace them is to ensure their innocuous nature. Recently, some
studies have highlighted the ability of organic UV-filters to be
endocrine disruptors (Maipas and Nicolopoulou-Stamati, 2015),
which can cause serious negative effects on the central nervous
system and reproductive organs (Crews and McLachlan, 2006). As
a preliminary step to determine potential toxicity, the interactions
between several aforementioned p-hydroxycinnamic acid
derivatives and endocrine receptors were evaluated in vitro
(Horbury et al., 2019; Peyrot et al., 2020b; Peyrot et al., 2020c;
Abiola et al., 2021b). Regardless of the modification introduced on
the molecules, no agonist or antagonist interactions toward the
different receptors were found (Figure 6), as they kept their
normal activity even while in the presence of high concentration
of the studied molecules. With the innocuousness determined
by this preliminary analysis, combined with the versatile
properties of p-hydroxycinnamic acid derivatives toward the
protection against UV radiation exposure, those compounds
can be considered as serious bio-based alternatives of current
organic UV-filters.

After having addressed the bioproduction of
p-hydroxybenzaldehydes, their use for the synthesis of new
nature-inspired UV-filters, the assessment of their UV-filtering

and biological properties as well as endocrine toxicity, we
conclude this review by considering how these nature-inspired
UV-filters deal with radiation exposure at the molecular level.

2.4 Physico-Chemical Properties of the UV
Bio-Based Filters
The main photophysical requirement for an ideal UV-filter is
to strongly absorb UV radiation. However, the absorption of
UV radiation promotes molecules onto high energy excited
states, and this excess energy must necessarily be dissipated via
a combination of photophysical and photochemical processes
(Baker and Stavros, 2016; Rodrigues and Stavros, 2018; Holt
and Stavros, 2019; Abiola et al., 2020; Bacardit and Cartoixà,
2020). Photophysical processes relate (in part) to
intramolecular energy transfer, while photochemical
processes imply the breaking or making of chemical bonds,
such as the generation of a photoproduct. The combination of
these processes is referred to as the molecule’s
“photodynamics,” and it ultimately defines the behavior and
efficiency of a UV-filter.

Ideal UV-filters should dissipate excess energy as harmless
heat, without compromising their structural integrity, generating
any reactive species, or otherwise prompting harmful side
chemistry processes (Baker and Stavros, 2016; Baker et al.,
2017; Rodrigues and Stavros, 2018; Holt and Stavros, 2019;
Abiola et al., 2020). This ideal behavior is typically facilitated
by Internal Conversion (IC) i.e., non-radiative transition between
energy levels of a given molecule (Baker and Stavros, 2016; Holt
and Stavros, 2019). Similar to other photophysical processes, IC
takes place on a femtosecond (10–15 s, fs) to picosecond (10–12 s,
ps) timescale, hence the study of UV-filter photodynamics
requires the use of ultrafast laser spectroscopy techniques
(Abiola et al., 2020; Venkatraman and Orr-Ewing, 2021). In
particular, transient absorption spectroscopy (electronic and
vibrational) experiments have proven extremely useful in
unveiling the ultrafast photodynamics of UV-filters (Baker and
Stavros, 2016; Rodrigues and Stavros, 2018; Holt and Stavros,
2019; Abiola et al., 2020). The photodynamics of UV-filters affect

FIGURE 5 | Examples of EC50 for the p-hydroxycinnamyl Meldrum’s
series compared to Kojic acid for mushroom tyrosinase inhibition.

FIGURE 6 | Receptor activity (%) of estrogen receptor α (ERα), androgen receptor (AR) and pregnane X receptor (PXR) concerning agonist (A) and antagonist (B)
interactions of p-hydroxycinnamic esters at 10 μM.
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their macroscopic properties, and it is therefore common for
ultrafast laser spectroscopy studies to be complemented with
steady-state experiments which, for example, evaluate changes in
absorbance before and after irradiation or generation of
photoproducts.

By employing these experimental techniques and
complementary computational work (Sampedro, 2011; Fang,
et al., 2018), it has been possible to unveil the photodynamics
that facilitate ideal UV-filter behavior. Over the past few years, it
has become clear that different families of UV-filters present
different photodynamics depending on their structural
properties, which are then influenced, to a greater or a lesser
extent, by environmental factors (Baker and Stavros, 2016;
Rodrigues and Stavros, 2018; Holt and Stavros, 2019). In
particular, previous studies have found that naturally
occurring UV-filters, such as cinnamates and sinapates,
typically dissipate excess energy via ultrafast geometric
photoisomerization (E-to-Z or vice versa). This section
summarizes some of these previous findings and demonstrates
how they were employed to the molecular design of improved,
nature-derived UV-filters.

2.4.1 Photoprotection Mechanisms in Nature
As just discussed, geometric isomerization is one of the key
non-radiative pathways by which many plant and plant-based
UV-filters dissipate potentially damaging UV radiation energy
into potentially harmless heat. The first case study we briefly
introduce here is one of the earliest studies which provided
strong evidence, through ultrafast laser spectroscopy, of E-to-Z
isomerization in the model plant UV-filter ethyl sinapate, the
molecular structure of which is presented in Figure 7A. In this
work, Horbury et al. (2018) studied the dynamical processes in
operation following absorption of UV radiation of the two
isomeric forms of ethyl sinapate at their absorption peak
maxima.

The isomer-specific synthesis developed by Allais and co-
workers enabled Horbury et al. to study photoprotection
pathways starting from either pure E- or Z-ethyl sinapate
(Horbury et al., 2018). The transient absorption spectroscopy

(TAS) data obtained from their fs to nanosecond (10–9 s, ns) TAS
setup were virtually identical for both isomers. In order to
elucidate the dynamical processes in operation, a sequential
global fit was applied resulting in three remarkably similar
time-constants (between the two isomers), which were
assigned to: 1) a very fast intramolecular vibrational
rearrangement, taking place within approximately 300 fs; 2) a
~5 ps geometric photoisomerisation (i.e. E-to-Z and vice versa);
and 3) a long-lived photoproduct whose presence is observed
beyond the experimental time window of 2 ns. In essence, these
findings suggest that UV irradiation of these sinapate species
induces first a fast molecular rearrangement within solute
molecules and possibly the solvent surrounding them (300 fs),
followed by the photoisomerisation mechanism that allows for
dissipation of most excess energy within approximately 5 ps. The
photoproduct identified by Horbury et al. relates to the generated
isomer, i.e., E- or Z-ethyl sinapate, depending on the starting
isomer.

Importantly, Horbury et al., were able to infer that
photoisomerization was a crucial dynamical process within
photoexcited ethyl sinapate by comparison of the TAS data
with steady-state measurements, namely the difference
spectrum resulting from subtracting the UV absorption
spectrum of the pure E (or Z) ethyl sinapate from the UV
absorption spectrum of the same species after 2 hours of
irradiation at the molecule’s UV absorption maximum.

2.4.2 Optimizing Nature’s Mechanisms
Several studies such as the one just presented have established
geometric photoisomerization to be an important mechanism for
energy dissipation following UV excitation of plant-based filters.
However, the different isomers (e.g., E and Z isomers, see
Figure 7A) often present different behaviors within a
biological environment (Sharma et al., 2017), as well as having
different absorption coefficients which, in practice, alters the
efficacy of the UV-filter before and after radiation (Horbury
et al., 2018). The key aim therefore is to synthesize a
compound which prevents the formation of the alternate
isomer while also maintaining the effective relaxation

FIGURE 7 | Molecular structures of the compounds studied in the case studies presented in this section, namely (A) (i) Z-Ethyl Sinapate and (A) (ii) E-Ethyl
Sinapate, (B) Diethyl Sinapate, (C) (i) Coumaryl Meldrum and (C) (ii) Sinapoyl Meldrum.
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mechanism of E-Z isomerization. To this end, Horbury et al.
synthesized a geometrically symmetric compound based on the
sinapoyl structure, termed diethyl sinapate (Horbury et al., 2019)
and shown in Figure 7B. Through the addition of two ester
moieties across the acrylic bond, the formation of a geometric
isomer is negated leaving only one optimized ground state
structure.

Horbury et al. studied the effects of these changes on the
excited state dynamics of these molecules using TAS and
complementary steady-state methods. The steady-state
techniques revealed diethyl sinapate to be highly photostable
against solar irradiation, with only 3% of decrease in absorbance
observed over a two-hour period of irradiation. The TAS which
accompany these results showed that, following photoexcitation,
the majority of diethyl sinapate returns to its initial, low energy
form within 3 ps. Interestingly, an additional time-constant of
330 fs was required to fully capture the relaxation mechanism.
This time constant was not observed in singularly substituted
sinapates discussed in the previous case study of ethyl sinapate
(Horbury et al., 2018). The authors attribute this time-constant to
movement towards the molecular arrangement that allows energy
dissipation. Furthermore, the long-lived component (>2 ns)
observed in these studies is not assigned to a geometric
isomer, as for the sinapates previously discussed (Horbury
et al., 2018), but instead to an excited state that remains
populated beyond the time-window of the experiment.
Horbury et al. also performed TAS of diethyl sinapate on a
synthetic skin solvated in alkyl benzoate, which showed the same
ultrafast relaxation and therefore provide insight into the
behavior of these UV-filters in an environment more
comparable to a cosmetic formulation.

The findings of Horbury et al. have shown that the symmetric
substitution removes concerns over potentially harmful
photoproducts while also maintaining the efficient energy
dissipation mechanism that is common among sinapates.

2.4.3 Extrapolating to the Ideal, Synthetic and
Plant-Based Sunscreen
As described, previous work identified geometric
photoisomerisation as a key mechanism for energy
dissipation in plant-based UV-filters, which then allowed
for optimization of this mechanism to avoid significant
changes in UV absorption and other properties upon
photoisomerization. Building on this work, a novel class of
nature-based phenolic compounds was developed with not
only further optimized characteristics and photodynamics,
but also absorption maxima into the UV-A range of the solar
spectrum, a feature that is highly desirable in novel UV-filters
(Abiola et al., 2021b). Two of these phenolic compounds,
consisting of coumaryl and sinapoyl derivatives with a
symmetric substitution around their acrylic bond by means
of a Meldrum functional group, are shown in Figure 7C, were
studied by Abiola et al. (2021b) employing ultrafast laser
spectroscopy and steady-state techniques similar to those
used in the studies presented above.

The studies carried out by Abiola et al. revealed that UV
irradiation of these phenolic compounds leads to an initial

geometry rearrangement along a charge transfer coordinate
within approximately 200 fs, followed by isomerization which
dissipates most excess energy within ~450 fs (Abiola et al.,
2021b). The new isomer is generated with some residual
excess energy, which is dissipated as heat within 4–10 ps.
The excess energy is thus almost completely dissipated
within 10 ps in these phenolic compounds; there is
evidence of some excess energy being trapped beyond 2 ns
in the sinapoyl derivatives, but no evidence that this would
lead to the generation of any potentially harmful
photoproducts. These favorable ultrafast photodynamics
results were also confirmed by steady-state measurements,
which demonstrated that both the coumaryl and sinapoyl
derivatives are highly photostable, losing less than 10% of
their UV absorbance after 2 h of irradiation with a solar
simulator. Furthermore, these compounds show promising
antioxidant properties and no evidence of endocrine
disruption effects, which makes these UV-filters suitable
candidates for applications in cosmetics, for example
(Peyrot et al., 2020b; Abiola et al., 2021b).

The symmetrically substituted phenolic compounds studied
by Abiola et al. thus present as ideal UV-filters with strong UV-A
absorption, ultrafast energy dissipation and high photostability.
These results were obtained both in an industry-standard
emollient and on a synthetic skin mimic, which emphasizes
the suitability of the phenolic compounds under study for
applications in complex environments without lessening their
ideal characteristics.

The three case studies presented here demonstrate how
gathering a deep understanding of UV-filter photodynamics
has guided the molecular design of plant-based compounds
that present ideal physico-chemical properties. This type of
bottom-up approach to molecular design has proven valuable
in real-life applications from photoprotective cosmetics to
light-to-heat conversion materials (Abiola et al., 2021a).

3 CONCLUSION

It is undeniable that nature is just as much an inexhaustible
source of elementary building blocks for (bio)chemistry as it is a
source of inspiration for the design of next generation materials
for wide-ranging applications. Based on this observation, the
development of integrated value chains starting from biomass to
analogues of natural products appears to be a promising solution
for the replacement of petrochemically-sourced molecules used
today. Inspired by the sinapoyl malate produced by plants, the
implementation of this strategy in the field of UV-filters could
only be done thanks to a multidisciplinary consortium covering
fields as varied as biotechnology, chemistry, physico-chemistry
and process engineering. By combining these disciplines, and
through a good understanding of the mechanisms and structural
features responsible for UV absorbance, we have been able to
develop, optimize and integrate an unprecedented value chain that
allows the production of novel sustainable UV-filters from plant-
based components (i.e., carbohydrates, p-hydroxycinnamic acids)
exhibiting impressive UV absorbance while concurrently showing
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equally impressive photostability. Although there are still many
steps (e.g., environmental toxicity) to validate before
commercializing these new UV-filters, what has been achieved
so far demonstrates the strength and effectiveness of such a
multidisciplinary and integrated strategy for, basically, any other
type of molecule of interest.
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