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Abstract The Adjusted Rand Index (ARI) is arguably one of the most popu-
lar measures for cluster comparison. The adjustment of the ARI is based on a
hypergeometric distribution assumption which is unsatisfying from a modeling
perspective as (i) it is not appropriate when the two clusterings are dependent,
(ii) it forces the size of the clusters, and (iii) it ignores randomness of the sam-
pling. In this work, we present a new ”modified” version of the Rand Index.
First, we redefine the MRI by only counting the pairs consistent by similarity
and ignoring the pairs consistent by difference, increasing the interpretability
of the score. Second, we base the adjusted version, MARI, on a multinomial
distribution instead of a hypergeometric distribution. The multinomial model
is advantageous as it does not force the size of the clusters, properly models
randomness, and is easily extended to the dependant case. We show that the
ARI is biased under the multinomial model and that the difference between
the ARI and MARI can be large for small n but essentially vanish for large
n, where n is the number of individuals. Finally, we provide an efficient algo-
rithm to compute all these quantities ((A)RI and M(A)RI) by relying on a
sparse representation of the contingency table in our aricode package. The
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Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay
(IPS2), 91405, Orsay, France
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space and time complexity is linear in the number of samples and importantly
does not depend on the number of clusters as we do not explicitly compute
the contingency table.

Keywords Clustering · Rand Index · Multinomial distribution · Statistical
Inference

1 Introduction

With the increasing amount of data available, development of clustering meth-
ods have become crucial in unsupervised learning to explore and find patterns
in data sets. Despite the wealth of theoretical research on this subject, in prac-
tice selecting and validating a clustering is difficult. To answer these questions,
one often resorts to a measure of clustering comparison: when the data is la-
beled, the quality of the clustering is evaluated by measuring the overlap with
the original labeling; in the absence of labels, the reliability of the clustering
can be assessed by evaluating its stability (see, e.g. Von Luxburg et al., 2010).
This can be done by comparing several clusterings obtained by perturbing
the initial data set (i.e. with resampling), or by running different clustering
methods on the same data set. The idea of clustering stability is dug deeper
in cluster ensembles (Strehl and Ghosh, 2002) and its variants, which involve
measures of clustering comparison in the construction of the clustering itself.

Among the many measures proposed for pairwise clustering comparisons
(see Vinh et al., 2010, for an overview) one of the most popular is the Rand
index (RI) (Rand, 1971) and its adjusted variant (Hubert and Arabie, 1985;
Morey and Agresti, 1984). The RI is designed to estimate the probability of
having a coherent pair, which is a pair for which its two observations are either
in the same group in the two compared clusterings or in different groups. It
is computed from the contingency table of the two classifications. However,
the RI depends on the number of groups (Morey and Agresti, 1984) and is
therefore difficult to interpret. To overcome this issue, the Adjusted Rand
Index (in short ARI) is obtained by subtracting to the RI an estimator of its
expected value obtained under the assumption of two independent clusterings.

To obtain such an estimator, a population distribution has to be assumed
upon the two compared clusterings, or more specifically upon the marginals
of the contingency table of the two clusterings. Considering either the clusters
sizes fixed or not, the two natural hypotheses that arise are either the hyper-
geometric distribution or the multinomial distribution. In the literature, there
is discordance as to which of these hypotheses to use.

The RI and ARI as defined by Brennan and Light (1974) and then adapted
by Hubert and Arabie (1985) are based on the hypergeometric distribution hy-
pothesis. In fact, considering fixed cluster sizes makes calculations easier and
the expected value of the RI deterministic. However, this is a strong assump-
tion that is violated in all cluster studies since no clustering algorithm fixes
cluster sizes (see Wagner and Wagner, 2007, for a detailed discussion). More-
over, from a modeling perspective, it implicitly ignores any randomness of the
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sampling procedure and considers that the set of individuals that we observed
is fixed. Hence under this model the (A)RI are post-hoc quantities for which
no inference to a parental population can be done, which limits the interpre-
tation exclusively to the observed data points. Assuming the marginal to be
fixed certainly simplifies the calculations under the hypothesis of independence
between clustering. However, modeling dependency between clusterings under
this assumption is not straightforward and rather unnatural compared to the
multinomial model. Yet one certainly hopes to compare clusterings that are
alike or dependant.

In comparison, the multinomial model does not assume the size of the clus-
ters to be fixed, by considering a sample observed from an infinite population.
Modeling dependent clusterings and adjusting accordingly is then greatly sim-
plified. For all these reasons we argue that the multinomial model is more
natural from a statistical perspective. Note that Morey and Agresti (1984)
already studied this model to propose an adjusted version of the RI. Nonethe-
less, as pointed out in Hubert and Arabie (1985); Steinley (2004); Steinley
and Brusco (2018), Morey and Agresti made an error in their calculation of
the expected value of the RI, assuming that the expected value of a squared
variable is the square of the expected value, which is wrong in general. We are
convinced that this error is the reason for the problem described in Steinley
and Brusco (2018), advocating unfairly for the hypergeometric version of the
(A)RI.

§

In this work, we essentially make a rigorous statistical analysis of the RI
under the hypothesis of a multinomial distribution. In details, our contribu-
tions are the following:

1. Define new versions of the RI and the ARI, denoted by MRI and MARI
(for ”modified” (A)RI), only counting consistent pairs by similarity. In-
deed, we show that counting consistent pairs by dissimilarity is unneces-
sary and blurs the interpretation. In terms of our newly defined MARI,
considering those pairs would simply result in a multiplication by 2.

2. Finalise the work of Morey and Agresti (1984) and derive an unbiased
estimator of the expected value of the MRI under a multinomial distribu-
tion valid for data under H1 (dependent clusterings) and H0 (independent
clusterings).

3. Provide an efficient algorithm to compute all these quantities ((A)RI and
M(A)RI) by relying on a sparse representation of the contingency table.
The complexity is in O(n) time and space where n is the number of indi-
viduals. This is better than the usual O(n+KL) complexity, where K and
L are the sizes of the two clusterings one which to compare, typically ob-
tained when using the non-sparse contingency table. Our code is available
in versions ≥ 1.0.0 of the R package aricode (Chiquet et al., 2020).

4. Investigate the difference with the hypergeometric Hubert and Arabie’s
ARI and show that it is biased under the multinomial distribution, even if
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the difference between the two estimators remains small. This is in contra-
diction with the results of Steinley and Brusco (2018) that used the faulty
ARI of Morey and Agresti (1984).

2 Statistical Model

2.1 A new Rand Index - counting only pairs consistent by similarity

The Rand Index (RI) proposed by Rand (1971) counts all the consistent pairs
in two given classifications. In details, let us consider two classifications C1

and C2 in respectively K and L classes of the same n individuals. The labels
of individual i are given by c1i ∈ [1, . . . ,K] and c2i ∈ [1, . . . , L]. The consistent
pairs are all pairs where observations i and j are in the same group (consistent
by similarity), or in different groups (consistent by difference) in C1 and C2.

We introduce the two quantities c1ij and c2ij indicating whether i and j are

in the same group for respectively classification C1 and C2 :

c1ij =

{
1 if c1i = c1j = k,
0 otherwise,

and c2ij =

{
1 if c2i = c2j = `,
0 otherwise.

Note that c1ij and c2ij are the realisations of Bernoulli random variables denoted

by C1
ij and C2

ij that will prove useful later in our statistical analysis, while
studying the RI and other similar quantities as random variables.

Using these two quantities we see that a pair is consistent by similarity if
c1ijc

2
ij = 1 and consistent by difference if (1−c1ij)(1−c2ij) = 1. Now considering

all pairs, we get the following formula for the RI as defined by Rand:

RI(C1, C2) =
1(
n
2

) ∑
i<j

c1ijc
2
ij +

∑
i<j

(1− c1ij)(1− c2ij)

= 1 +
1(
n
2

)[2∑
i<j

c1ijc
2
ij −

∑
i<j

c1ij −
∑
i<j

c2ij

]
.

(1)

In Equation (1), we remark that only the product
∑
c1ijc

2
ij depends on the

joint distribution of C1 and C2: all other terms, coming exclusively from co-
herent pairs by difference, depend on the marginal distributions of C1 and C2.
These terms will thus be cancelled out in any adjusted version of the RI, cor-
recting for what would happen if C1 and C2 were drawn independently. Hence,
we argue that considering the consistent pairs by difference unnecessarily com-
plicates the reasoning and the probabilistic analysis of the RI. For simplicity
we thus redefine the index and refer to it as the MRI (for ”modified” RI):

MRI(C1, C2) =
1(
n
2

) ∑
i<j

c1ijc
2
ij . (2)
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Remark 1 For the derivation of the expected value of MRI, RI and their
adjusted version MARI and ARI, using the definition involving c1ij and c2ij
(or more exactly C1

ij and C2
ij in a probabilistic perspective) considerably sim-

plify the calculations compared to their classical combinatorial formulations.
These combinatorial formulations are recalled in the next section as they are
classically used to compute the RI and its variants.

2.2 Computing the Rand Index from the nk` contingency table

The information from two observed classifications is usually summarized in a
contingency table like Table 1, representing the number of observations nk` in
group k in C1 and in group ` in C2.

Table 1: Contingency Table between clusterings C1 and C2; each entry nk`
corresponds to the number of observations in group k in C1 and group ` in
C2.

C1�C2
c21 · · · c2` · · · c2L Sums

c11 n11 · · · n1` · · · n1L n1.

...
...

. . .
...

. . .
...

...
c1k nk1 · · · nk` · · · n2L nk.

...
...

. . .
...

. . .
...

...
c1K nK1 · · · nK` · · · nKL nK.

Sums n.1 · · · n.` · · · n.L
∑

k` nk` = n

Using basics combinatorics we get the following relations between nk`, nk., n.`
and c1ij , c

2
ij :∑

i<j

c1ij =
∑
k

(
nk.
2

)
,
∑
i<j

c2ij =
∑
`

(
n.`
2

)
and

∑
i<j

c1ijc
2
ij =

(
nk`
2

)
. (3)

Expressions (1) and (2) of RI and MRI turn to

MRI(C1, C2) =
1(
n
2

) ∑
k,`

(
nk`
2

)
=

1

2
(
n
2

) ∑
k,`

(n2k` − n) (4)

RI(C1, C2) = 1 +
2(
n
2

) ∑
k,l

(
nk`
2

)
− 1(

n
2

)[∑
k

(
nk.
2

)
+
∑
l

(
n.l
2

)]
. (5)

Using these formula, one can see that the minimum of the MRI is obtained
when all nk` are equal, which has a simple and straightforward interpretation
(as two perfectly independent and balanced clusterings). On the other hand
the minimum of the RI is obtained for an extremely unbalanced table, i.e.
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when one of the two clustering consists of a single cluster and the other only
of clusters containing single points. This makes the interpretation of the RI
rather difficult (i.e. the lowest value is not obtained for two perfectly indepen-
dent and balanced clusterings) and give more credibility to the definition of
MRI that does not consider consistent pairs by difference.

2.3 Probabilistic model and properties of the Rand Index

So far, the (M)RI have been computed from the observed quantities c1ij , c
2
ij ,

or equivalently from the observed contingency table nk`. From now, we aim to
study the statistical properties of the MRI and consider its status of random
variable1:

MRI(C1, C2) =
1(
n
2

) ∑
i<j

C1
ij C

2
ij , (6)

where we recall that C1
ij and C2

ij are Bernoulli random variables indicating

whether individual i and j are in the same groups in classification C1 respec-
tively C2.

To derive the probability of success associated to C1
ij and C1

ij , we need a

probabilistic model for the classification of a given individual in C1 and C2,
that is, a counterpart for generating the two observed clusterings c1i and c2i
for the n data points. We denote by C1

i and C2
i the corresponding random

variables. A natural model is the multinomial model, which give the joint
distribution of (C1

i , C
2
i ) as follows: for all (k, `) ∈ {1, . . . ,K} × {1, . . . , L},

P(C1
i = k,C2

i = `) = πk`, s.c.

K,L∑
k,`

πk` = 1.

The marginal probabilities of a given group is defined for k in C1 by
∑L
` πk` =

πk. and for ` in C2 by
∑K
k πk` = π.`. See Table 2 for a global picture. Com-

pared to the hypergeometric model, the multinomial model easily deals with
dependent classifications and does not force the size of the clusters.

Based on this multinomial model for C1
i and C2

i , it is then relatively
straightforward to derive the joint distribution and marginals of C1

ij and C2
ij .

In particular we have:

P(C1
ij = 1) =

∑
k

π2
k., P(C2

ij = 1) =
∑
`

π2
.` and P(C1

ijC
2
ij = 1) =

∑
k,`

π2
k`.

(7)
However, in order to derive the expectation, variance and unbiased adjustment
of the MRI under the multinomial model, one not only needs to characterize
events on the classification C1 and C2 on (unordered) pairs of individual {i, j},

1 By a slight abuse of notation, we use MRI for both its observed value and its definition
as a random variable. We think that the context suffices for the reader to remove any
ambiguity.
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Table 2: Multinomial model: probabilistic distributions πk` = P(C1
i = k,C2

i =
`) and marginal distributions πk. = P(C1

i = k) and π.` = P(C2
i = `)

C1�C2
c2i = 1 · · · c2i = ` · · · c2i = L Sums

c1i = 1 π11 · · · π1` · · · π1L π1.
...

...
. . .

...
. . .

...
...

c1i = k πk1 · · · πk` · · · π2L πk.
...

...
. . .

...
. . .

...
...

c1i = K πK1 · · · πK` · · · πKL πK.

Sums π.1 · · · π.` · · · π.L
∑

k` πk` = 1

but also on pairs of pairs of individual {i, j} and {i′, j′}, with terms like the
expectation of C1

ij × C2
i′j′ . The following section derives a couple of technical

– yet simple – lemmas, on events implying such random variables so that the
final calculation of the moments of MRI under the multinomial model are
straightforward.

Remark 2 To our knowledge most derivations of the expectation and variance
of the RI found in the literature are based on the combinatorial formulation
given in Equation (5): these derivations rely on general results on the moments
of either the multinomial or the generalized hypergeometric distribution and
involve tedious calculations. In contrast, our proofs, found in the next sections,
are short, self-contained and easily accessible to any reader with some basic
knowledge in probability and statistics. For this reason we argue that our
proofs are interesting in their own rights.

2.3.1 Subsets of Pairs of Pairs - preparing the derivations of the moments of
the MRI

Consider {i, j} and {i′, j′} the P × P set of unordered pairs of {1, . . . , n}2
such that i < j and i′ < j′. This set is composed by pairs of pairs, and can
equivalently be seen as the set of all quadruplets of {1, . . . , n}4 such that i < j
and i′ < j′. We partition this set into the three following subsets:

1. the unordered pairs P,
2. the ordered-triplets T ,
3. the ordered quadruplets Q.

These three subsets P, T and Q makes a partition of P ×P and in particular,

|P|2 = |P|+ |T |+ |Q|.

We now study respectively P, T and Q in the three following lemmas: we
derive their cardinality and compute some expectations involving these subsets
and the C1

ij , C
2
ij variables under the multinomial model. These three lemmas

will be the building blocks for the characterization of the MRI.
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Lemma 1 (Subset of unordered pairs P) With a slight abuse of notation,
we consider P as a subset of P × P:

P = {{i, j, i′, j′} : |{i, j} ∪ {i′, j′}| = 2.}

The cardinality of P is |P| =
(
n
2

)
and

E

∑
i,j∈P

C1
ijC

2
ij

 =

(
n

2

)∑
k`

π2
k`. (8)

Proof. For any i, j ∈ P, we have from (7) that E(C1
ijC

2
ij) =

∑
k` π

2
k`. We just

need to sum over all possible pairs to get the desired result.

Lemma 2 (Subset of ordered triplets T ) Consider the subset T of P×P

T = {{i, j, i′, j′} : |{i, j} ∪ {i′, j′}| = 3}.

The cardinality of T is |T | = n(n− 1)(n− 2) and

E

(∑
T
C1
ijC

2
ij′

)
= n(n− 1)(n− 2)

∑
k`

πk`πk.π.`. (9)

E

(∑
T
C1
ijC

2
ijC

1
ij′C

2
ij′

)
= n(n− 1)(n− 2)

∑
k`

π3
k`. (10)

Proof. For the cardinality of T , one can map to the set of arrangements of
{1, . . . , n}3.

For (9), remark that C1
ijC

2
ij′ is a Bernoulli variable equal to 1 only when i

and j are in the same cluster k in C1 and i and j′ are in the same cluster ` in
C2 . Hence, j can be in any cluster `′ in C2 and j′ can be in any cluster k′ in
C1. From here one easily get its expectation,

E(C1
ijC

2
ij′) =

∑
k`k′`′

πk`πk′`πk`′ =
∑
k`k′`′

πk`
∑
k′

πk′`
∑
`′

πk`′ =
∑
k`

πk`π.`πk.

and we get the desired result by summing over all triplets.
For (10), remark that C1

ijC
2
ijC

1
ij′C

2
ij′ is a Bernoulli variable equal to 1 if

and only if i, j and j′ are in the same clusters for both classifications. Summing
over all T we get (10).

Lemma 3 (Subset of ordered quadruplets Q) Consider the following
subset Q of P × P:

Q = {{i, j, i′, j′} : |{i, j} ∪ {i′, j′}|} = 4}.

The cardinality is |Q| = 6
(
n
4

)
and

E

(∑
Q
C1
ijC

2
i′,j′

)
= 6

(
n

4

)∑
k,`

π2
k.π

2
.`. (11)
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Proof. There are
(
n
4

)
ways to pick 4 distinct elements of {1, ..., n}4. We can

then arrange those in
(
4
2

)
to get an element of Q. Hence, all together there

are 6
(
n
4

)
quadruplets. We get E(C1

ijC
2
ij′) using the fact that i, j, i′, j′ are all

different and that their classes are drawn independently. We then sum over
Q.

2.3.2 Expectation and Variance of the Rand Index

With Lemmas 1, 2 and 3, we are now equipped to easily derive the mo-
ments of the MRI. We use E for stating the expectation understood under
the multinomial model in general. With the additional assumption of indepen-
dence between the classification, what we refer to as the null hypothesis, we
use EH0

. This terms is classically used for adjusting the Rand index.

Proposition 21 (Expectations of the MRI). Let θ denote the expectation of
the MRI and θ0 the expectation under H0. Then,

θ = E(MRI) =
∑
k`

π2
k`, θ0 = EH0(MRI) =

∑
k`

π2
k.π

2
.`

Proof. By Definition 6 and Lemma 1 we obtain θ. For θ0, it suffices to replace
πkl by πk.π.l in the previous formula.

Similarly, we derive the expectation of the ”usual” RI.

Proposition 22. Let θRI denotes the expectation of the RI and θRI0 the ex-
pectation under H0. Then,

θRI = E(RI) = 1 + 2
∑
k`

π2
k` −

∑
k

π2
k. −

∑
`

π2
.`

θRI0 = EH0
(RI) = 1 + 2

∑
k`

π2
k.π

2
.` −

∑
k

π2
k. −

∑
`

π2
.`

Proof. Compared to the MRI, the only additional terms are 1 +
∑
i,j C

1
ij +∑

i,j C
2
ij . Using (7) and summing over all pairs P we get the desired results.

We now continue with the variance of the MRI.

Proposition 23. Let σ2 = V(MRI) be the variance of the MRI. Then,

σ2 =
1(
n
2

)
∑

k,`

π2
k` −

∑
k,`

π2
k`

2
+

n(n− 1)(n− 2)(
n
2

)2
∑

k,`

π3
k` −

∑
k,`

π2
k`

2
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Proof. To obtain the variance of the MRI, first rewrite the variance in terms
of covariance:

σ2 =
1(
n
2

)2 V( ∑
P×P

C1
ijC

2
ij

)
=

1(
n
2

)2 Cov
( ∑
P×P

C1
ijC

2
ij ,
∑
P×P

C1
ijC

2
ij

)
=

1(
n
2

)2 ∑
P×P

Cov
(
C1
ijC

2
ij , C

1
i′j′C

2
i′j′

)
We then split this final sum using our partition of P × P. Also noticing

that for all {i, j}, {i′, j′} ∈ Q we have Cov(C1
ijC

2
ij , C

1
i′j′C

2
i′j′) = 0, we get,

σ2 =
1(
n
2

)2
[∑
P

Cov
(
C1
ijC

2
ij , C

1
ijC

2
ij

)
+
∑
T

Cov
(
C1
ijC

2
ij , C

1
ij′C

2
ij′

)]

=
1(
n
2

) V(C1
ijC

2
i,j

)
+
n(n− 1)(n− 2)(

n
2

)2 Cov
(
C1
ijC

2
ij , C

1
ij′C

2
ij′

)

=
1(
n
2

)
∑

k,`

π2
k` −

∑
k,`

π2
k`

2
+

n(n− 1)(n− 2)(
n
2

)2
∑

k,`

π3
k` −

∑
k,`

π2
k`

2


We get the second line by enumerating the elements of P and T . We get
the third line using the definition of the covariance (for any two variable X
and Y : Cov(X,Y ) = E(XY )− E(X)E(Y )) and Lemmas 1 and 2.

Remark 3 Importantly, for a fixed πk`, σ
2 goes towards 0 when n grows to

infinity: the larger n, the better the estimation of θ.

2.3.3 The Rand Index depends on the number of groups

In the multinomial model with uniform clusters (equal cluster size), Morey
and Agresti (1984) showed that θRI0 depends on the number of groups in C1

and C2. This is also true for MRI and easier to prove since it does not include
the marginal terms of coherence by difference. We also prove the following
lemma showing that if one splits a cluster of C1 or C2 into two, the MRI
always decreases. Note that this latter lemma does not assume independence
between classifications.

Lemma 4 Consider two classifications C1 and C2 in K + 1 respectively L
clusters. Let C1′ be the classification obtained by fusing two clusters of C1.
Then,

MRI(C1, C2) ≤MRI(C1′, C2).

Also, for any distribution on C1 and C2 we have

θ(C1, C2) ≤ θ(C1′, C2))
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Proof. Assuming without loss of generality that clusters 1 and 2 were merged,
we get

MRI(C1, C2)−MRI(C1′, C2) =
1

2
(
n
2

)(∑
`

n21` + n22` − (n1` + n2`)
2
)

= − 1(
n
2

) ∑
`

n1`n2` ≤ 0.

Since the expectation is linear, we can consider any particular model on C1

and C2 to get the final result.

2.4 The Adjusted version of the Rand Index

Since the (M)RI depends on the number of groups, it needs to be adjusted for
chance. A way to do so, is to subtract its expectation under the null hypothesis
H0 (as motivated in Brennan and Light, 1974; Hubert and Arabie, 1985; Morey
and Agresti, 1984). Ideally one would like to get θ− θ0 with their true values.
Under our multinomial model this quantity is

θ − θ0 =
∑
k`

π2
k` −

∑
k`

π2
k.π

2
.`

which is equal to zero under H0 (independence of the classifications), that is,
when πk.π.` = πk` for all k, `. In practice, one can only estimate the quantities
θ − θ0 from observed classifications. Our goal is therefore to get an unbiased
estimator of θ − θ0.

The MRI being by definition an unbiased estimator of θ, we only need an
unbiased estimator of θ0, that is

∑
k` π

2
k.π

2
.`. However, under the alternativeH1

(i.e. when the compared classifications are not independent, the most natural
case), deriving an unbiased estimator of θ0 is trickier and depends on the model
assumption. Morey and Agresti (1984) proposed a plug-in estimator for the
multinomial model, but as pointed out by Hubert and Arabie (1985); Steinley
(2004); Steinley and Brusco (2018), they made errors in their calculations. In
the next section we continue their work by proposing an unbiased estimator
for θ0. We also show that the hypergeometric estimator of Hubert and Arabie
(1985) for θ0, used as correction in the ”traditional” ARI, is biased under our
multinomial H1.

A new Adjusted Rand Index.We now define our own adjusted version of the
MRI that we denote MARI:

MARI = θ̂ − θ̂0. (12)

with

θ̂ =
∑
P
C1
ijC

2
ij

/(n
2

)
θ̂0 =

∑
Q
C1
ijC

2
i′j′

/
6

(
n

4

)
.
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and its observed value,

MARIobs =
∑
P
c1ijc

2
ij

/(n
2

)
−
∑
Q
c1ijc

2
i′j′

/
6

(
n

4

)
.

where we recall that c1ij and c2ij are the observed counterparts of C1
ij , C

2
ij

and P,Q are defined in Section 2.3.1.

Lemma 5 Under the multinomial model, the MARI is unbiased, that is,

E(MARI) = θ − θ0.

Proof. The proof is straightforward using Lemma 3.

Computing the MARI from a contingency table.In practice, the comparison
of two classifications is given as a contingency table as Table 1, and we thus
need a formulation of the MARI defined in (12) as a function of nk`.

We already gave in (4) an expression of θ̂ as a function of nk`. As we will

see, θ̂0 can as well be computed from the nk` contingency Table 1 even if
summing over all elements of Q rather than P is a bit less straightforward. To
get

∑
Q c

1
ijc

2
i′j′ , we will use the term

∑
k` n

2
k.n

2
.` from which we will, as a direct

result of Definition (3), derive the (
∑
P c

1
ij)(
∑
P c

2
i′j′) terms. These latter can

be decomposed as follows:

(
∑
P
c1ij)(

∑
P
c2i′j′) =

∑
P
c1ijc

2
ij +

∑
T
c1ijc

2
ij′ +

∑
Q
c1ijc

2
i′j′ . (13)

It is then sufficient to subtract the terms of P and T from the left side of
Equation (13) to get

∑
Q c

1
ijc

2
i′j′ . All terms summing over P are easy to recover

(see Definition 3). However, the terms involving elements of T are more tedious
to obtain and are derived in Lemma 6. The terms of Q derived in Lemma 7.

Lemma 6 We have the following expression of
∑
T c

1
ijc

2
ij′ in terms of nk`:∑

T
c1ijc

2
i′j = 2n+

∑
k,`

nk.nk`n.` −
∑
k,`

n2k` −
∑
k

n2k. −
∑
`

n2.`

Proof. We need to consider all i in {1, ..., n}. Assuming for now that i is in
classes (k, `), that is c1i = k and c2i = `, let us consider all j, j′ such that
c1ijc

2
ij′ = 1. The term c1ijc

2
ij′ is equal to one if c1j = k and c2j′ = `. We then get

different scenarios according to whether c1j′ = k or not and whether c2j = `.
Those scenarios are enumerated in Table 3.

Summing all terms of Table 3 we get nk.n.`+2−nk`−nk.−n.`. To account
for all i belonging to class (k, `) we then multiply by nk`. Eventually we sum
over all k, ` to recover∑

T
c1ijc

2
ij′ =

∑
k,`

nk`(2 + nk.n.` − nk` − nk. − n.`)

= 2n+
∑
k,`

nk.nk`n.` −
∑
k,`

n2k` −
∑
k

n2k. −
∑
`

n2.`
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Table 3: Four scenarios to be considered for j and j′ in the calculation of the
terms in

∑
T c

1
ijc

2
ij′ when i is in class (k, `).

j in ` j not in `
j′ in k (nk` − 1)(nk` − 2) (nk` − 1)(n.` − nk`)

j′ not in k (nk. − nk`)(nk` − 1) (nk. − nk`)(n.` − nk`)

Lemma 7 We have the following expression of
∑
Q c

1
ijc

2
i′j in terms of nk`:

∑
Q
c1ijc

2
i′j′ =[∑

k`

n2k.n
2
.`−

(
4
∑
k`

(
nk`
2

)
+4(2n+

∑
k,`

nk.nk`n.`−
∑
k,`

n2k`−
∑
k

n2k.−
∑
`

n2.`)

+ 2n
(∑

k

(
nk.
2

)
+
∑
`

(
nk.
2

))
+ n2

)]/
4

Proof. From Equation (3) we can derive
∑
k` n

2
k.n

2
.` as a function of

∑
P×P c

1
ijc

2
i′j′

and n, since,
∑
k n

2
k. = n+ 2

∑
P c

1
ij and

∑
` n

2
.` = n+ 2

∑
P c

2
ij with,

∑
k`

n2k.n
2
.` = (2

∑
i<j

c1ij + n)(2
∑
i′<j′

c2i′j′ + n)

= 4
∑
P×P

c1ijc
2
i′j′ + 2n

(∑
P
c1ij +

∑
P
c2i′j′

)
+ n2

(14)

Using equation (13), we decompose
∑
P×P c

1
ijc

2
i′j′ into terms of P, T and

Q and get,

∑
Q
c1ijc

2
i′j′ =

[∑
k`

n2k.n
2
.`−
(

4
∑
P
c1ijc

2
ij+4

∑
T
c1ijc

2
ij′+2n

(∑
P
c1ij+

∑
P
c2ij
)
+n2

)]/
4

=

[∑
k`

n2k.n
2
.`−
(

4
∑
k`

(
nk`
2

)
+4(2n+

∑
k,`

nk.nk`n.`−
∑
k,`

n2k`−
∑
k

n2k.−
∑
`

n2.`)

+ 2n
(∑

k

(
nk.
2

)
+
∑
`

(
nk.
2

))
+ n2

)]/
4
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3 Implementation - package aricode

We implemented code for fast computation of the MRI and its adjusted ver-
sion the MARI, as well as a number of other clustering comparison measures
in the R/C++ package aricode, which is available on CRAN.

Computing these measures is straightforward by means of the whole K×L
contingency table. However, the time and space complexity is in O(n+KL),
which is somewhat inefficient when K and L are large. Our implementation
in aricode is in O(n): the key idea is that, given n observations, at most
n elements of the nk` contingency matrix can be non zero. To recover these
non zero elements one can proceed in two simple steps: first, all observations
are sorted in lexicographical order in terms of their first and second cluster
index. This can be done in O(n) using bucket sort (Cormen et al., 2001)
or radix sort (as implemented in R (R Core Team, 2019)). Note that once
the observations are sorted, all i that are in clusters k and ` are one after the
other in the data table. Thus, in a second step aricode counts all non zero
nkl in a single path over the data table. Internally this is done using Rcpp

(Eddelbuettel et al., 2011).
In Figure 1 we compare our implementation of the standard ARI with

the implementation of mclust (Scrucca et al., 2016) (that uses the whole
contingency table). As can be noted, the cost of the latter can be prohibitive
for large vectors.

10−3

10−2

10−1

100

101

102

103 104 105 106

n

tim
e 

(s
ec

.) method

aricode

mclust

Fig. 1: Timings comparing the cost of computing the ARI with aricode or
with the commonly used function adjustedRandIndex of the mclust package.
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4 Hubert and Arabie’s ARI

In this section we study the expectation of the ’standard’ RI of Brennan and
Light (1974) (by contrast with our MRI); the expression of which results from
the hypergeometric model. This expression was used by Hubert and Arabie
(1985) for adjusting the RI and producing the usual ARI. We study this
expected value when the expectation corresponds to the multinomial distri-
bution. We show that this estimator is biased in general under the alternative
hypothesis, that is, when the two compared clusterings are not independent.

4.1 Expectation of Hubert and Arabie’s ARI

Consider the observed value of the ARI proposed by Brennan and Light
(1974); Hubert and Arabie (1985): in order to analyse this quantity in our
multinomial setup, we first give its definition in terms of c1ij and c2ij , that is

ARIobs =
2(
n
2

) KL∑
kl

(
nkl
2

)
− 2(

n
2

)2 KL∑
kl

(
nk.
2

)(
n.l
2

)
=

2(
n
2

) ∑
P
c1ijc

2
ij −

2(
n
2

)2 ∑
P
c1ij
∑
P
c2ij ,

where we recall that c1ij ,c
2
ij are realisations of the Bernoulli variables C1

ij , C
2
ij .

In a probabilistic perspective, we consider the ARI as a random variable:

ARI =
2(
n
2

) ∑
P
C1
ijC

2
ij︸ ︷︷ ︸

θ̂RI

− 2(
n
2

)2 ∑
P
C1
ij

∑
P
C2
ij︸ ︷︷ ︸

θ̂RI
0

, (15)

where, as for the MRI, we ignored the marginal terms in our definitions of
θ̂RI and θ̂RI0 that cancel in the ARI. We now claim the following proposition.

Proposition 41. Under the multinomial model we have

E(ARI) = E(θ̂RI)− E(θ̂RI0 ),

with

E(θ̂RI) = 2

KL∑
k`

π2
k` and

E(θ̂RI0 ) =
2(
n
2

)2 [(n2
) KL∑

k`

π2
k` + n(n− 1)(n− 2)

KL∑
k`

πk`πk.π.` + 6

(
n

4

) KL∑
k`

π2
k.π

2
.`

]

Assuming we are under the null this simplifies so that EH0
(ARI) = 0.
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Proof. Using Lemma 1, we have

E(
∑
P
C1
ijC

2
ij) =

(
n

2

) KL∑
k`

π2
k`.

Using Definition (13) and Lemmas 1, 2, 3 we obtain

E(
∑
P
C1
ij

∑
P
C2
ij) =

(
n

2

) KL∑
k`

π2
k`+n(n−1)(n−2)

KL∑
k`

πk`πk.π.`+6

(
n

4

) KL∑
k`

π2
k.π

2
.`.

Under the null we have π2
k` = π2

k.π
2
.` and we get

EH0(
∑
P
C1
ijC

2
ij) =

(
n

2

) KL∑
k`

π2
k.π

2
.`

EH0(
∑
P
C1
ij

∑
P
C2
ij) =

KL∑
k`

π2
k.π

2
.`

[(
n

2

)
+ n(n− 1)(n− 2) + 6

(
n

4

)]

=

(
n

2

)2 KL∑
k`

π2
k.π

2
.`.

The expectations E(θ̂RI) and E(θ̂RI0 ) are obtained by scaling respectively

with 2/
(
n
2

)
and 2/

(
n
2

)2
; E(ARI) is their difference.

From these results we conclude that Hubert and Arabie’s ARI is biased
under the multinomial model in general, since the term used for the adjustment
is biased as E(θ̂RI0 ) 6= θRI0 . Note, however, that this estimator is not biased
under the null H0.

4.2 Study of the bias Hubert and Arabie ’s ARI

The quantity that we study in this section is

biasn(θRI0 ) = θRI0 − E(θ̂RI0 )

=

K,L∑
k,`

π2
k.π

2
.` −

[(n
2

)K,L∑
kl

π2
k` + 6

(
n

3

)K,L∑
k`

πk`π.`πk. + 6

(
n

4

)K,L∑
k`

π2
k.π

2
.`

]/(n
2

)2
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Bias disappear when n goes to infinity. The bias can be rewritten as

biasn(θRI0 ) =
4n− 6

n(n− 1)

K,L∑
k,`

π2
k.π

2
.` −

2

n(n− 1)

K,L∑
kl

π2
k` −

4(n− 2)

n(n− 1)

K,L∑
k`

πk`π.`πk.

From this expression we get

Lemma 8

|biasn(θRI0 )| ≤ 8

n

|biasn(θRI0 )| = O(1/n), and lim
n→+∞

biasn(θRI0 ) = 0.

Proof. As seen in Equation (4.2), the bias consist of three terms. The absolute
value of the sum of these three terms is bounded by the sum of their absolute
values. Then, using that

∑
k,` πk` = 1 and all πk` ≥ 0, we bound

∑
k,` π

2
k.π

2
.`,∑

kl π
2
k` and

∑
k` πk`π.`πk. by 1 and we get |biasn(θRI0 )| ≤ 4(2n−3)

n(n−1) . We have,

(2n− 3) < 2(n− 1) and the result follows.

Empirical bias. In the case of independence the bias is zero. In the case of
dependence, using Lemma 8 we get that the bias is smaller than 0.04 for n
larger than 200. Following the work of Steinley and Brusco (2018), we study
the importance of the difference empirically for small value of n in the next
paragraph. In summary for n larger than 64 we observe a small bias, typically
smaller than 10−2. For smaller values of n the bias can be larger.

Simulation setting.We study the evolution of the bias by comparing two clas-
sifications with equal number of groups (K = L), with values varying in
K ∈ {2, 4, 8, 16, 32, 64, 128} and a growing number of individuals. For drawing
the two compared classifications under the multinomial model, see Table 2. We
consider three scenarios described below where we tune the level of difficulty
by controlling the balance between group sizes with the parameters ε.

Scenario 1. In the first scenario we investigate a πkl distribution with a dis-
proportionate diagonal. All other entries being null.

πk` =


1− ε 0 · · · 0

0 ε
K−1 · · · 0

...
...

. . .
...

0 0 · · · ε
K−1


Scenario 2. In the second scenario we investigate a πkl distribution with a

proportional diagonal and extra diagonal dependency. All other entries
being null.
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πk` =


(1− ε)/K ε/K · · · 0

0 (1− ε)/K · · · 0
...

...
. . .

...
ε/K 0 · · · (1− ε)/K



Scenario 3. In the third scenario we investigate a πkl distribution with one
line and one column being disproportional and all other entries being null.

πk` =


1− ε ε

K+L−2 · · ·
ε

K+L−2
ε

K+L−2 0 · · · 0
...

...
. . .

...
ε

K+L−2 0 · · · 0



Results. The results are shown in Figure 2 where the bias is shown in its ab-
solute value with log2 / log10 scales. For the different scenarios, the parameter
of imbalanceness ε,is fixed to 0.3 and 0.8.

In the different scenarios, the bias remains moderates for most values of K
and n. When the number of individuals is small however, the difference turns
to be more important and using the (A)RI lead to misguiding conclusions.
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Scenario 1 Scenario 2 Scenario 3

ε = 0.3
ε = 0.8

4 16 64 256 4 16 64 256 4 16 64 256

1e-05

1e-04

1e-03

1e-02

1e-01

1e-05

1e-04

1e-03

1e-02

1e-01

n

ab
s(

bi
as

)

K
2

4

8

16

32

64

128

Fig. 2: Hubert and Arabie’s ARI bias for different scenarios of πk`-distribution

5 Conclusion

As a conclusion, we argue that one should always prefer our M(A)RI to the
(A)RI. There are four main reasons for this.

– The adjustment of the RI is based on a hypergeometric distribution which
is unsatisfying from a modeling perspective. In particular, it forces the size
of the clusters to be the same and it ignores randomness of the sampling
(see the introduction). A multinomial model of the MARI does not force
the size of the clusters and properly model randomness. Furthermore, the
model easily extends to the dependant case.

– The difference between the ARI and MARI can be large for small n but
essentially vanish for large n (see Section 4.2).

– The M(A)RI can be computed just as fast as the (A)RI in only O(n)
rather than O(n+KL) using our aricode package.

– The M(A)RI does not take into account pairs coherent by difference which
– as argued in Section 2.1 – unnecessarily complexify the analysis and
interpretation of the (A)RI.
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