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Supplementary figures for main text 

 

Figure S1. Historical trends in legumes harvested area in Europe from 1961 to 2017. Areas are expressed 

relatively to 1961 (set equal to 1). Source: FAOSTAT1.  
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Figure S2. Assessment of the Random Forest algorithm. (A) The model is first evaluated using a classical 

bootstrap approach with 25 resamplings. (B) Model transferability in space is then evaluated by ensuring a 

minimum spatial distance between training and test datasets. Finally, model transferability in time is 

assessed in (C) where model is fitted on 1981-1995 to predict 1996-2010, and in (D) where model is fitted 

on 1996-2010 to predict 1981-1995. RMSEP: root mean square error of prediction. Boxplot in panel (B) 

shows median (center line), 1st and 3rd quartiles (box limits), and 1.5 times the interquartile range 

(whiskers). Linear regression outputs are shown on panels (A), (C), and (D), as well as marginal 

distributions of observed and predicted soybean yields (in grey). Dotted lines represent the 1:1 line. In 

order to extend the range of climate conditions captured by the model and to capture climate conditions 

leading to zero yield, additional data points were randomly sampled in climate zones known to be 

unsuitable for soybean production (e.g. deserts and arctic areas) and added to the dataset with their yield 

value set to zero. 
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Figure S3. Distance to the nearest grid-cell with soybean used in the training dataset of the model. The 

Random Forest algorithm used to make soybean yield projections was trained using yield data from the 

Global Dataset of Historical Yields updated version2,3 in the following countries: Argentina, Brazil, Canada, 

China, India, Italy, and USA. The only yield data located in Europe in the training dataset are therefore 

from the north of Italy. 
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Figure S4. Comparison of observed ranges of climate variables in the dataset used for training the Random 

Forest algorithm and the datasets used to make soybean yield projections in Europe under historical and 

future climate scenarios. (A) Monthly average of daily maximum temperature. (B) Monthly average of daily 

minimum temperature. (C) Rainfall. (D) Solar radiation. (E) Vapour pressure. The GRASP dataset4 is used 

for model training at the global scale (“training dataset” in the color key) and to make projections of 

soybean yield in Europe under historical climate (1981-2010) (“historical” in the color key). Then eight 

Global Circulation Models5 (see methods) are considered for future climate scenarios, for two periods of 

time (2050s and 2090s) and two RCPs (RCP 4.5 and RCP 8.5). 
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Figure S5. Evidence map of soybean cultivation at high latitude in Europe. (A) Locations of farmers soybean 

fields in 2018 reported by the Land Use and Coverage Area frame Survey (LUCAS) of the European Union 

(green dots), and locations of some selected published field experiments reporting satisfactory soybean 

yield (from 2.5 to 4 t ha-1) at high latitudes in Europe (blue dots). See Table S4 for details about those field 

experiments. (B) Harvested soybean area in Europe according to the SPAM2010 model. Sources: the 

LUCAS dataset is available at https://esdac.jrc.ec.europa.eu/projects/lucas ; and the SPAM2010 dataset is 

available at: https://www.mapspam.info/ . 

  

https://esdac.jrc.ec.europa.eu/projects/lucas
https://www.mapspam.info/
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Figure S6. Historical simulated soybean yield (A) with Random Forest and (B) from AgMIP GGCMI phase 1. 
Maps show median simulated yield over years for the Random Forest model, and over years and crop 
models for AgMIP GGCMI phase 1. The following 8 crop models from AgMIP GGCMI phase 1 were used: 
EPIC-BOKU, EPIC-IIASA, GEPIC, LPJmL, pAPSIM, pDSSAT, PEPIC, and PEGASUS (see Methods for details). 
Yield projections are shown only on agricultural area (cropland plus pasture), in the year 20006.  
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Figure S7. Map showing where soybean yield projection with RF are lower, higher, or within the range of 
AgMIP individual models simulations for the historical period (1981-2010). The following 8 crop models 
from AgMIP GGCMI phase 1 were used: EPIC-BOKU, EPIC-IIASA, GEPIC, LPJmL, pAPSIM, pDSSAT, PEPIC, 
and PEGASUS (see Methods for details). Maps of AgMIP individual model simulations are shown on Figure 
S8. Yield projections are shown only on agricultural area (cropland plus pasture), in the year 20006.  
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Figure S8. Maps of simulated historical soybean yield by the individual crop models from AgMIP GGCMI phase 1 selected for the comparison with our 
Random Forest model projections. Maps show median simulated yield over years. Yield projections are shown only on agricultural area (cropland 
plus pasture), in the year 20006. 
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Figure S9. Actual soybean yield at the national level in Europe (average 2000-2010). Source: FAOSTAT1. 
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Figure S10. Simulated soybean yields by mid-century under RCP 4.5 (A) with Random Forest, (B) from AgMIP fast-track with CO2, (C) from AgMIP fast-
track without CO2. Maps show median simulated yield over years (2050-2059) and global climate models for the Random Forest model, and over 
years, crop models and global cimate model for AgMIP fast-track. Used crop and climate models from AgMIP fats-track are described in Table S11. 
Yield projections are shown only on agricultural area (cropland plus pasture), in the year 20006.  
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Figure S11. Simulated soybean yields by the end of the century under RCP 4.5 (A) with Random Forest, (B) from AgMIP fast-track with CO2, (C) from 
AgMIP fast-track without CO2. Maps show median simulated yield over years (2090-2099) and global climate models for the Random Forest model, 
and over years, crop models and global climate models for AgMIP fast-track. Used crop and climate models from AgMIP fats-track are described in 
Table S11. Yield projections are shown only on agricultural area (cropland plus pasture), in the year 20006.  
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Figure S12. Simulated soybean yields by mid-century under RCP 8.5 (A) with Random Forest, (B) from AgMIP fast-track with CO2, (C) from AgMIP fast-
track without CO2. Maps show median simulated yield over years (2050-2059) and global climate models for the Random Forest model, and over 
years, crop models and global climate models for AgMIP fast-track. Used crop and climate models from AgMIP fats-track are described in Table 
S11. Yield projections are shown only on agricultural area (cropland plus pasture), in the year 20006.  
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Figure S13. Simulated soybean yields by the end of the century under RCP 8.5 (A) with Random Forest, (B) from AgMIP fast-track with CO2, (C) from 
AgMIP fast-track without CO2. Maps show median simulated yield over years (2090-2099) and global climate models for the Random Forest model, 
and over years, crop models and global climate models for AgMIP fast-track. Used crop and climate models from AgMIP fats-track are described in 
Table S11. Yield projections are shown only on agricultural area (cropland plus pasture), in the year 20006.  
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Figure S14. Projected soybean yield change between RCP 4.5 by mid-century and historical climate. 

Projections are performed with the Random Forest algorithm and the GRASP dataset4 for historical 

climate (1981-2010), and 8 Global Circulation Models for future climate scenarios5. Grid-cells below -0.3 t 

ha-1 correspond to Group 1 (yield decrease) in the Linear Discriminant Analysis (see Figure 3 and Table 2), 

while grid-cells higher than +0.3 t ha-1 correspond to Group 2 (yield increase), and grid-cells between -0.3 

and +0.3 t ha-1 correspond to Group 3 (marginal change).  
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Figure S15. Climate variables contributions to linear discriminant 1 (panel A) and 2 (panel B). A linear 

discriminant analysis (LDA) was performed on climate variables for three groups of grid-cells defined by 

predicted soybean yield change between RCP 4.5 by 2050s and historical climate. Groups of grid-cells are 

defined as Group 1: yield decrease (projected yield change < - 0.3 t ha-1), Group 2: yield increase 

(projected yield change > 0.3 t ha-1), and Group 3: marginal change (yield change between -0.3 and +0.3 t 

ha-1). White bars indicate a positive contribution, and black bars indicate a negative contribution. The 

higher the value, the higher the contribution of the corresponding climate input. Suffixes to climate 

variables names indicate, first, the month of the soybean growing season, and second, the time period 

(“1” standing for historical climate, and “2” standing for the 2050s under RCP 4.5). For example, 

“tmin.2.1” means “monthly average daily minimum temperature in the second month of the growing 

season under historical climate”. 
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Figure S16. Partial dependence plots for selected variables of the Random Forest algorithm. (A) Daily maximum temperature in the first month of the 

growing season (tmax.1). (B) Daily maximum temperature in the third month of the growing season (tmax.3). (C) Daily maximum temperature in 

the fourth month of the growing season (tmax.4). (D) Daily minimum temperature in the third month of the growing season (tmin.3). (E) Daily 

minimum temperature in the third month of the growing season (tmin.3). Dotted lines indicate some cardinal temperatures extracted from the 

literature to show consistency between the Random Forest algorithm and the current knowledge of soybean physiology. Readers are referred to 

Table S7 for details about those cardinal temperatures. 
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Figure S17. Area requirements for 50% and 100% soybean self-sufficiency in Europe by 2050s under RCP 4.5 and by 2090s under RCP 4.5 and 8.5. 

Based on soybean yield projections presented in Figure 1 and assuming various levels of soybean frequency in crop sequences (one year out for 

three, four, five and six years), soybean areas were allocated to grid-cells ranked in decreasing order of projected yield values until the cumulated 

production (calculated as the product of area and yield) reached 50% (light blue) and 100% (dark blue) of the current annual soybean consumption 

of Europe (58 Mt, average 2009-2013). We assume that soybean can only be grown on current cropland6, which excludes permanent pastures in 

line with the Common Agricultural Policy of the European Union aiming at their protection7. Background colors indicate projected soybean yield in 

t ha-1 as in Figure 1. 
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Figure S18. Harvested area maps of (A) wheat, (B) barley, (C) maize, (D) potato, (E) rapeseed, (F) sugarbeet, (G) sunflower in Europe around the year 

20008. 
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Figure S19. Crop specific nitrogen fertilizer rate for (A) wheat, (B) barley, (C) maize, (D) potato, (E) rapeseed, (F) sugarbeet, (G) sunflower in Europe 

around the year 20009. 
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Figure S20. Average nitrogen fertilizer rate of major crops in Europe around the year 2000. Map shows the 

area-weighted nitrogen fertilizer rate based on crop specific harvested area and nitrogen fertilizer rate 

maps presented in Figure S18 and S19, respectively.  
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Supplementary tables for main text 

Table S1. Soybean food balance in Europe (average 2007-2013). Soybean cake quantity is expressed in 

soybean grain equivalent assuming that 1 Mt of soybean grain gives 0.8 Mt of soybean cake.  Source: 

FAOSTAT1.  

 Soybean cake Soybean grain Total (grain eq.) 

 -----------------------     Mt    ----------------------- 

Domestic supply quantity 32 18 58 

Domestic supply breakdown by source 

Production 12 5 20 

Export Quantity 9 3 14 

Import Quantity 29 16 52 

Stock Variation 0 0 0 

Domestic supply utilization 

Feed 32 2 42 

Food  - 0 0 

Processing - 16 16 

Losses - 0 0 

Seed - 0 0 

Other uses 0 0 0 

 

 

Table S2. Changes in soybean suitable area due to climate change in Europe. All values are in Mha. 

Percentage change relative to historical climate is indicated in parenthesis. 

 

Climate scenario 

Area with predicted soybean yield 

≥ 1.5 t ha-1 ≥ 2 t ha-1 ≥ 2.5 t ha-1 

Historical climate (1981-2010) 207 106 37 

2050s RCP 4.5 279 (+35%) 95 (-10%) 10 (-73%) 

 RCP 8.5 273 (+32%) 84 (-21%) 8 (-78%) 

2090s RCP 4.5 294 (+42%) 102 (-4%) 13 (-65%) 

 RCP 8.5 262 (+27%) 45 (-58%) 0.1 (-100%) 
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Table S3. Percentage of climate data used for soybean yield projections that fall outside of the observed 

range of climate data used for model training. Rain: rainfall. Solar: solar radiation. Tmax: daily maximum 

temperature. Tmin: daily minimum temperature. VP: vapour pressure. For example, 0.13 % of the solar 

radiation data in month 4 of the soybean growing season under historical climate for the period 1981-

2010 fall outside of the observed range for that variable in the dataset used for model training.  

 Month* Rain Solar Tmax Tmin VP 

Historical climate 

1981-2010 1 0 0 0 0 0 

 2 0 0 0 0 0 

 3 0 0 0 0 0 

 4 0 0.13 0 0 0 

 5 0 0.03 0 0 0 

 6 0 0 0 0 0 

 7 0 0 0 0 0 

RCP 4.5       

2050s 1 0 0.10 0 0 0 

 2 0 0 0 0 0 

 3 0 0.01 0 0 0 

 4 0 0.35 0 0 0.01 

 5 0 0.13 0 0 0 

 6 0 0.00 0 0 0 

 7 0 0 0 0 0 

2090s 1 0 0.14 0 0 0 

 2 0 0.01 0 0 0 

 3 0 0.02 0 0 0 

 4 0 0.41 0 0 0.01 

 5 0 0.18 0 0 0 

 6 0 0.00 0 0 0 

 7 0 0 0 0 0 

RCP 8.5       

2050s 1 0 0.15 0 0 0 

 2 0 0.01 0 0 0 

 3 0 0.04 0 0 0 

 4 0 0.33 0.01 0 0.01 

 5 0 0.14 0 0 0.01 

 6 0 0.00 0 0 0 

 7 0 0 0 0 0 

2090s 1 0 0.34 0 0 0 
 2 0 0.05 0 0 0 

 3 0 0.06 0.03 0.01 0 

 4 0 0.35 0.18 0.20 0.05 

 5 0 0.13 0.06 0.27 0.02 

 6 0 0 0.02 0.01 0.01 

 7 0 0 0 0 0 

*month of the soybean growing season (April to October in Europe) 
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Table S4. Details of the selected published soybean field experiments at high latitude in Europe reported in 

Figure S5. 
 

Latitude Country 
Reported 
soybean yield 

References 

    
57.35 ° N Russia 4 t ha-1  Kühling et al. (2018). Soybeans in high latitudes : effects of 

Bradyrhizobium inoculation in Northwest Germany and 
southern West Siberia. Organic Agriculture, 8(2), 159–171.10  

55.24 ° N   Lithuania 2.5 - 3 t ha-1  

 

Kadžiulienė et al. (2016). Legumes for sustainability of 
agroecosystems. In Z. Gaile & Š. Dace (Eds.), 20th Baltic 
Agronomy Forum (p. 56). Jelgava, Latvia.11 

51.40 ° N Germany 2.5 - 3 t ha-1 Zimmer et al. (2016). Effects of soybean variety and 
Bradyrhizobium strains on yield, protein content and 
biological nitrogen fixation under cool growing conditions in 
Germany. European Journal of Agronomy, 72, 38–46. 12 

51.10 ° N 
 

Belgium 2.5 - 3 t ha-1 Pannecoucque et al. (2018). Screening for soybean varieties 
suited to Belgian growing conditions based on maturity, yield 
components and resistance to Sclerotinia sclerotiorum and 
Rhizoctonia solani anastomosis group 2-2IIIB. Journal of 
Agricultural Science, 1–8. 13 
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Table S5. Confusion matrix of the Linear Discriminant Analysis. The linear discriminant analysis was 

performed on climate on climate variables for three groups of grid-cells defined by predicted soybean 

yield change between RCP 4.5 by 2050s and historical climate. Groups are defined as Group 1: yield 

decrease (projected yield change < - 0.3 t ha-1), Group 2: yield increase (projected yield change > 0.3 t ha-

1). Group 3: marginal change (yield change between -0.3 and +0.3 t ha-1). Overall accuracy (fraction of 

correct predictions) is 89%. 

 

 Predicted group 

Actual Group Group 1 Group 2 Group 3 

Group 1 207 1 43 
Group 2 0 491 20 
Group 3 26 25 188 
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Table S6. Analysis of climate variables associated with a decrease (Group 1), increase (Group 2), and 

marginal change (Group 3) in projected soybean yield under RCP 4.5 by mid-century relative to historical 

climate. Reported values of climate variables represent mean values for each group of grid-cells calculated 

with a Linear Discriminant Analysis (Figure 3). Groups of grid-cells are defined as Group 1: yield decrease 

(projected yield change < - 0.3 t ha-1), Group 2: yield increase (projected yield change > 0.3 t ha-1), and 

Group 3: marginal change (yield change between -0.3 and +0.3 t ha-1). The GRASP dataset4 is used for 

historical climate, and the median over height Global Circulation Models5 is shown for RCP 4.5 by mid-

century. Yield projections are performed with the Random Forest algorithm presented in Table 1 and 

Figure S2. 

 

  
Group 1 

(yield decrease) 
Group 2 

(yield increase) 
Group 3 

(marginal change) 

Climate variable Month* 
Historical 
climate 

2050s 
Historical 
climate 

2050s 
Historical 
climate 

2050s 

 Tmax 
(°C) 

1 15,3 16,5 10,6 13,1 15,2 16,7 
2 21,1 22,6 17,6 19,6 20,9 22,4 
3 25,5 27,9 21,3 23,8 25,0 27,5 
4 28,6 31,3 23,4 25,9 27,8 30,4 
5 28,0 30,9 21,7 24,2 27,1 29,9 
6 23,4 26,1 16,5 18,9 22,8 25,3 
7 16,8 18,7 10,1 12,1 16,6 18,6 

Tmin 
(°C) 

1 4,9 5,8 1,7 3,2 5,0 6,1 
2 9,7 11,1 6,9 8,8 9,5 10,9 
3 13,3 15,8 10,5 13,2 13,1 15,5 
4 15,9 18,3 13,0 15,4 15,5 17,8 
5 15,3 18,0 11,7 14,0 15,0 17,5 
6 11,5 13,8 7,9 9,7 11,5 13,6 
7 7,0 8,3 3,3 4,9 7,1 8,6 

Rain 
(mm month-1) 

1 48,1 42,8 37,5 44,9 44,9 43,4 
2 49,2 41,4 53,7 48,0 44,5 41,9 
3 49,4 31,8 72,2 52,2 48,9 35,4 
4 31,6 19,3 75,1 52,1 39,3 26,9 
5 32,1 15,7 68,5 52,6 39,3 25,9 
6 42,6 27,6 56,9 56,9 45,7 36,4 
7 51,4 47,6 53,5 64,9 54,3 53,1 

Solar 
(MJ m-2 day-1) 

1 16,9 17,6 14,2 14,5 16,7 17,4 
2 21,0 21,4 18,4 18,6 20,7 21,1 
3 23,4 23,9 19,4 20,8 22,9 23,4 
4 23,7 24,2 18,9 19,8 22,9 23,4 
5 20,8 21,4 15,5 16,1 19,9 20,5 
6 15,8 16,6 10,3 11,0 15,1 15,8 
7 10,2 11,0 5,6 6,3 9,7 10,4 

VP 
(hPa) 

1 9,2 9,1 7,4 7,9 9,3 9,3 
2 12,4 12,1 10,7 10,3 12,3 12,0 
3 15,5 14,7 14,2 13,1 15,4 14,5 
4 17,8 16,5 16,3 15,1 17,8 16,6 
5 17,0 15,7 15,2 15,0 17,3 16,2 
6 13,9 14,3 11,7 12,8 14,1 14,7 
7 10,3 11,8 8,4 9,9 10,8 12,2 

* month of the soybean growing season (April to October in Europe) 
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Table S7. Soybean cardinal temperatures. All values are expressed in degree Celsius (°C). 
 

Process Tmin Topt Tmax References 

Germination 4 30 40 14 
Pollen germination 10-13 28.5 - 30 47 15,16 
Leaf photosynthesis 5 36 50 17,18 
Crop development (phenology) 

Pre-anthesis 5-7.6 30-31.5 40-45 19 
Post-anthesis 3.6-6 23-26 39-40 19–23 
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Table S8. Harvested area of wheat, barley, maize, potato, sunflower, rapeseed, and sugarbeet within the 

area needed to achieve 50% and 100% soybean self-sufficiency as identified by the random forest yield 

projections. 
 

Scenario 
Wheat 

(%) 
Barley 

(%) 
Maize 

(%) 
Potato 

(%) 
Sunflower 

(%) 
Rapeseed 

(%) 
Sugarbeet 

(%) 
Total 
(Mha) 

----------------------------------------------------- 100 % self-sufficiency ----------------------------------------------------- 

Historical climate 

Soybean 1 year in 3 40 16 22 3 15 2 2 37 

Soybean 1 year in 4 40 18 19 3 15 2 3 51 

Soybean 1 year in 5 42 19 17 4 14 2 3 67 

Soybean 1 year in 6 43 20 14 5 11 2 4 92 

2050s – RCP 4.5         

Soybean 1 year in 3 37 16 24 5 9 4 4 40 

Soybean 1 year in 4 38 17 20 6 10 4 4 52 

Soybean 1 year in 5 39 19 17 7 10 3 4 64 

Soybean 1 year in 6 39 20 15 8 10 3 4 80 

2050s RCP 8.5         

Soybean 1 year in 3 40 16 22 6 7 5 4 39 

Soybean 1 year in 4 40 18 19 8 7 4 5 49 

Soybean 1 year in 5 40 20 17 8 7 4 5 61 

Soybean 1 year in 6 40 21 14 9 8 4 4 79 

----------------------------------------------------- 50 % self-sufficiency ----------------------------------------------------- 

Historical climate         

Soybean 1 year in 3 39 10 31 3 12 2 3 16 

Soybean 1 year in 4 41 11 27 3 13 2 2 23 

Soybean 1 year in 5 41 14 24 3 13 2 2 30 

Soybean 1 year in 6 40 16 22 3 15 2 2 38 

2050s – RCP 4.5         

Soybean 1 year in 3 36 13 31 4 8 5 4 21 

Soybean 1 year in 4 36 14 29 4 8 5 4 27 

Soybean 1 year in 5 36 15 26 4 9 4 4 34 

Soybean 1 year in 6 37 16 24 5 9 4 4 41 

2050s – RCP 8.5         

Soybean 1 year in 3 37 14 29 4 7 6 4 21 

Soybean 1 year in 4 38 15 26 4 7 5 4 28 

Soybean 1 year in 5 39 16 24 5 7 5 4 33 

Soybean 1 year in 6 40 17 22 7 7 4 4 40 
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Supplementary Figures and Tables for methods 

 

 

Figure S21. Soybean yield and harvested area from the global dataset of historical yields2. (A) Global map of soybean yield in 2010. (B) Soybean yield 

in 2010 in selected countries. (C) Global map of soybean harvested area. (D) Soybean harvested area in selected countries. 
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Figure S22. Histograms of soybean yield before and after detrending. Detrending is performed in order to 

remove the increasing trends of soybean yield time series due to improved cultivars and technological 

progress. Data shown in this Figure are for Argentina, Brazil, Canada, China, India, Italy, and USA. 

 

 

 

Figure S23. Map showing locations of true absences (soybean yield equals zero) added to the historical yield 

dataset. These data points (green dots) representing true absences of soybean were added to the dataset 

in order to extend the range of climate conditions captured by the model and to capture climate 

conditions leading to zero yield. These additional data points were randomly sampled in climate zones 

known to be unsuitable for soybean production (e.g. deserts and arctic areas) and added to the dataset 

with their yield value set to zero. Grey zones indicate climate zones from the Köppen-Geiger climate 

classification24,25 in which the true absences were randomly selected. See Table S9 for a short description 

of these climate zones. 

  



31 
 

 

Figure S24. Cropland (A), pasture (B), and total agricultural area (C) maps in Europe around the year 20006. 

Total agricultural area is calculated as the sum of cropland plus pasture areas. 
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Figure S25. European soybean domestic supply as a function of year (A) and GDP per capita (B). The 

soybean domestic supply includes soybean grains and soybean cakes and is expressed in grain equivalent 

assuming that 1 kg of soybean grain gives 0.8 kg of soybean cakes. In panel B, the soybean domestic 

supply was modeled as a function of GDP per capita as follows: y ~ (a * x) / (b + x) were y is the soybean 

domestic supply and x the GDP per capita. This model was fitted using the nls() function in R. Estimated 

values of parameters are a = 64 (p<0.001) and b = 2168 (p<0.001). All data are from FAOSTAT. 

 

Table S9. Climate zones from the Köppen-Geiger climate classification in which true absences (soybean yield 

equals zero) were randomly selected. Locations of these climate zones can be seen in Figure S23. 

 

Climate zone code Description of the corresponding climate 

BWh arid, winter dry , hot arid 
BWk arid, winter dry , cold arid 
Dfc snow, fully humid, cool summer 
Dfd snow, fully humid, extremely continental 
EF   polar frost 
ET   polar tundra 
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Table S10 – Selected AgMIP data from GGCMI Phase 1. 
 

Crop model Climate data Irrigation Management 

EPIC-BOKU GRASP No fullharm 
EPIC-IIASA GRASP No fullharm 
GEPIC GRASP No fullharm 
LPJmL GRASP No defaut 
pAPSIM GRASP No fullharm 
pDSSAT GRASP No fullharm 
PEPIC GRASP No fullharm 
PEGASUS AgMERRA No fullharm 

• "defaut":  the default setup of their model 

• "fullharm": harmonized growing seasons (i.e. prescribed  grid-cell- and crop-specific sowing and maturity dates) and fertilizer inputs  

• "harmnon":  for the same harmonized growing seasons but with  unlimited nutrient supply (harmnon) 
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Table S11 – Selected data from the AgMIP fast-track dataset. 
 

   Crop models 

Climate model RCP CO2 PEGASUS pDSSAT LPJmL GEPIC EPIC-BOKU 

GFDL-ESM2M 

RCP4.5 
yes X X X X  

no  X X   

RCP8.5 
yes X X X X X 

no X X X  X 

HadGEM2-ES 

RCP4.5 
yes X X X X X 

no X X X X X 

RCP8.5 
yes X X X X X 

no X X X X X 

IPSL-CM5A-LR 

RCP4.5 
yes X X X X  

no  X X   

RCP8.5 
yes X X X X X 

no X X X  X 

MIROC-ESM-CHEM 

RCP4.5 
yes X X X X  

no  X X   

RCP8.5 
yes X X X X X 

no X X X  X 

NorESM1-M 

RCP4.5 
yes X X X X  

no  X X   

RCP8.5 
yes X X X X X 

no X X X  X 
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Supplementary details and discussion about the Random Forest model 

Analysis of residuals 

As shown in Figure S2, the predictive ability of the Random Forest algorithm is good. An analysis 
of residuals (yield data - yield prediction) reveals a tendency of the model to overestimate low 
yields and underestimate high yield (Figure S26-A), highlighting a conservative behavior of the 
model. Nevertheless, histogram of residuals indicates that the distribution of residuals is 
symmetrical and centered, and that most residuals range between -1 to +1 t ha-1 (Figure S26-B). 
Similar observations (good predictive ability and conservative behavior) about Random Forest 
when used to predict crop yields have been reported in the literature26. Residuals show no 
association with latitude (Figure S27 A) and average in-season tmax (Figure S27 B), which indicates 
good performance of the model from low to high latitudes and from cold to hot years. However, 
residuals show an association with total in-season rainfall, with higher residuals at low rainfall 
values and lower residuals at high rainfall values (Figure S27 C-D). For example, when total in-
season rainfall is lower than 600 mm (low rainfall) residuals ranged from -2.3 to 3.1 t ha-1, and 
when total in-season rainfall is higher than 1500 mm (high rainfall) residuals ranged from -1.3 to 
1.4 t ha-1. A possible explanation for this is that soil properties are not included in model 
predictors. Indeed, at low rainfall values, the water-holding capacity of soils is important to buffer 
low and variable rainfall, while at high rainfall values the water-holding capacity of soils is not 
likely to have a significant effect on crop water availability. This would explain that RF predictive 
ability is lower at low rainfall value, although this requires further research. Interestingly, 
temperature does not seem to interact with the effect of total rainfall on model residuals as hot 
and cold years don’t show any departure from the general residuals trend along the rainfall 
gradient (Figure S27 C-D).  

 

 
Figure S26. Analysis of the Random Forest residuals. (A) Residuals as a function of observed soybean yield. 
(B) Histogram of residuals. Residuals were calculated as data – prediction on 25 out-of-bag samples that 
were generated by bootstrap. 
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Figure S27. Random Forest residuals as a function of (A) latitude, (B) average in-season tmax, (C) total in-

season rainfall (all points and hot years), (D) total in-season rainfall (all points and cold years). Residuals 

were calculated as data – prediction on 25 out-of-bag samples that were generated by bootstrap. Average 

in-season tmax was calculated as the average of monthly tmax over the 7 months of the growing season, 

and is expressed in degree Celsius. Total in-season rainfall was calculated as the sum of total monthly 

rainfall over the 7 months of the growing season. Hot years in panel (C) are defined as years for which 

average in-season tmax is higher than the 90th percentile of average in-season tmax (~30°C). Cold years in 

panel (D) are defined as years for which average in-season tmax is lower than the 40th percentile of 

average in-season tmax (~22°C). 
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Variable importance 

Variable importance of the fitted Random Forest algorithm is presented in Figure S28. It highlights 
the importance of temperature in the model, which is consistent with the key role of temperature 
in soybean suitable area shifts due to climate change found with the LDA (Figure 3). 

 

Figure S28. Measures of importance of the inputs used by Random Forest . The Random Forest algorithm 

(regression mode) was fitted with the function ranger() of the R package Ranger v0.10.1 with argument 

“importance” set to “impurity”. Variable importance is assessed by a measure of impurity which is the 

variance of the responses. Variables are sorted by decreasing order. tmax: monthly average daily 

maximum air temperature at 2m, tmin: monthly average daily minimum air temperature at 2m, rain: 

monthly total precipitation (mm month-1), solar: monthly average daily solar radiation (MJ m-2 day-1), vp: 

monthly average daily vapor pressure (hPa). The numerical suffix refers to the month of the soybean 

growing season (from 1 to 7). 
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