

Intensification of p-coumaric acid heterologous production using extractive biphasic fermentation

Jeanne Combes, Nabila Imatoukene, Julien Couvreur, Blandine Godon, Fanny

Brunissen, Clémentine Fojcik, Florent Allais, Michel Lopez

▶ To cite this version:

Jeanne Combes, Nabila Imatoukene, Julien Couvreur, Blandine Godon, Fanny Brunissen, et al.. Intensification of p-coumaric acid heterologous production using extractive biphasic fermentation. Bioresource Technology, 2021, 337, pp.125436. 10.1016/j.biortech.2021.125436. hal-03589796

HAL Id: hal-03589796 https://agroparistech.hal.science/hal-03589796

Submitted on 2 Aug 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0960852421007768 Manuscript_887c6d940780194e8d0f7ea4f618b61c

1	Intensification of <i>p</i> -coumaric acid heterologous production using
2	extractive biphasic fermentation
3	
4	Jeanne Combes ^a , Nabila Imatoukene ^a , Julien Couvreur ^a , Blandine Godon ^a , Fanny
5	Brunissen ^a , Clémentine Fojcik ^b , Florent Allais ^a , Michel Lopez ^a *
6	
7	^a URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110
8	Pomacle, France
9	^b Abolis Biotechnologies, Genopole Campus 1, 91030 Evry, France
10	* Corresponding author: michel.lopez@agroparistech.fr

12 Abstract

13	<i>p</i> -coumaric acid (<i>p</i> -CA) can be produced from D-glucose by an engineered S. cerevisiae
14	strain. <i>p</i> -CA has antimicrobial properties and retro-inhibition activity. Moreover, <i>p</i> -CA
15	is a hydrophobic compound, limiting its accumulation in fermentation broth. To
16	overcome these issues all at once, a liquid-liquid extraction <i>in-situ</i> product recovery
17	process using oleyl alcohol as extractant has been implemented in order to continuously
18	extract p -CA from the broth. Media and pH impacts on strain metabolism were
19	assessed, highlighting <i>p</i> -CA decarboxylase endogenous activity. Biphasic fermentations
20	allowed an increase in p -CA respiratory production rates at both pH assessed (13.65 and
21	9.45 mg.L ⁻¹ .h ⁻¹ at pH 6 and 4.5, respectively) compared to control ones (10.5 and 7.5
22	mg.L ⁻¹ .h ⁻¹ at pH 6 and 4.5, respectively). Biphasic fermentation effects on <i>p</i> -CA
23	decarboxylation were studied showing that continuous removal of <i>p</i> -CA decreased its
24	decarboxylation into 4-vinylphenol at pH 4.5 (57 mg.L ⁻¹ in biphasic fermentation vs 173
25	$mg.L^{-1}$ in control one).
26	
27	Keywords

- 28 *p*-coumaric acid, *In situ* product recovery, engineered *Saccharomyces cerevisiae*, 4-
- 29 vinylphenol, biphasic fermentation

30 1. Introduction

-	<i>p</i> -coumaric acid (<i>p</i> -CA) is an <i>p</i> -hydroxycinnamic acid (HCA), a ubiquitous specialized
32	metabolite in plants and some fungi, and the precursor of a wide range of other valuable
33	molecules, among others: HCAs, flavonoids, and lignin (Higuchi, 1981; Humphreys
34	and Chapple, 2002). Moreover, p-CA has numerous applications in food, cosmetic and
35	pharmaceutical industries thanks to its numerous biological activities (e.g. antioxidant,
36	antimicrobial, anti-viral, antimutagenesis, anti-cancer activities) (Pei et al., 2016; Boo,
37	2019). Although <i>p</i> -CA can be either extracted from biomass or chemically produced
38	through a Knoevenagel-Doebner condensation, both approaches have some drawbacks
39	such as the availability of natural raw materials at low cost and large quantities, the use
40	of hazardous solvents, and the production of organic wastes (Flourat et al., 2020).
41	Aromatic amino acids (AAA) – precursors of <i>p</i> -CA in the phenylpropanoid pathway
42	(Herrmann and Weaver, 1999) – can be produced by microorganisms (e.g.
43	Saccharomyces cerevisiae) through the shikimate pathway (following carbohydrates
43 44	<i>Saccharomyces cerevisiae</i>) through the shikimate pathway (following carbohydrates metabolism). Therefore, there has been a great deal of works dedicated to the
43 44 45	Saccharomyces cerevisiae) through the shikimate pathway (following carbohydrates metabolism). Therefore, there has been a great deal of works dedicated to the engineering of microorganisms to produce AAA-derived compounds (e.g. HCA) from
43444546	Saccharomyces cerevisiae) through the shikimate pathway (following carbohydratesmetabolism). Therefore, there has been a great deal of works dedicated to theengineering of microorganisms to produce AAA-derived compounds (e.g. HCA) fromsugar such as D-glucose (Averesch and Kayser, 2020; Huccetogullari et al., 2019).
 43 44 45 46 47 	Saccharomyces cerevisiae) through the shikimate pathway (following carbohydratesmetabolism). Therefore, there has been a great deal of works dedicated to theengineering of microorganisms to produce AAA-derived compounds (e.g. HCA) fromsugar such as D-glucose (Averesch and Kayser, 2020; Huccetogullari et al., 2019).To produce <i>p</i> -CA heterologously from glucose using a <i>S. cerevisiae</i> strain, a lot of
 43 44 45 46 47 48 	 Saccharomyces cerevisiae) through the shikimate pathway (following carbohydrates metabolism). Therefore, there has been a great deal of works dedicated to the engineering of microorganisms to produce AAA-derived compounds (e.g. HCA) from sugar such as D-glucose (Averesch and Kayser, 2020; Huccetogullari et al., 2019). To produce <i>p</i>-CA heterologously from glucose using a <i>S. cerevisiae</i> strain, a lot of effort has been made on rewiring carbon flux into AAA metabolism and impair retro-
 43 44 45 46 47 48 49 	 Saccharomyces cerevisiae) through the shikimate pathway (following carbohydrates) metabolism). Therefore, there has been a great deal of works dedicated to the engineering of microorganisms to produce AAA-derived compounds (e.g. HCA) from sugar such as D-glucose (Averesch and Kayser, 2020; Huccetogullari et al., 2019). To produce <i>p</i>-CA heterologously from glucose using a <i>S. cerevisiae</i> strain, a lot of effort has been made on rewiring carbon flux into AAA metabolism and impair retro- inhibition to maximize the pool of L-tyrosine (Tyr) and L-phenylalanine (Phe),
 43 44 45 46 47 48 49 50 	 <i>Saccharomyces cerevisiae</i>) through the shikimate pathway (following carbohydrates metabolism). Therefore, there has been a great deal of works dedicated to the engineering of microorganisms to produce AAA-derived compounds (e.g. HCA) from sugar such as D-glucose (Averesch and Kayser, 2020; Huccetogullari et al., 2019). To produce <i>p</i>-CA heterologously from glucose using a <i>S. cerevisiae</i> strain, a lot of effort has been made on rewiring carbon flux into AAA metabolism and impair retro- inhibition to maximize the pool of L-tyrosine (Tyr) and L-phenylalanine (Phe), precursors of <i>p</i>-CA and cinnamic acid, respectively (Hartmann et al., 2003; Q. Liu et al.,
 43 44 45 46 47 48 49 50 51 	 <i>Saccharomyces cerevisiae</i>) through the shikimate pathway (following carbohydrates metabolism). Therefore, there has been a great deal of works dedicated to the engineering of microorganisms to produce AAA-derived compounds (e.g. HCA) from sugar such as D-glucose (Averesch and Kayser, 2020; Huccetogullari et al., 2019). To produce <i>p</i>-CA heterologously from glucose using a <i>S. cerevisiae</i> strain, a lot of effort has been made on rewiring carbon flux into AAA metabolism and impair retro-inhibition to maximize the pool of L-tyrosine (Tyr) and L-phenylalanine (Phe), precursors of <i>p</i>-CA and cinnamic acid, respectively (Hartmann et al., 2003; Q. Liu et al., 2019; Luttik et al., 2008; Rodriguez et al., 2015). Moreover, Tyr/Phe ammonia lyase
 43 44 45 46 47 48 49 50 51 52 	 <i>Saccharomyces cerevisiae</i>) through the shikimate pathway (following carbohydrates metabolism). Therefore, there has been a great deal of works dedicated to the engineering of microorganisms to produce AAA-derived compounds (e.g. HCA) from sugar such as D-glucose (Averesch and Kayser, 2020; Huccetogullari et al., 2019). To produce <i>p</i>-CA heterologously from glucose using a <i>S. cerevisiae</i> strain, a lot of effort has been made on rewiring carbon flux into AAA metabolism and impair retroinhibition to maximize the pool of L-tyrosine (Tyr) and L-phenylalanine (Phe), precursors of <i>p</i>-CA and cinnamic acid, respectively (Hartmann et al., 2003; Q. Liu et al., 2019; Luttik et al., 2008; Rodriguez et al., 2015). Moreover, Tyr/Phe ammonia lyase (TAL/PAL) and a cinnamic acid-4-hydroxylase (C4H), that deaminate Tyr and Phe and

54 expressed in *S. cerevisiae*. It is worth mentioning that many studies have investigated

55 new enzymes from fungi, bacteria and plants to discover those with higher or more

56 stable catalytic activity (Hyun et al., 2011; Jendresen et al., 2015; Varga et al., 2017).

57 Another common strategy to engineer *S. cerevisiae* into a *p*-CA producing host consists

58 in deleting endogenous genes encoding the major Ehrlich pathway phenylpyruvate

59 decarboxylases (Hazelwood et al., 2008; Koopman et al., 2012).

60 While progress is continuously made in the molecular biology part of *p*-CA production

61 using S. cerevisiae, there are still several issues to address. p-CA has been studied for its

62 antimicrobial properties, therefore, it can be expected that there is a limitation on *p*-CA

63 accumulation in fermentation broth due to its toxicity against the producer

64 microorganisms (Baranowski et al., 1980; Davidson et al., 2013; J. Liu et al., 2020). p-

65 CA precursors and *p*-CA can also be degraded by endogenous *S. cerevisiae* enzymes

and, although the strategy against major Ehrlich pathway decarboxylases seems to be

67 efficient, there might be still some *p*-CA or precursors co-products formed due to the

high number of endogenous decarboxylases in *S. cerevisiae* (Hazelwood et al., 2008;

69 Koopman et al., 2012). There is also an end-product inhibition effect on TAL/PAL by

70 *p*-CA and thus its accumulation in the broth could inhibit the productivity when it

71 reaches a certain titer (Sariaslani, 2007). Furthermore, *p*-CA being a hydrophobic

solute, as indicated by its predicted partition coefficient between octanol and water,

73 Log(P_{o/w}), of 1.59 (predicted using KOWWINTM v 1.68), its accumulation in the

74 fermentation broth is also limited by *p*-CA maximal solubility in aqueous media (0.838

 $\pm 0.003 \text{ g.L}^{-1}$ at 30 °C in water) (Combes et al., 2021). For instance, Q. Liu et al. (2019)

76 reached a titer of 12.5 g.L⁻¹ *p*-CA with a *S. cerevisiae* strain using fed-batch

77 fermentation process and noticed *p*-CA crystallization in the broth.

78	While this biotechnological production approach is promising and there is still room for
79	optimization for microorganisms engineering, there is a lack of research in both
80	fermentation process optimization and downstream processing of HCA. To prevent
81	product toxicity, one can use a robust host that can tolerate high concentrations of this
82	solute <mark>. For instance</mark> , Nijkamp et al. (2007) used a solvent-tolerant strain, <i>Pseudomonas</i>
83	putida S12 as p-CA producer frame (Nijkamp et al., 2007). Another strategy that can
84	meet every need and ease the downstream process consists in performing an extractive
85	fermentation by setting up an <i>in situ</i> product recovery (ISPR) process. In the case of
86	hydrophobic solute, a liquid-liquid extraction (LLE) using an organic immiscible
87	solvent coupled with the fermentation shall allow medium detoxification, prevent
88	product degradation, and overcome the solubility limit (Cuellar and Straathof, 2018).
89	ISPR process not only improves yield and productivity, but also simplifies the product
90	recovery (Freeman et al., 1993). In the last twenty years, several reviews have been
91	published on ISPR processes coupled with bioconversions including LLE-ISPR,
92	providing details on industrial applications and lab scale results for a broad range of
93	bio-products. They demonstrate the great potential of ISPR and the need of
94	straightforward processes for future industrial applications (Dafoe and Daugulis, 2014;
95	Santos et al., 2020; Van Hecke et al., 2014; Yang and Lu, 2013).
96	Herein, the first implementation and assessment of a LLE-ISPR process was described
97	for the intensification of heterologous p-CA production by a strain of S. cerevisiae
98	(referred at as ABG010) with oleyl alcohol as extractant (Combes et al. 2021). Prior to
99	performing biphasic fermentations, as medium and pH impact metabolism, growth,
100	recovery and process cost, the strain metabolism has been studied in different control
101	batches using rich and complex or chemically defined medium and pH 4.5 and 6.

1	\mathbf{n}
	111
т	U L

103 2. Materials and methods

104 2.1. Chemicals

- 105 *cis*-9-Octadecen-1-ol (oleyl alcohol, OA) was purchased from Merck KGaA ($\geq 80\%$).
- 106 Standard of *trans-p*-coumaric acid and *trans*-ferulic acid were purchased from TCI (≥

107 98%). Standard of 4-vinylphenol (4-vp) was chemically synthesized in-house and

108 characterized by ¹H NMR from *trans-p*-coumaric acid following an adaptation of a

109 previous work in 2018 (Mouterde and Allais, 2018).

110

111 2.2. ABG010: Engineered *S. cerevisiae* relevant characteristics

112 S. cerevisiae S288C (Mortimer and Johnston, 1986), uracil, tryptophan and leucine

auxotrophic was used. This yeast model strain (ABG010) was engineered and provided

114 by Abolis (France) to produce *p*-CA with optimized performances: (i) ARO10

115 (YDR380W) and Thi3(YDL080C) genes were deleted, (ii) ARO4 (NP_009808) and

116 ARO7 (NP_015385) were amplified by PCR from the genomic DNA of S. cerevisiae

and mutated to resist to feedback inhibition (FBR: Feed Back Resistance) (Gold et al.,

118 2015), (iii) TAL, PAL, C4H and Cpr1 were optimized for yeast codon usage bias then

119 synthesized by DC Biosciences, Dundee, UK. Characteristics of the final strain

120 ABG010 are: MAT α , ura3-52, trp1 Δ 63, leu2 Δ 1, GAL2+, LEU2+, aro10 Δ 0, thi3 Δ 0,

121 FAT3~MTR2::(ARO4fbr-ARO7fbr-RgTAL)::URA3, NCA3~ASF1::(AtPAL-AtC4H-

- 122 CrCPR1)::TRP1.
- 123

124 2.3. Media composition & fermentation conditions

125 Yeast Nitrogen Base medium without amino acids (YNB w/o aa) was purchased from 126 Sigma Aldrich. A 10X stock solution was prepared following the supplier instructions 127 using elix water and sterilized by filtration. The final medium consisted of 2X YNB w/o 128 aa with 20 g.L⁻¹ of D-glucose (from Alfa Aesar, anhydrous, 99%). Yeast extract 129 peptone dextrose medium (YEPD) consisted of 20 g.L⁻¹ of peptone (from Fisher Scientific), 10 g.L⁻¹ of yeast extract (from Fisher Scientific), and 20 g.L⁻¹ of D-glucose 130 131 (from Alfa Aesar, anhydrous, 99%). This medium was sterilized by autoclaving at 121 °C for 20 min. 132 133 For every experiment, the strain was pre-cultured in 50 mL of YEPD in a baffled 134 Erlenmeyer overnight at 30 °C and 180 rpm from an inoculum kept at -80 °C. 135 Bioreactors were inoculated with pre-culture to reach an initial optical density at 620 136 nm (OD_{620 nm}) of 0.2. Experiments were made at least in duplicate unless otherwise 137 specified.

138 All experiments were conducted in 1.5 L bioreactors with a PRO-LABTM controller

139 unit, C-BIO2TM operator and control software from Global Process Concept (GPC, La

140 Rochelle, France). Bioreactors were equipped with pH and dissolved oxygen (DO)

141 probes from Hamilton Company. Temperature was regulated at 30 °C, the aeration rate

142 was constant through an experiment and mixing rate was used to regulate DO levels

143 unless stated otherwise. The working pH (4.5 or 6) was maintained using KOH 1 M or

144 $H_2SO_40.5$ M solutions.

145 For one phase batch experiments, fermentation working volume was 1 L. Air was

146 delivered through a nutsparger (GPC, La Rochelle, France) in bioreactors and the

airflow was maintained at 0.5 L.min⁻¹. The DO was set up at 30% saturation level and
was controlled by stirring at a rate between 350 and 900 rpm.

149 For biphasic aerobic bioconversions, the configuration and operating methods are

150 crucial. Indeed, if cells are mixed vigorously with the water-immiscible solvent, a stable

151 emulsion could appear due to the presence of surface-active components (Heeres et al.,

152 2014; Stark and Stockar, 2003). Cells can also promote Pickering emulsions (Heeres et

al., 2014). To overcome water/oil emulsion, agitation was fixed at 75 rpm and to

154 promote coalescence inside the bioreactor, 0.004% (v/v) Tween 80 was added when

155 necessary. To address the low stirring rate, sintered-microsparger (0.2 μm pores) was

156 used for a suitable aeration in those biphasic and control fermentations and an airflow of

157 0.1 L.min⁻¹. Working volume for fermentation medium was 0.5 L and the same volume

158 of OA was added at the beginning or after 24 h of cultivation.

159

160 2.4. Identification of broth phenolic compounds by liquid chromatography-mass161 spectrometry

162 Identification of phenolic compounds was performed on an Agilent Infinity 1290

163 system, equipped with a 6545 Q-TOF mass spectrometer (Wilmington, DE, USA) and a

164 PDA UV detector using a Zorbax C18 column from Agilent (2.1 x 50 mm, 1.8 µm). The

source was equipped with a Dual AJS ESI probe operating at atmospheric pressure in

166 positive ionization mode.

167 The mobile phase was composed of ultra-pure water (MilliQ, Merck) with 0.1% (v/v)

168 formic acid (A) and acetonitrile with 0.1% (v/v) formic acid (B). The flow was set at 0.4

169 mL.min⁻¹ and the gradient program was: 0 min (5% B); 0.5 min (10% B); 4 min (10%

170	B); 9 min (10%); 13 min (25% B); 14 min (30% B); 15 min (30% B). The injection
171	volume was fixed at 1 μ L and the column temperature was maintained at 40 °C.
172	The PDA detector was set on several wavelengths: 210, 254, 285 and 320 nm. For the
173	mass detector, the parameters of the source were: gas temperature, 325 $^{\circ}$ C; gas flow, 8
174	L/min; nebulizer pression, 35 psig; sheath gas temperature, 350 °C. The scan mode was
175	used with the following parameters: scan from 50 to 1000 m/z with a scan rate at 2;
176	capillary voltage, 3500 V; nozzle voltage, 2000 V; Fragmentor, 175 V; skimmer 1, 65
177	V; octopole, 750 V.
178	
179	2.5. Analysis of growth, substrate and metabolites in fermentation broths
180	2 mL were collected at least every 2 hours during the day in each phase for 72 hours.
181	Yeast growth was measured by $OD_{620 nm}$ using a spectrophotometer Cary 60 UV-Vis
182	from Agilent.
183	p-CA and 4-vp in aqueous and organic phase were analyzed by high-performance liquid
184	chromatography (HPLC) (Thermo scientific, Ultimate 3000) coupled with an
185	ultraviolet-diode array detector (UV-DAD) using an accucore aQ C18 column (100x3
186	mm, Thermo scientific). The injection volume was 2.5 μ L, the column temperature was
187	maintained at 48 °C and the flow rate was 0.8 mL.min ⁻¹ . The elution method was a 10
188	min (15 min for organic phase analysis, in this paragraph details written in brackets
189	correspond to the organic phase analysis method) gradient with acetonitrile: A and
190	formic acid 0.1%: B as mobile phases: 0 min: 5% (5%) of A – 95% (95%) of B, 3 min:
191	10% (10%) of A – 90% (90%) of B, (7.44 min: 30% of A – 70% of B), 8 min: 30%
192	(30%) of A – 70% (70%) of B and 9 min: 5% (95%) of A – 95% (5%) of B, (12 min:

193 95% of A – 5% of B, 14 min: 5% of A – 95% of B and 15 min: 5% of A – 95% of B).

p-CA was analyzed at 320 nm and its retention time was 4.3 min and 4-vp was analyzed
at 254 nm and its retention time was 8.0 min.

196 Ferulic acid was used as an internal standard. A 100 mg.L⁻¹ of ferulic acid solution in

197 acetonitrile was made and kept at -20 °C. For the aqueous samples, this solution was

added at 50% (v/v) to every samples before centrifugation (10000 g, 10 min).

199 Supernatants were then filtered using regenerated cellulose (RC) 0.2 µm filters. A p-CA

and a 4-vp calibration curves with 5 points were made using the internal standard,

201 allowing to quantify them. Organic samples were diluted at 1% (v/v) in methanol, then

202 they were mixed at 80% (v/v) with the solution of ferulic acid as internal standard and

203 finally filtered. Calibration curves with 5 points were also made in these conditions to

204 quantify *p*-CA and 4-vp in organic samples.

205 D-glucose and ethanol were analyzed in aqueous phases by HPLC (Thermo scientific,

206 Ultimate 3000) coupled with a Shodex refractive index detector and a Thermo scientific

207 ultraviolet detector at 210 nm and using an Aminex HPX-87H column (300x7.8 mm,

208 Bio-rad Laboratories S.A., Marnes La Coquette, France). The injection volume was 30

 μ L, the column temperature was maintained at 50 °C. Analytes were eluted isocratically

210 with 4 mM H₂SO₄ at 0.5 mL.min⁻¹ for 30 min. D-glucose and ethanol retention times

211 were 11.2 min, and 25.5 min, respectively. Samples were centrifuged at 10000 g for 5 to

212 10 min at 4 °C then mixed (50% v/v) with 4 mM H₂SO₄ and lastly, filtered using RC 0.2

213 µm filters. Calibration curves with 5 points were made in the same conditions for both

components to quantify them.

216 2.6. Respiratory *p*-CA production rate definition

217 Respiratory *p*-CA production rates (r_{p-CA}) were calculated by fitting *p*-CA

218 concentrations data from the first point where there is no more glucose in the broth to

the last point of the day (6 points) or in the case of experiments with OA addition after

220 24h: from 24 h to the first point of the next day (6 points) as a function of time, in a

221 linear model. Slopes gave us respiratory r_{p-CA} with R-squared ≥ 0.8 .

222

223 2.7. *p*-CA distribution coefficient calculation

p-CA distribution coefficient between OA and fermentation broth (Log(K_D)) were

calculated as follows:

226
$$\log(K_D) = \log(\frac{[pCA]_{OA}^{72\,h}}{V_{OA}^{72\,h}} \times \frac{V_{broth}^{72\,h}}{[pCA]_{broth}^{72\,h}})$$

where $[pCA]_x^{72h}$ is the *p*-CA final concentration in the phase x and V_x^{72h} is the final volume of phase x. Concentrations were measured according to analytical method described above.

230

231 3. Results and discussion

232 3.1. A respiro-fermentative metabolism

233 A short metabolic overview of control batches at different pH or/and with different

234 media as well as cellular growth are presented in Figure 1. The major *p*-CA production

235 was observed during respiration phase, approximatively between 23 h and 48 h in every

236 experiment (Figure 1B). Such a result is in accordance with Frick and Wittmann who,

237 using flux analysis, have shown that in fermentative metabolism compared to

238 respiratory one in S. cerevisiae, there is a decreased carbon flux directed to the pentose

phosphate pathway, decreasing supply of erythrose-4-phosphate (E4P) and there is also
a smaller pool of phosphoenolpyruvate (PEP) available due to ethanol production (Frick
and Wittmann, 2005). E4P and PEP being initial substrates in the Shikimate pathway
leading to the formation of L-phe and L-tyr (AAA precursors of *p*-CA synthesis), this
decrease in carbon flux could explain *p*-CA production observed trends (Herrmann and
Weaver, 1999).

245 Herein, batches were conducted to study ABG010 metabolism after complete depletion

of carbon substrate. Indeed, as shown in Figure 1B after 48 h of cultivation for pH 6

247 experiments, a decrease in *p*-CA concentration in the broth was observed, consistent

248 with what Li et al. observed after 3 days of cultivation with their caffeic acid producing

249 S. cerevisiae strain (p-CA being the direct precursor of caffeic acid, p-CA was

accumulating in their broth as well) (Li et al., 2020). This suggests an underlying

251 consumption of *p*-CA, that could be happening from the start of experiments but

252 concealed by *p*-CA continuous biosynthesis. These results led us to investigate broth

- 253 compounds and identify *p*-CA degradation products accumulating in the broth. The next
- 254 part details and discusses these findings.
- 255

256 3.2. Competitive decarboxylation of *p*-coumaric acid

257 As detailed in the materials and methods section, 4-vinylphenol (4-vp, also known as p-

258 hydroxystyrene) - obtained through the decarboxylation of *p*-CA - was identified as the

259 main *p*-CA degradation product accumulating in the broth and its concentration was

260 measured in every samples (Figure 1E). In every batch, an accumulation of 4-vp was

261 observed in the broth suggesting that the strain of interest exhibits *p*-CA decarboxylase

activities. Endogenous S. cerevisiae phenylacrylic acid decarboxylase (PAD1) and

263	ferulic acid decarboxylase (FDC1) - whose encoding genes are not deleted in ABG010 -
264	are suspected to be the main catalysts responsible for decarboxylation as it has been
265	demonstrated that they have, when both synthesized, p-CA decarboxylase activity
266	(Mukai et al., 2010). Furthermore, it has been shown that PAD1 confers a cinnamic
267	acid-resistance to the strain synthetizing it (Clausen et al., 1994). Apart from Li et al.
268	(2020) who investigated the consumption of p -CA in their broth and suggested the
269	involvement of PAD1 and FDC1 (Li et al., 2020), to the best of our knowledge, there is
270	no report of the presence of 4-vp in <i>p</i> -CA heterologous production using PAD1 and
271	FDC1 non-mutated S. cerevisiae strain. Ro and Douglas, (2004) suggested the presence
272	of 4-vp produced by their engineered S. cerevisiae but could not identified it, due to the
273	lack of standard. For other studies, it might be a result of the absence of 4-vp analytical
274	detection within these research studies due to continuous <i>p</i> -CA production.
275	One solution to avoid 4-vp production could be the mutation of one or the two
276	decarboxylases, but the outcome could be a high <i>p</i> -CA toxicity for the strain (Clausen et
277	al., 1994). In this case, a continuous removal of the product could address this issue, as
278	<i>p</i> -CA will not be accumulated in the medium, the toxicity issue may not be one. In the
279	case of a non-HCA decarboxylase mutated strain, a continuous extraction of the product
280	could address 4-vp production as p -CA would be less available to decarboxylation as it
281	will be observed thereafter

- 282
- 283 3.3. Impact of the pH and medium on the metabolism of the strain
- 284 Two pH were assessed in this work: one promoting *p*-CA extraction (i.e., pH 4.5) as it

285 is below *p*-CA acid moiety pKa of 4.65 (Benvidi et al., 2019; Combes et al., 2021) and

286 one promoting *p*-CA production (i.e., pH 6) as TAL/PAL activity requires an alkaline

287 pH with optima around 8-9 (Jendresen et al., 2015; Sariaslani, 2007). To assess the 288 effect of pH, cultures were conducted at both pH (4.5 and 6) with YNB w/o aa medium. 289 Growths and glucose consumptions were equivalent in cultures at both pH (Figures 290 1A/1C, fermentative maximum specific growth rates (fermentative μ_{max}) in Table 1 291 entries 5 and 9). However, in Figure 1D, a greater ethanol concentration was observed 292 in culture at pH 4.5 than at pH 6 (at maximum measured concentration, at 23 h, more 293 than twice the pH 6 ethanol concentration), demonstrating a significant difference in 294 fermentative metabolism towards ethanol production. As stated earlier, the respiration 295 phase concurring with the major part of *p*-CA production, one would expect a greater 296 production of *p*-CA at pH 4.5 due to a larger amount of ethanol accumulated, but the opposite was observed (*p*-CA respiratory production rate (respiratory r_{p-CA}) were 297 10.71 ± 0.23 mg.L⁻¹.h⁻¹ and 6.64 ± 0.88 mg.L⁻¹.h⁻¹ at pH 6 and 4.5, respectively). pH 6 298 299 may promote TAL/PAL activity as these enzymes have more alkaline optima, whereas 300 pH 4.5 may promote endogenous S. cerevisiae enzymes such as decarboxylases whom 301 optimum pH for this strain is 4.5-5 (Reed and Nagodawithana, 1990). As a matter of 302 fact, at pH 4.5, a significant greater final concentration of 4-vp was observed with YNB w/o aa medium (173.34 \pm 15.98 mg.L⁻¹ vs 87.75 \pm 11.38 mg.L⁻¹ for pH 6, Table 1 entries 303 304 5 and 9 and Figure 1E). 305 To assess the impact of the composition of the medium, an additional fermentation was 306 conducted at pH 6 using a rich and complex medium composed of yeast extract, 307 peptone and D-glucose (YEPD), and compared to the one performed with YNB w/o aa

- at pH 6 fermentation (Figure 1 and Table 1 entries 1 and 5). More biomass was
- 309 produced with YEPD medium with fermentative μ_{max} of 0.51±0.01 h⁻¹ and 0.38±0.03 h⁻¹
- 310 for YEPD and YNB w/o aa, respectively (Table 1 entries 1 and 5), explained by the

311	presence of metabolism precursors that allows energy saving and thus, rapid and
312	significant growth in rich media (Hahn-Hägerdal et al., 2005). In Table 1 entries 1 and
313	5, respiratory r_{p-CA} are consistent with the previous observation, with 14.51±0.36 and
314	10.71±0.23 mg.L ⁻¹ .h ⁻¹ of <i>p</i> -CA for YEPD and YNB w/o aa, respectively, indicating that
315	higher cell density leads to greater respiratory r_{p-CA} . However, at the end of the 72 h
316	fermentations, in Figure 1B there are no significant differences in <i>p</i> -CA concentrations
317	for those two media. The fermentation end observations can be explained by the 4-vp
318	production ca. 2.6-times higher in YEPD medium (225.86±8.44 mg.L ⁻¹ vs 87.75±11.38
319	mg.L ⁻¹ in YNB w/o aa medium), indicating that a significant <i>p</i> -CA decarboxylation
320	activity may be the reason for the <i>p</i> -CA concentration decrease in YEPD fermentations.
321	It is worth mentioning that such a decarboxylation can be favored further as YEPD
322	promotes high cell density as reported by Li et al. (2020) who investigated p -CA
323	consumption in rich and defined media and observed the same trends (Li et al., 2020).
324	In conclusion, compared to a defined medium such as YNB w/o aa, a rich and complex
325	medium will promote yeast growth and p-CA productivity, but high p-CA
326	decarboxylation as well. Although continuous removal of <i>p</i> -CA could prevent <i>p</i> -CA
327	decarboxylation with YEPD medium, YNB w/o aa was chosen to continue this study as
328	it will ease recovery process while being consistent with previous preliminary
329	experiments (Combes et al., 2021).
330	

- 331 3.4. Extractive biphasic fermentations
- 332 Figure 2 shows *p*-CA (A) and 4-vp (B) total production concentrations as functions of
- 333 time for biphasic experiments using OA as extractant and corresponding controls
- 334 experiments with YNB w/o aa as culture medium. Table 1 complements those data with

details and key parameters of those experiments (entries 2, 3, 4, 6, 7 and 8).

336 Significative differences between control experiments using nutsparger and dissolved 337 oxygen regulation, and control experiments using sintered-microsparger observed in 338 Table 1 entries 4, 5, 8 and 9 (mainly on fermentative μ_{max} parameter) could be explained 339 by excess dissolved oxygen levels when using sintered-microsparger (dissolved oxygen 340 did not decrease below 70% of saturation in those experiments). The use of those 341 spargers for biphasic experiments and corresponding controls is described in details in 342 the materials and methods section. Consequently, in this part, biphasic experiments will 343 be compared to control experiments conducted with sintered-microsparger. 344 In the first 24 hours, *p*-CA total productions seemed equivalent for a given pH (Figure 345 2A). However, after around 30 hours, one can observe that the addition of OA from the 346 outset resulted in a greater *p*-CA total production in biphasic system for both pH, the 347 highest p-CA total productions being achieved at pH 6 (Figure 2A). A significant 348 increase of the respiratory r_{p-CA} is observed when p-CA was removed from the start (Table 1, entries 2 and 4, pH 6: 13.65 ± 0.21 mg.L⁻¹.h⁻¹ of *p*-CA vs 11.07 ± 1.08 mg.L⁻¹.h⁻¹ 349 for the corresponding control; entries 6 and 8, pH 4.5: 9.45 ± 0.04 mg.L⁻¹.h⁻¹ of p-CA vs 350 7.18 \pm 0.06 mg.L⁻¹.h⁻¹ for the corresponding control). These results are even more 351 352 interesting if one looks at the density of biomass producing *p*-CA. Indeed, fermentative 353 μ_{max} for biphasic fermentation with OA addition at 0 h were equivalent to those of 354 corresponding control experiments, meaning that the same number of cells produced a 355 greater amount of p-CA through respiration in biphasic fermentations with OA addition 356 at 0 h compared to controls (Table 1, entries 2, 4, 6 and 8). Therefore, there might be a 357 significant impact of OA phase presence from the beginning on ABG010 respiratory r_{p-1} 358 CA.

360 **3.5.** Study of the time of addition of oleyl alcohol

361	As exponential and rapid growth occurs during glucose consumption and the main <i>p</i> -
362	CA production occurs after this phase, addition of extractive OA phase after total
363	glucose consumption, at 24 h was thus investigated. The aim was to avoid any negative
364	effect of OA on growth, to start <i>p</i> -CA recovery with a high driving force and with the
365	hypothesis that it will further increase respiratory r_{p-CA} . In experiments where OA was
366	added after 24 h of cultivation, 6 h from OA addition, on the contrary, trends suggested
367	lower <i>p</i> -CA production than control ones in both pH assessed (Figure 2A). For example,
368	at pH 6, respiratory r_{p-CA} for the biphasic experiment was 6.97±1.76 mg.L ⁻¹ .h ⁻¹ vs
369	11.07 \pm 1.08 mg.L ⁻¹ .h ⁻¹ for the control (Table 1 entries 3 and 4). To conclude, even
370	though growths were control equivalents, respiratory r_{p-CA} decreased widely when the
371	OA phase was added after complete glucose consumption. Although this outcome was
372	not further investigated, nor any report found about this behavior in the literature, a
373	certain adaptive mechanism of ABG010 must be involved, and enabled when grown
374	with OA from the start. Another explanation could also be a change in metabolism due
375	to OA presence, equivalent to an external stress response when added after 24 h. For the
376	next step, results and discussion will be focused on experiments with direct addition of
377	OA and corresponding controls.

- 379 3.6. Impact of biphasic fermentation on *p*-CA decarboxylation
- 380 At the end of the experiment carried out at pH 4.5 with OA added at 0 h (ca. 72 h), *p*-
- 381 CA final total production was found significantly greater than the corresponding control

382	one (Figure 2A, Table 1 entries 6 and 8). A reduced decarboxylation activity could
383	explain partly this observation, as in the case of continuous extraction of p -CA at pH 4.5
384	the final total production of 4-vp was less than half that of the control one (57.97 ± 10.67)
385	mg.L ⁻¹ and 123.76±12.64 mg.L ⁻¹ , respectively) (Figure 2B and Table 1 entries 6 and 8).
386	Indeed, at pH 4.5, <i>p</i> -CA was mostly distributed in the organic phase (Figure 3 and Table
387	1 entries 6 and 8) with a final distribution coefficient between OA and the broth
388	$(Log(K_D))$ of 0.98±0.15 and less than 50 mg.L ⁻¹ of <i>p</i> -CA in the aqueous phase at all
389	times, reducing drastically the extent of decarboxylation by ABG010 enzymes. For
390	biphasic experiment at pH $_{6}$, final total <i>p</i> -CA production was equivalent to the
391	corresponding control (Figure 2A). While 4-vp final total production was significantly
392	lower than the control (Table 1 entries 2 and 4), the difference was not as wide as for
393	pH 4.5 <mark>. A</mark> s a result, both biphasic experiments with addition of OA at the beginning had
394	equivalent 4-vp total production (Table 1 entries 2 and 6). As shown in Figure 3, at pH
395	6, <i>p</i> -CA was mostly distributed in the aqueous phase, i.e., the broth, with a $Log(K_D)$ of -
396	0.23±0.02 (Table 1 entry 2), which could account for the lower 4-vp final total
397	production difference with the control in comparison with observations at pH 4.5. It is
398	also noteworthy to mention that, in biphasic experiments, 4-vp was mostly distributed in
399	the organic phase, with less than 5 mg. L^{-1} in the broth at all times (Data not shown).
400	Indeed, 4-vp is a hydrophobic solute, with a $Log(P_{o/w})$ of 2.4 (Computed by XLogP3
401	3.0). This result could impair final purity in the organic phase, and thus, suggests that if
402	a high purity is needed, a decrease or abolition of S. cerevisiae p-CA decarboxylation
403	activities (by deletion of genes encoding relevant enzymes) or an additional downstream
404	process step could be required.

406 3.7. Extractive biphasic fermentation, an adaptable process

407	To summarize, with ABG010 strain, the highest respiratory r_{p-CA} reached in this study
408	was in biphasic fermentation with addition of OA at the beginning and pH 6 for the
409	broth (13.65±0.21 mg.L ⁻¹ .h ⁻¹ of <i>p</i> -CA) (Table 1 entry 2). This result undoubtedly
410	demonstrates the high potential of a LLE-ISPR for the heterologous p -CA production
411	using an engineered S. cerevisiae. Nevertheless, one can expect a different outcome
412	with a strain producing greater amount of <i>p</i> -CA where toxicity and solubility might be
413	an issue. The hypothesis is that, in this study, these latter factors are not limiting, and
414	thus, the increase in respiratory r_{p-CA} in biphasic system was not as significant as it has
415	been for other biosynthesized inhibiting solute, like in the work of Kim et al. (2020)
416	who successfully increased caproic acid microbial productivity by 5.8-fold using OA
417	and Alamine 336 as extractant. With a more advanced engineered strain, with a higher
418	p-CA production rate, or with glucose-limited fed-batch implementation in addition to
419	the proposed LLE-ISPR process, productivity could be even higher.
420	As far as pH is concerned, pH 4.5 brings significant benefits since it allows <i>p</i> -CA to be
421	mostly distributed in the organic phase allowing a detoxification and a high percentage
422	of recovery whereas, at pH 6, the highest r_{p-CA} was obtained but an acidification of the
423	broth may be needed at the end of the fermentation to recover <i>p</i> -CA.
424	The medium is another parameter that could also be investigated further, as YNB w/o aa
425	would be economically challenging for an industrial production. Therefore, the
426	implementation of a complex medium implementation or the definition of minimal
427	optimized medium could be explored. Although a complex medium could be
428	disadvantageous for phase separation and final purity, it would allow significant growth

- 429 whereas a defined and minimal medium would ease product recovery but could be
- 430 limiting for strain growth.
- 431
- 432 4. Conclusion
- 433 In this work for the first time, a LLE-ISPR process for the intensification of *p*-CA
- 434 heterologous production was implemented, using an engineered *S. cerevisiae* strain and
- 435 oleyl alcohol as extractant, showing the promising potential of this approach. Optimal
- 436 respiratory *p*-CA production rates were obtained in biphasic experiments with OA
- 437 addition at 0 h of cultivation at pH 4.5 and 6. With ABG010, the highest *p*-CA
- 438 respiratory production rate was obtained at pH 6, in biphasic fermentation. Furthermore,
- 439 it was confirmed that the continuous extraction of *p*-CA significantly prevented its
- 440 decarboxylation in the broth.
- 441
- 442 **E-supplementary data**
- 443 Mass spectrum of 4-vinylphenol in sample can be found in e-version of this paper
- 444 online.
- 445
- 446 **Competing interests**
- 447 The authors declare that they have no competing interests.
- 448

449 Availability of data and materials

- 450 The datasets used and/or analyzed during the current study are available from the
- 451 corresponding author on reasonable request.

453	Funding
454	This work was supported by the Agence Nationale de la Recherche (ANR, Grant ANR-
455	17-CE07-0046), Région Grand Est (France), Conseil Départemental de la Marne
456	(France), and Grand Reims (France).
457	
458	Authors' contributions
459	FA conceived and acquired the financial support for the whole concept of the ANR-17-
460	CE07-0046 project leading to this publication. J Combes, NI and ML conceived the
461	study and designed the experiments. CF engineered and provided the strain. J Combes,
462	NI, J Couvreur, and BG performed the fermentations. FB performed analysis on LC-
463	MS. J Combes analyzed and interpreted data. J Combes wrote the manuscript. NI, FA
464	and ML reviewed the manuscript. All authors read and approved the final manuscript.
465	
466	Acknowledgements
467	The authors thank Dr. Louis Mouterde for the synthesis of 4-vinylphenol.
468	
469	References
470	1. Averesch, N.J.H., Kayser, O. (Eds.), 2020. Biotechnological Production and
471	Conversion of Aromatic Compounds and Natural Products. Frontiers Research
472	Topic. Frontiers Media SA. https://doi.org/10.3389/978-2-88963-913-7
473	2. Baranowski, J.D., Davidson, P.M., Nagel, C.W., Branen, A.L., 1980. Inhibition
474	of Saccharomyces cerevisiae by naturally occurring hydroxycinnamates. J. Food

475 Sci. 45, 592–594. https://doi.org/10.1111/j.1365-2621.1980.tb04107.x

476	3.	Benvidi, A., Dadras, A., Abbasi, S., Tezerjani, M.D., Rezaeinasab, M., Tabaraki,
477		R., Namazian, M., 2019. Experimental and computational study of the p K_{a} of
478		coumaric acid derivatives. J. Chin. Chem. Soc. 66, 589-593.
479		https://doi.org/10.1002/jccs.201800265
480	4.	Boo, Y.C., 2019. <i>p</i> -Coumaric Acid as An Active Ingredient in Cosmetics: A
481		Review Focusing on its Antimelanogenic Effects. Antioxidants 8, 275.
482		https://doi.org/10.3390/antiox8080275
483	5.	Clausen, M., Lamb, C.J., Megnet, R., Doerner, P.W., 1994. PAD1 encodes
484		phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in
485		Saccharomyces cerevisiae. Gene 142, 107-112. https://doi.org/10.1016/0378-
486		1119(94)90363-8
487	6.	Combes, J., Clavijo Rivera, E., Clément, T., Fojcik, C., Athès, V., Moussa, M.,
488		Allais, F., 2021. Solvent selection strategy for an ISPR (In Situ/In stream
489		product recovery) process: The case of microbial production of <i>p</i> -coumaric acid
490		coupled with a liquid-liquid extraction. Sep. Purif. Technol. 259, 118170.
491		https://doi.org/10.1016/j.seppur.2020.118170
492	7.	Cuellar, M.C., Straathof, A.J.J., 2018. Chapter 4: Improving Fermentation by
493		Product Removal, in: Intensification of Biobased Processes. pp. 86–108.
494		https://doi.org/10.1039/9781788010320-00086
495	8.	Dafoe, J.T., Daugulis, A.J., 2014. In situ product removal in fermentation
496		systems: improved process performance and rational extractant selection.
497		Biotechnol. Lett. 36, 443-460. https://doi.org/10.1007/s10529-013-1380-6

498	9.	Davidson, P.M., Taylor, T.M., Schmidt, S.E., 2013. Chemical Preservatives and
499		Natural Antimicrobial Compounds, in: Food Microbiology: Fundamentals and
500		Frontiers, M. P., Doyle; R., Buchanan. American Society for Microbiology.
501		765-801. https://doi.org/10.1128/9781555818463.ch30
502	10	. Flourat, A.L., Combes, J., Bailly-Maitre-Grand, C., Magnien, K., Haudrechy,
503		A., Renault, J., Allais, F., 2020. Accessing <i>p</i> -Hydroxycinnamic Acids:
504		Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production?
505		ChemSusChem 14, 118-129. https://doi.org/10.1002/cssc.202002141
506	11.	Freeman, A., Woodley, J.M., Lilly, M.D., 1993. In Situ Product Removal as a
507		Tool for Bioprocessing. Nat Biotechnol 11, 1007–1012.
508		https://doi.org/10.1038/nbt0993-1007
509	12	Frick, O., Wittmann, C., 2005. Characterization of the metabolic shift between
510		oxidative and fermentative growth in Saccharomyces cerevisiae by comparative
511		13C flux analysis. Microb. Cell Factories 4, 30. https://doi.org/10.1186/1475-
512		2859-4-30
513	13.	. Gold, N.D., Gowen, C.M., Lussier, FX., Cautha, S.C., Mahadevan, R., Martin,
514		V.J.J., 2015. Metabolic engineering of a tyrosine-overproducing yeast platform
515		using targeted metabolomics. Microb. Cell Factories, 14:73, 1-16.
516		https://doi.org/10.1186/s12934-015-0252-2
517	14	. Hahn-Hägerdal, B., Karhumaa, K., Larsson, C.U., Gorwa-Grauslund, M.,
518		Görgens, J., van Zyl, W.H., 2005. Role of cultivation media in the development

519	of yeast strains for large scale industrial use. Microb. Cell Factories 4, 31.
520	https://doi.org/10.1186/1475-2859-4-31
521	15. Hartmann, M., Schneider, T.R., Pfeil, A., Heinrich, G., Lipscomb, W.N., Braus,
522	G.H., 2003. Evolution of feedback-inhibited / barrel isoenzymes by gene
523	duplication and a single mutation. Proc. Natl. Acad. Sci. 100, 862–867.
524	https://doi.org/10.1073/pnas.0337566100
525	16. Hazelwood, L.A., Daran, JM., van Maris, A.J.A., Pronk, J.T., Dickinson, J.R.,
526	2008. The Ehrlich Pathway for Fusel Alcohol Production: a Century of Research
527	on Saccharomyces cerevisiae Metabolism. Appl. Environ. Microbiol. 74, 2259-
528	2266. https://doi.org/10.1128/AEM.02625-07
529	17. Heeres, A.S., Picone, C.S.F., van der Wielen, L.A.M., Cunha, R.L., Cuellar,
529 530	17. Heeres, A.S., Picone, C.S.F., van der Wielen, L.A.M., Cunha, R.L., Cuellar,M.C., 2014. Microbial advanced biofuels production: overcoming emulsification
529 530 531	17. Heeres, A.S., Picone, C.S.F., van der Wielen, L.A.M., Cunha, R.L., Cuellar,M.C., 2014. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol. 32, 221–229.
529530531532	 Heeres, A.S., Picone, C.S.F., van der Wielen, L.A.M., Cunha, R.L., Cuellar, M.C., 2014. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol. 32, 221–229. https://doi.org/10.1016/j.tibtech.2014.02.002
 529 530 531 532 533 	 17. Heeres, A.S., Picone, C.S.F., van der Wielen, L.A.M., Cunha, R.L., Cuellar, M.C., 2014. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol. 32, 221–229. https://doi.org/10.1016/j.tibtech.2014.02.002 18. Herrmann, K.M., Weaver, L.M., 1999. The shikimate pathway. Annu Rev Plant
 529 530 531 532 533 534 	 17. Heeres, A.S., Picone, C.S.F., van der Wielen, L.A.M., Cunha, R.L., Cuellar, M.C., 2014. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol. 32, 221–229. https://doi.org/10.1016/j.tibtech.2014.02.002 18. Herrmann, K.M., Weaver, L.M., 1999. The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 32. https://doi.org/10.1146/annurev.arplant.50.1.473
 529 530 531 532 533 534 535 	 17. Heeres, A.S., Picone, C.S.F., van der Wielen, L.A.M., Cunha, R.L., Cuellar, M.C., 2014. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol. 32, 221–229. https://doi.org/10.1016/j.tibtech.2014.02.002 18. Herrmann, K.M., Weaver, L.M., 1999. The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 32. https://doi.org/10.1146/annurev.arplant.50.1.473 19. Higuchi, T., 1981. Biosynthesis of Lignin, in: Tanner, W., Loewus, F.A. (Eds.),
 529 530 531 532 533 534 535 536 	 17. Heeres, A.S., Picone, C.S.F., van der Wielen, L.A.M., Cunha, R.L., Cuellar, M.C., 2014. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol. 32, 221–229. https://doi.org/10.1016/j.tibtech.2014.02.002 18. Herrmann, K.M., Weaver, L.M., 1999. The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 32. https://doi.org/10.1146/annurev.arplant.50.1.473 19. Higuchi, T., 1981. Biosynthesis of Lignin, in: Tanner, W., Loewus, F.A. (Eds.), Plant Carbohydrates II: Extracellular Carbohydrates, Encyclopedia of Plant
 529 530 531 532 533 534 535 536 537 	 Heeres, A.S., Picone, C.S.F., van der Wielen, L.A.M., Cunha, R.L., Cuellar, M.C., 2014. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol. 32, 221–229. https://doi.org/10.1016/j.tibtech.2014.02.002 Herrmann, K.M., Weaver, L.M., 1999. The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 32. https://doi.org/10.1146/annurev.arplant.50.1.473 Higuchi, T., 1981. Biosynthesis of Lignin, in: Tanner, W., Loewus, F.A. (Eds.), Plant Carbohydrates II: Extracellular Carbohydrates, Encyclopedia of Plant Physiology. Springer, Berlin, Heidelberg, pp. 194–224.

539	20. Huccetogullari, D., Luo, Z.W., Lee, S.Y., 2019. Metabolic engineering of
540	microorganisms for production of aromatic compounds. Microb. Cell Factories
541	18, 41. https://doi.org/10.1186/s12934-019-1090-4
542	21. Humphreys, J.M., Chapple, C., 2002. Rewriting the lignin roadmap. Curr. Opin.
543	Plant Biol. 5, 224–229. https://doi.org/10.1016/S1369-5266(02)00257-1
544	22. Hyun, M.W., Yun, Y.H., Kim, J.Y., Kim, S.H., 2011. Fungal and Plant
545	Phenylalanine Ammonia-lyase. Mycobiology 39, 257–265.
546	https://doi.org/10.5941/MYCO.2011.39.4.257
547	23. Jendresen, C.B., Stahlhut, S.G., Li, M., Gaspar, P., Siedler, S., Förster, J.,
548	Maury, J., Borodina, I., Nielsen, A.T., 2015. Highly Active and Specific
549	Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production
550	of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae. Appl.
551	Environ. Microbiol. 81, 4458-4476. https://doi.org/10.1128/AEM.00405-15
552	24. Kim, H., Choi, O., Jeon, B.S., Choe, WS., Sang, BI., 2020. Impact of
553	feedstocks and downstream processing technologies on the economics of caproic
554	acid production in fermentation by Megasphaera elsdenii T81. Bioresource
555	Technology 301, 122794. https://doi.org/10.1016/j.biortech.2020.122794
556	25. Koopman, F., Beekwilder, J., Crimi, B., van Houwelingen, A., Hall, R.D.,
557	Bosch, D., van Maris, A.J., Pronk, J.T., Daran, JM., 2012. De novo production
558	of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb.
559	Cell Factories 11, 155. https://doi.org/10.1186/1475-2859-11-155

560	26. Li, Y., Mao, J., Liu, Q., Song, X., Wu, Y., Cai, M., Xu, H., Qiao, M., 2020. De
561	Novo Biosynthesis of Caffeic Acid from Glucose by Engineered Saccharomyces
562	cerevisiae. ACS Synth. Biol. 9, 756–765.
563	https://doi.org/10.1021/acssynbio.9b00431
564	27. Liu, J., Du, C., Beaman, H.T., Monroe, M.B.B., 2020. Characterization of
565	Phenolic Acid Antimicrobial and Antioxidant Structure-Property Relationships.
566	Pharmaceutics 12, 419. https://doi.org/10.3390/pharmaceutics12050419
567	28. Liu, Q., Liu, Y., Chen, Y., Nielsen, J., 2020. Current state of aromatics
568	production using yeast: achievements and challenges. Curr. Opin. Biotechnol.
569	65, 65–74. https://doi.org/10.1016/j.copbio.2020.01.008
570	29. Liu, Q., Yu, T., Li, X., Chen, Yu, Campbell, K., Nielsen, J., Chen, Yun, 2019.
571	Rewiring carbon metabolism in yeast for high level production of aromatic
572	chemicals. Nat. Commun. 10, 4976. https://doi.org/10.1038/s41467-019-12961-
573	5
574	30. Luttik, M.A.H., Vuralhan, Z., Suir, E., Braus, G.H., Pronk, J.T., Daran, J.M.,
575	2008. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic
576	amino acid biosynthesis: Quantification of metabolic impact. Metab. Eng. 10,
577	141–153. https://doi.org/10.1016/j.ymben.2008.02.002
578	31. Mortimer, R.K., Johnston, J.R., 1986. Genealogy of Principal Strains of the
579	Yeast Genetic Stock Center. Genetics 113, 35–43.

600	279, 2600–2607. https://doi.org/10.1074/jbc.M309951200
599	for control of metabolic flux into the phenylpropanoid pathway. J. Biol. Chem.
598	Phenylpropanoid Metabolism in Yeast (Saccharomyces cerevisiae): Implications
597	37. Ro, DK., Douglas, C.J., 2004. Reconstitution of the Entry Point of Plant
596	Netherlands, Dordrecht. https://doi.org/10.1007/978-94-011-9771-7
595	36. Reed, G., Nagodawithana, T.W., 1990. Yeast Technology. Springer
594	https://doi.org/10.1002/jsfa.7578
593	Coumaric acid and its conjugates. J. Sci. Food Agric. 96, 2952–2962.
592	dietary sources, pharmacokinetic properties and biological activities: p -
591	35. Pei, K., Ou, J., Huang, J., Ou, S., 2016. p -Coumaric acid and its conjugates:
590	617-624. https://doi.org/10.1007/s00253-006-0703-0
589	the production of <i>p</i> -coumarate from glucose. Appl. Microbiol. Biotechnol. 74,
588	2007. Optimization of the solvent-tolerant Pseudomonas putida S12 as host for
587	34. Nijkamp, K., Westerhof, R.G.M., Ballerstedt, H., de Bont, J.A.M., Wery, J.,
586	https://doi.org/10.1016/j.jbiosc.2009.11.011
585	Saccharomyces cerevisiae. J. Biosci. Bioeng. 109, 564–569.
584	FDC1 are essential for the decarboxylation of phenylacrylic acids in
583	33. Mukai, N., Masaki, K., Fujii, T., Kawamukai, M., Iefuji, H., 2010. PAD1 and
582	Synthesis. Front. Chem. 6. https://doi.org/10.3389/fchem.2018.00426
581	Reaction: An Efficient Method for Naturally Occurring Phenolic Acids
580	32. Mouterde, L.M.M., Allais, F., 2018. Microwave-Assisted Knoevenagel-Doebner

601	38. Rodriguez, A., Kildegaard, K.R., Li, M., Borodina, I., Nielsen, J., 2015.
602	Establishment of a yeast platform strain for production of <i>p</i> -coumaric acid
603	through metabolic engineering of aromatic amino acid biosynthesis. Metab. Eng.
604	31, 181–188. https://doi.org/10.1016/j.ymben.2015.08.003
605	39. Santos, A.G., Albuquerque, T.L. de, Ribeiro, B.D., Coelho, M.A.Z., 2020. In
606	situ product recovery techniques aiming to obtain biotechnological products: A
607	glance to current knowledge. Biotechnol. Appl. Biochem. n/a.
608	https://doi.org/10.1002/bab.2024
609	40. Sariaslani, F.S., 2007. Development of a Combined Biological and Chemical
610	Process for Production of Industrial Aromatics from Renewable Resources.
611	Annu. Rev. Microbiol. 61, 51–69.
612	https://doi.org/10.1146/annurev.micro.61.080706.093248
613	41. Stark, D., Stockar, U. von, 2003. In Situ Product Removal (ISPR) in Whole Cell
614	Biotechnology During the Last Twenty Years. Process Integr. Biochem. Eng.
615	149–175. https://doi.org/10.1007/3-540-36782-9_5
616	42. Van Hecke, W., Kaur, G., De Wever, H., 2014. Advances in <i>in-situ</i> product
617	recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol.
618	Adv. 32, 1245–1255. https://doi.org/10.1016/j.biotechadv.2014.07.003
619	43. Varga, A., Bata, Z., Csuka, P., Bordea, D.M., Vértessy, B.G., Marcovici, A.,
620	Irimie, F.D., Poppe, L., Bencze, L.C., 2017. A novel phenylalanine ammonia-
621	lyase from Kangiella koreensis. Stud. Univ. Babeş-Bolyai Chem. 62, 293–308.
622	https://doi.org/10.24193/subbchem.2017.3.25

623	44. Yang, ST., Lu, C., 2013. Extraction-Fermentation Hybrid (Extractive
624	Fermentation), in: Ramaswamy, S., Huang, HJ., Ramarao, B.V. (Eds.),
625	Separation and Purification Technologies in Biorefineries. John Wiley & Sons,
626	Ltd, Chichester, UK, pp. 409-437. https://doi.org/10.1002/9781118493441.ch15
627	

628 Table 1: Details, key parameters and data on study experiments

629	Figure 1: ABG010 control batches assessing YEPD and YNB without amino acids (w/o
630	aa) media and pH 4.5 and 6 results as a function of time. A: ABG010 growth, $ln(X/X_0)$;
631	B: <i>p</i> -CA concentration in the broth in mg.L ⁻¹ ; C: glucose concentration in the broth in
632	g.L ⁻¹ ; D: ethanol concentration in the broth in g.L ⁻¹ ; E: 4-vinylphenol concentration in
633	the broth in mg.L ⁻¹ . All data represent the mean of $n = 2$ independent samples and error
634	bars show standard deviation
635	Figure 2: Total production concentrations (obtained from mass balance calculation in
636	each phase for biphasic experiments and expressed per volume of broth) of A: p-
637	coumaric acid and B: 4-vinylphenol as a function of time for the assessment of pH and
638	OA addition time effect on biphasic batch fermentation with YNB w/o aa medium. All
639	data represent the mean of $n = 2$ independent samples and error bars show standard
640	deviation except for "pH 4.5 – OA addition after 24 h" where $n = 1$.
641	Figure 3: <i>p</i> -CA distribution in biphasic experiments using OA as organic phase since 0
642	h of cultivation.

<mark>Entry</mark>	Medium	рН	OA addition time (h) ^a	Type of sparger ^b	Mixing rate (rpm)	Fermentative µ _{max} (h ⁻¹)	Respiratory r _{p-CA} (mg.L ⁻¹ .h ⁻¹)	4-vp final total production mg.L ⁻¹	p-CA Log (K _D) at 72 h ^a
1	YEPD	6	N/A	NS	350- 900	0.51±0.01	12.91±0.55	225.86±8.44	N/A
2	YNB	6	0	Sintered	75	0.23±0.00	13.65±0.21	51.79±6.59	- 0.23±0.02
3	YNB	6	24	Sintered	75	0.26±0.03	6.97±1.76	40.64±10.98	- 0.23±0.08
<mark>4</mark>	YNB	6	N/A	Sintered	75	0.29±0.06	11.07±1.08	67.23±3.20	N/A
5	YNB	6	N/A	NS	350- 900	0.38±0.03	10.50±0.51	87.75±11.38	N/A
<mark>6</mark>	YNB	4.5	0	Sintered	75	0.18±0.01	9.45±0.04	57.97±10.67	0.98±0.15
<mark>7</mark>	YNB	4.5	24	Sintered	75	0.18 ^c	1.44 °	51.84 °	1.00 °
<mark>8</mark>	YNB	4.5	N/A	Sintered	75	0.20±0.02	7.18±0.06	123.76±12.64	N/A
9	YNB	4.5	N/A	NS	350- 900	0.34±0.01	7.53±0.85	173.34±15.98	N/A

^a N/A stands for Not Applicable, meaning experiments are not biphasic; ^b NS stands for
nutsparger; ^c Experiment with no duplicate; In bold: first experiments discussed, control
batches with nutsparger and regulation of dissolved oxygen.

