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Abstract

In modern science, computer models are often used to understand complex
phenomena, and a thriving statistical community has grown around analyzing
them. This review aims to bring a spotlight to the growing prevalence of stochas-
tic computer models — providing a catalogue of statistical methods for practi-
tioners, an introductory view for statisticians (whether familiar with determin-
istic computer models or not), and an emphasis on open questions of relevance
to practitioners and statisticians. Gaussian process surrogate models take center
stage in this review, and these, along with several extensions needed for stochas-
tic settings, are explained. The basic issues of designing a stochastic computer
experiment and calibrating a stochastic computer model are prominent in the
discussion. Instructive examples, with data and code, are used to describe the
implementation of, and results from, various methods.
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1 Introduction

Computer models, also known as simulators, are in use everywhere. These are programs
which describe and approximate a process of interest. The code typically takes a set of
inputs and produces some output. Stochastic simulators, unlike deterministic ones, can
produce different output with the same inputs due to the presence of random elements.[]
Such computer models are in wide use. For example, agent-based models (ABMs) deal
with large populations of individuals, where specific actions taken at any one time-step
have complexities and uncertainties that do not allow deterministic modeling. ABMs
are prevalent (Johnson, 2010; |[Johnson and Briggs, 2011; |Ramsey and Efford, [2010;
Smieszek et al., 2011; |Grimm et al., [2006)) and used to explore complex phenomena in
sociology, transportation, ecology, epidemiology, and other phenomena.

The following is a basic model of a stochastic simulator experiment. If the code is
run at a (vector) input z producing a (scalar) output y(z), this could be represented
as:

y(z) = M(x) +v, v~ N(0,0%(x)), (1.1)

where M (x) is the expected value, E[y(x)], of the output. The variability v accounts
for the randomness of the stochastic simulator, ultimately caused by pseudo-random
number generation within the code. Its variance, o2, often depends on z, with constant
variance subsumed as a special case. For deterministic simulators, o2 = 0.

Randomness in stochastic simulators invariably requires many simulations thereby
limiting the complexity (including the size of the input dimension) that can be effec-
tively treated. The prospect of replicate runs in stochastic simulators introduces a
trade-off between replication and exploration, a challenging design issue. The noise, v,
makes additional demands on the analysis when its variance is non-constant. This ar-
ticle examines these basic issues, identifies accessible and effective methods, and points
to unresolved questions that should be addressed.

Equation is often used to model physical experiments, where an observation
y(x) is truth, M(z), plus measurement error (and, possibly, intrinsic variability as
well) or, for an observational study, where M (z) is fit to the observations with residual
variance. Because they are structurally the same, physical experiments can be analyzed
with methods used for stochastic simulators (Gao et al., [1996)). However, the contexts
and goals are often different, leading to different problem formulations and different
interpretations of results.

The choice of method, with its assumptions and limitations, is crucial for any
analysis of an experiment. An inclination for simplicity and availability of software
would encourage the use of a standard statistical regression model (for example, lin-
ear regression) for M with a constant o2. That this approach is effective under some

IThis terminology can have different meanings and connotations in different fields. In weather
modeling, a stochastic simulator might refer specifically to a random weather generator (Richardson,
1981; [Peleg et al., 2017). In this work, we use the term to refer to any code that includes pseudo-
random deviates in generating output.
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circumstances, especially when the space, X, of possible inputs is small, begs the ques-
tion of how reliable it can be as a general prescription. Complex systems modeled by a
simulator may neither suggest nor allow much simplification. The methods described
in this review allow the simulated data to guide the choice of method under general
conditions with little, or no simplification. Statistics (Sacks et al [1989; Kennedy and
O’Hagan), 2001) and Applied Mathematics (Sullivan) 2015) play prominent roles in
the design and analysis of deterministic computer experiments. Unsurprisingly, some
methods developed for deterministic simulators have modifications that can be used in
the stochastic context. Alternatives, driven by the stochasticity, are necessary in many
contexts. These structural differences will be noted in the narrative below.

1.1 Goals

We have three primary goals; all related to the cross-disciplinary nature of this topic.

One goal is to bring effective statistical methods to the attention of subject scientists
and enable a deeper understanding of stochastic simulators in use. The descriptions
below of statistical tools used (or cited) try to avoid being bogged down in mathematical
intricacies. Some details of individual methods are included to help in understanding
the strengths and weaknesses of the methods. Application of a number of methods
is exemplified on testbed cases (Section [2)), and available software for methods are
identified where possible.

A second goal is to familiarize statisticians with an area of major importance that
is crucial to the formation of evidence-based policy. Statisticians are sorely needed in
the study and application of agent-based models (ABMs) and stochastic simulators
in general. Researchers familiar with deterministic simulation techniques will see im-
mediate opportunities, but statistical expertise of all kinds is essential to advance the
study of stochastic simulators.

The analysis of stochastic simulators is a developing field with many unsolved prob-
lems. Challenges are often driven by the scale of the problems and a range of issues
whose resolution requires close cooperation between statisticians, subject scientists,
and computer scientists. A third goal of this paper is to spur that process.

The review is structured as follows: Section Bl describes the models that form the
basis for the analyses; Section 4| is devoted to the fundamental question of what simu-
lator runs to make. Section [5|addresses a common objective of simulation experiments:
calibration. Section [0] discusses other models and objectives that are important, but
are more on the “boundaries” of this review and are therefore less detailed. Finally,
Section [7|summarizes conclusions and poses unanswered questions. The references here
do not cover the entire body of work on stochastic simulators but, together with this
overview, should provide adequate coverage of the problems discussed.
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2 Example Simulators

Three stochastic simulators will be discussed throughout this review to aid understand-
ing. Two are deliberately simplified and used to exhibit key features of the methods
presented. In some cases simpler strategies could be equally effective because the com-
plexity of the models has been greatly reduced. Since the data/generating mechanisms
used are available, others can compare different strategies, but the demonstration pur-
pose is the one that is relevant in the discussion and reported computations. The third
is a model which we use to anchor and motivate methods. The specific model in ques-
tion is an epidemiological model developed in response to the Ebola epidemic of 2014.
For the Ebola model, a synthetic population representing the individuals in Liberia
(population ~ 4.5 million) and their activity schedules, inducing a time-varying con-
tact network of individuals and locations, was developed (Mortveit et al., |2015), and
paired with an agent-based model (Bisset et al. [2009). Together, this ABM models
a contagion spreading from one individual to another in Liberia. Since the parame-
ter for contagion, transmissibility, only controls the probability of infection given an
interaction occurs, this model (and many like it) is stochastic. The model is updated
daily, with the progress of the disease determined by the activity schedule, contact
details, and other epidemiological characteristics. This model is complex, with high
dimensional outputs, multiple unknown inputs, and non-normality all present. The
analysis performed by [Fadikar et al.| (2018)) tackles all of these using ideas discussed

within this article (see Sections [3.3.1] and [p] ).

2.1 Fish Capture-Recapture

The first simplified stochastic simulator we consider mimics the movements and school-
ing behavior of fish in a mark-recapture application. Mark and recapture involves
capturing a sample of the population, marking and releasing them, and following up
by capturing another sample and counting how many are marked — the recaptured.
The number recaptured allows estimation of the population size (Begon et al., [1979).
The process is modeled by initializing a population of fish at random locations in a
2-d, rectangular lake with boundary conditions. The fish begin moving and schooling
according to simple, agent-based rules. After an initial period of time, 100 fish are
marked as they pass through a “net” in the lake. After a second period of time, 100
fish are captured using the same net and the number of “recaptured” are recorded.
This agent-based model is a modified version of the flocking model developed in
NetLogo (Wilenskyl, |1999). The collective behavior that emerges in the flocking model
is the result of providing each individual agent with the same set of simple rules
(Reynolds, |1987). The flocking model is modified to include the mark-recapture dynam-
ics described above. Given an observed count of recaptured fish, this model can be used
to estimate the total size of the fish population (see Section. The only input consid-
ered is the number of fish in the total population and the output is the number of recap-
tured fish. Other inputs for this model control the individual movement rules of the fish;
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for simplicity these are ignored here and set to default values. Supplementary code, and
compiled Rmarkdown documents, corresponding to our analysis of this simulator can
be found at https://github.com/jhuang672/fish. Running the simulator afresh will
require the installation of NetLogo from https://ccl.northwestern.edu/netlogo/.

2.2 Ocean Circulation

The second simplified example is a stochastic simulator that models the concentration
of oxygen in a thin water layer (around 2000m deep) in the South Atlantic ocean
(McKeague et al., 2005; Herbei and Berliner| 2014)). The physical model is described
via an advection-diffusion equation (equation (4) of McKeague et al.| (2005)), i.e.,
a non-linear partial differential equation (PDE) describing the dynamics of oxygen
concentration in terms of the water velocities and diffusion coefficients. For a given
set of inputs, the solution of the advection-diffusion equation is not available in closed
form. However, using theoretical results (Feynman| |1948; |[Kac, 1949)), the solution can
be closely approximated through an associated random process (Herbei and Berliner],
2014). For a specific location within the domain, random paths of the process are
generated, producing noisy outcomes that approximate the solution to the PDE at
that location. This example is simplified by taking the oxygen concentration output to
only depend on four inputs: two unknown diffusion constants (K, and K,) and the two
location variables (latitude and longitude). All other inputs are held fixed at nominal
values. Such stochastic approximations are numerous in physical sciences, either due to
computational limitations, a lack of complete understanding of the underlying system,
or because the system under study is itself believed to be random. Supplementary code,
and compiled Rmarkdown documents, corresponding to our analysis of this simulator
can be found at https://github.com/Demiperimetre/Ocean.

3 Statistical Models

An experiment of running a simulator and producing data whose output is described by
equation can have a multitude of goals. A principal objective, and the one we focus
on here, is using the simulated data to predict values of the simulator, M (x) + v, and
the uncertainties of the predictions, at untried zs in a context where getting new runs
of the simulator is not cost-free. When M is believed to be “simple” (for example,
a polynomial function of the coordinates of ) there are many standard “classical”
techniques that can be used to approximate M. For example, linear regression models
and generalised linear models have been used by |Andrianakis et al. (2017)) and Marrel
et al.| (2012). Complex problems such as those in Section [2] are less easily managed:
specifying a functional form for complex M requires sufficient prior knowledge or a
huge abundance of data, both of which are often lacking. A prime emphasis of this
article is on methods that have been developed to cope with such concerns; adequate
references for a variety of standard methods are available for simpler circumstances.


https://github.com/jhuang672/fish
https://ccl.northwestern.edu/netlogo/
https://github.com/Demiperimetre/Ocean
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There are a range of factors that need to be taken into account before choosing a
statistical model (hereon referred to as a surrogate model, as it acts as a surrogate for
the computer model). In addition to methodological assumptions, it is important to
consider the “context”, that is, the conditions of the particular problem being studied,
leading to equation and its extensions. Some important contexts include:

e The space of inputs is usually a hyper-rectangle: each coordinate of an input z
is constrained by upper and lower bounds. Section simplifies issues by taking
a rectangular input space even though the Atlantic Ocean is not rectangular.

e The output y in equation is scalar, but multiple output, such as time-series,
is also common.

e Some inputs may be categorical rather than numerical.

e The probability distribution of v, the variability, is often taken to be normal, but
often invalid, as with the Ebola model.

Stretching back to Sacks et al.| (1989); Currin et al.| (1991), a vast literature, mostly
on deterministic simulators, has found that a Gaussian Process (GP) model produces
a flexible, effective surrogate for M. This approach, and its modifications needed to
address the presence of input dependent () in equation , can be effective for
stochastic simulation as has been documented in the literature (e.g. Kleijnen) 2009,
2017) and will be apparent below. A thorough intuitive explanation (for deterministic
computer models) can be found in|O’Hagan| (2006). More technical descriptions of GPs
from a statistical perspective can be found in Santner et al.| (2018) and Gramacy, (2020);
for a machine learning perspective, see Rasmussen and Williams (2006). In brief, the
use of GPs allows computer model runs to play the key role in selecting a surrogate and
assessments of its uncertainty in prediction. Deep learning methods, such as neural
networks, and other general-purpose predictors are also in wide use. These modern
learning machines have difficulties in producing uncertainties and identifying critical
inputs but there is active research directed towards that end (Neal, (1996 Graves,
2011; Welling and Tehl 2011} Papamakarios et al., 2019; |Gal and Ghahramani|, 2016;
Lakshminarayanan et al. 2017).

3.1 Gaussian Process Surrogates

Suppose that the input space X is a hyper-rectangle in d-dimensions; the output y(z) is
univariate (scalar); and that variability is normally distributed. Additionally, assume:

2

A1 The variability, v, has constant variance o

A2 The mean M(z) = p+ Z(x)

A3 p is constant
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A4 Z(-) is a Gaussian Process on X with mean 0 and covariance function K, decon-
structed as a product of a variance ¢% and a correlation function C.

The technical definition of a GP (Assumption A4) is: for any finite N and collection
of inputs Xy = (z1,...,25), Zv = (Z(21),...,Z(zn))" is a multivariate normal
random variable with mean 0 and N X N covariance matrix K, whose entries are
K(zi,z;). Tt follows that the simulator output, Yx = (y(z1),...,y(zn))", is also
multivariate normal but with mean 1 and covariance matrix Ky + 031 N, Where Iy is
the identity N x N matrix and 1 is the N-vector of 1s.

One interpretation is that these assumptions describe a prior distribution on all
possible functions for the mean M. Different choices for the GP allow for different
classes of possible M; the power of a GP is that these classes can be big enough to
allow for all reasonable possibilities. After specifying p, K, and 2, a Bayesian analysis
can then be carried out, resulting in a posterior distribution for all the functions that
can still represent M after accounting for the observed simulator runs.

Another interpretation of M and Assumptions A2 and A4 is to think of M as a ran-
dom function, with p being a regression function (as in linear regression), and the GP
for Z modeling the deviation from p. Both formulations have the same mathematical
structure but with differing interpretations.

The predictive distribution for any new run, y(Zey), given the observed simulator
data {Xn, Yy} is also normal, and has a known analytical form. The mean py(Znew)
and variance 0% (Zyew) of predictions are:

#N($neW) = p+ kN(xneW)TU(N + 03[N>_1(YN - /’Jl) (3'1)

UJZV(:Cnew) = 0-12; + U% - (kN(xnew)T(KN + O-le)ilkN(xnew)a

with ky(Zpew) denoting the N-vector (K (Zew,1),. .., K (Znew,Zn))' of covariances
between the desired prediction and observed data. Once the correlation function C' is
specified, parameters (u, 0%, and ¢2) can be estimated from the data. For specifying
C, the approach taken for deterministic simulators can be adopted here: specify a
parameterized family Cy and use the data to estimate 6, thereby tailoring C' to obser-
vations. One example for Cy is the family of squared-exponential correlation functions
(also known as the Gaussian kernel):

Co(z,w) :exp{—z(l’j;—‘wj)z}. (3.3)

j=1 J

This correlation function is suited for approximating very smooth, infinitely differen-
tiable, functions over dimension d. Alternative correlation functions exist and are used;
one commonly used alternative is the Matérn 5/2 correlation function (Stein, 2012),
which is appropriate for approximating less-smooth functions (only 2 derivatives).ﬂ

5(zj—w;)

2The Matérn 5/2 correlation function has the form (1 + 1 Ao 2) exp (_@) )

Further discussion of the features of different kernels can be found in Chapter 4.2 of Rasmussen and
Williams| (2006]), Chapter 2.2 of [Santner et al.| (2018]), or Chapter 5.3 of |Gramacy| (2020).

V5(z;—w;)
P
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With a choice of the family Cp and Assumptions Al-A4, the likelihood of the
observed output is available and maximum likelihood estimates (MLEs) f, 012), 0%, and
0 can be calculated. Henceforth UN(Tnew) and o3 (Tnew ) Will be used to denote the mean
and variance of the predictive distribution even when the parameters in equations
and are estimated. The predictive probability distribution for the computer model
output y(Zpey) is then:

Y(Tnew) ~ N (N (Tnew), U?V(xnew»‘ (3.4)

A proper assessment of uncertainty is lost by plugging-in estimated parameters with-
out accounting for their uncertainty. Accordingly, the predictive variance, o3 (Znew),
obtained this way is called the plugin (or nominal) predictive variance. The alter-
native of a full Bayesian analysis to estimate the parameters can be computationally
impractical in many circumstances, though not impossible (intermediate schemes and
approximations have proven to be useful, e.g., Spiller et al.| (2014]))).

For the correlation function in equation [3.3, and for others such as the Matérn
5/2, the correlation between Z(z) and Z(w) depends only on z — w, the difference
between the two vectors of inputs. That is, Z is assumed to be a stationary GP (and,
consequently, so is y). For functions exhibiting markedly different behavior in one
region of input space than in another part, stationarity is problematic. This issue is
tackled and discussed in (Gramacy and Lee| (2008)), Ba et al. (2012), Kersaudy et al.
(2015)), and (Chen et al|(2016]), among others, and Section |6.1] discusses one solution.

Despite the fairly complex mathematical expressions above, Gaussian processes are
easily accessible thanks to numerous available packages (for example: DiceKriging in
R (Roustant et al., 2018]), the hetGP R package (Binois and Gramacy, 2018) mentioned
later, and the GaussianProcessRegressor function from scikit-learn in Python (Pe-
dregosa et all 2011))). In general, a GP is a flexible method for estimating the mean
M (z) of the simulator output, despite lack of prior knowledge. This is illustrated in
the top panels of Figures[I]and [2| but we first introduce a vital modeling twist to cope
with a common feature of stochastic computer simulations.

3.2 Heteroscedastic GP Surrogates

The constant variance Assumption (A1) simplifies the construction of a statistical
model because only one intrinsic variance parameter o2 needs to be estimated. When

o2(z) is believed to vary over the input space more must be done. [Boukouvalas et al.

(2014a) model o2(x) as exp(h(x)) for simple functions i (e.g., polynomials), a simple
extension to assuming just one variance parameter o2. (The exponential transform
ensures positivity of the variance.) Like analogous approaches to predicting the mean
(briefly discussed in Section [3.1)), it isn’t clear what to use for h, and its simplicity may
not meet the complexities found in many applications.

GPs are used for o2 by several authors (Goldberg et al., 1997; Kersting et al., 2007}

Boukouvalas and Cornford, 2009; |Ankenman et al., [2010; Binois et al., [2018a). The
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difficulty is that doing so directly depends on observing o?(z) at the inputs X, but
these values are not observed. If there are enough replicated simulation runs, r;, at the
inputs z;, then the sample variances (s*(z;) = 15 Y7, (y(zy) —%)?, fori = 1...n) at
the z;s can be used to estimate the o2(x) at the inputs X,,. Equations|3.1]and [3.2] can
then be used to predict 0%(Zpey). (Working with the logarithm of the sample variances
and then exponentiating the results avoids negative predictions of the variance.) But
this approach, called stochastic kriging (SK, Ankenman et al., 2010)), is limited by the
need for adequate numbers of replicates at each input and the possible inefficiency of
treating the variance and mean processes separately.

Those limitations can be removed by considering the intrinsic variances at the
inputs, (6%(zy),...,0%(z,)), as unknown parameters (a.k.a., latent variables) to be
estimated in the same manner as all the other unknown parameters. |Goldberg et al.
(1997) do so in a fully Bayesian, but computationally taxing, way. Efforts to reduce
these costs form the essence of approaches by Kersting et al.| (2007) and [Boukouvalas
and Cornford| (2009). A recent variant, proposed in Binois et al.| (2018a)) along with
accessible software hetGP (Binois and Gramacy, 2018), resolves the computational
hazards and is the method described and used in this review.

The technical details addressing the computational barriers of a heteroscedastic GP
(hetGP) have three elements. One, hetGP models the log variances as the mean out-
put of a GP on latent (hidden) variables. The second uses Woodbury matrix identities
(Harville, 1998) to reduce computations from treating all N observations to compu-
tations involving only the n unique inputs, a reduction of computational complexity
from O(N?) to O(n?), especially relevant when there are many replicates. The third
element uses MLE to set all parameters.

While full details are provided by Binois et al. (2018a)), some specifics of the first
element of the description above are worth noting. With A(z) = 02(x)/c% and A,, =
(A1), ..., AN(xy)) for the n distinct inputs, log A, is taken to be the predictive mean of
a GP on latent (hidden) variables, A, = (d1,...,0,). For ease of exposition assume the
GP has 0-mean (a constant mean is actually the default setting in hetGP) and take the
covariance function for A, to be 03(Cy +gR™") where g > 0, R = diag(ry, ..., 7,), and
C, is a correlation function with parameters 6,. Then log A, = C,(C, + gR™")'A,,.
This latent A, approach facilitates smooth estimates of A,, and provides a fixed func-
tional form for A(z), but does not incorporate the resulting uncertainty due to the
estimates of the intrinsic o2(x) in predictions. Given A,, the Woodbury identities
(Harville, 1998) reduce the likelihood of Yy, the output at all inputs including repli-
cates, to depend on quantities of size n. Maximum likelihood estimates for the unknown
parameters can then be computed at a cost of O(n?). Derivatives are also computable
at a cost of O(n?), further facilitating optimization for maximizing likelihood.

As a side note, heteroscedastic measurement error is sometimes present in spatial
statistics models (which are often related to surrogate models); however we know of no
such models which allow for the full modeling and predictions of the intrinsic variance
process in the same way as a hetGP. For example, the model in Nguyen et al. (2017)
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allows for non-constant measurement error at different sites, but it does not estimate
these measurement errors jointly with the other model parameters, nor does it allow for
the prediction of the measurement errors at new unseen sites. This is mostly because
there is little interest in predicting the measurement error process in spatial statistics
(the “true” underlying signal is the objective), whereas with stochastic simulators the
intrinsic variability can be of direct modeling interest.

Fish Example. We apply both an ordinary homoscedastic GP (homGP) and a
hetGP surrogate to the fish example from Section [2.1] The simulation budget is con-
strained to 400 runs and focuses on the relationship between the total number, z, of
fish in a population and the number, y(x), of fish recaptured in the second round of
capture. The total population is an integer between 150 and 4000. The simulator is
run 20 times at each of 20 unique x locations in [150,4000], chosen via a maximin Latin
hypercube design (see Section . The number of fish counted cannot be less than zero,
but the normality assumption would allow negative fish counts, so we square root the
simulated output before performing our analysis, squaring the resulting predictions to
return to the original scale afterwards. In addition we estimate “truth” by generating
another data set; replicating 500 times at each of the same 20 sites.

Applying a homGP surrogate with squared exponential correlation function pro-
duces the results in the upper left panel of Figure [T} the upper right panel shows the
results of hetGP. The predicted intervals for the fish model are obtained in the trans-
formed (square-root) space, and squared to get back to the original spaceﬂ The lower
panels are plots with the “true” 2.5%, 50%, and 97.5% quantiles superimposed.

The key conclusion is that both homGP and hetGP capture the non-linear trend
(though a bit off in the region near 800). The presence of non-constant intrinsic vari-
ability is clear from the truth plot, with the region near 800 showing higher variability
than elsewhere. The hetGP surrogate does not fully resolve the non-constant predictive
variability, which includes both the intrinsic variability and that from the surrogate, but
does improve on homGP. Full resolution is largely a matter of simulation budget though
alternative designs may further improve hetGP. Our supplementary material includes
improved results using the sequential design scheme of Section [4.3] The takeaway mes-
sage is that the trend is readily treated by both homGP and hetGP; heteroscedasticity
encourages use of hetGP perhaps with added simulations or improved designs.

Ocean Example. For the ocean model (Section , we take each simulation run
to be the average of 6 simulation runs. The true simulator is known to be non-normal;
this adjustment makes the example more Gaussian. For now, we fix the two diffusion
coefficients, K, = 700 and K, = 200, leaving the two spatial coordinates as the only

3If a large portion of the predictive distribution was negative in the transformed space, the un-
transformed intervals would be invalid, but this doesn’t appear to be a problem in our example.
Monotonic transforms exist to avoid this problem (Johnson et all [2018). Predictions in the trans-
formed space are also provided in the supplementary material.



Stochastic Computer Models 11
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Figure 1: Fish example: 400 simulations consisting of 20 replicates at each of 20 pop-
ulation sizes (a maximin latin hypercube scaled to [150,4000], rounded down to nearest
integers). The left panels use homGP — the solid red line is the median of the predictive
distribution and the dashed red-lines form the 95% uncertainty intervals. The right
panels use hetGP. The upper panels include the data used to fit the surrogates; the
lower panels omit the data but include the “true” values in black.

varying inputs. Using 1000 simulations (50 sites each replicated 20 times), we obtain,
for surrogates homGP and hetGP, the predictive mean surface and the predictive stan-
dard deviation surface (that is, the standard deviations for prediction of the simulator
output, accounting for both the uncertainty around the predictive mean and the intrin-
sic variance estimate 02). These surfaces are plotted in Figure , with the left column
for homGP and the right column for hetGP.

The mean surfaces for both surrogates are similar. The predictive standard de-
viation for homGP (bottom-left) is relatively constant across the input area (clearly
affected by the constraint that the intrinsic variance o2 is constant). The standard
deviation surface for hetGP is markedly different, evidence that intrinsic variance is
non-constant. The “truth” is obtained using replicate runs (up to 100,000) of the sim-
ulator at 500 sites (chosen via a LHD, Section , averaging the replicates at each site
to get the true mean and the square deviations from the mean to get the true vari-
ance). These are plotted in the appendix (Section |A]) and the supplementary material;
they confirm the presence of non-constant intrinsic variance. Moreover, the standard
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Figure 2: Predictive mean and standard deviation surfaces for Ocean output using
homGP and hetGP. Data are 1000 simulator runs consisting of 20 replicates at each of
50 input locations from a maximin Latin Hypercube Design (defined in Section @) of
size 50 in 2 dimensions. The top row provides predictive means, iy, and the bottom
gives standard deviations, oy, of the predictive distribution of oxygen concentration.
The left column uses homGP, the right uses hetGP.

deviation plot for hetGP exhibits a structure similar to the truth plot, leading to the
conclusion that hetGP is the better surrogate for this problem. However, this conclu-
sion comes with a caution: repeating this experiment reveals a great deal of variability
in the standard deviation plot, due to variability in the design and the simulations
(discussed further in Section [4.3)).

Overall, reliable predictions of the mean are achieved, but the uncertainties are less
certain. This is similar to the the Fish example, and improving the uncertainties would
require more simulation. These results point to the superiority of hetGP to homGP.
This is confirmed via a numerical comparison in Section [4.3] where a sequential design
is also examined and compared.
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3.3 Non-Normal Variability

In many applications, assuming the variability v to be normally distributed is inap-
propriate. For example, count data, as in the Ebola or fish model, is non-normal and
cannot be less than 0. Additionally, the distribution of v at a given input z may not
be unimodal: in the Ebola example, even with the inputs x fixed, repeated simulations
can lead to two distinct groups of possible infection counts, implying bimodality. In
some simulators, there may be a greater tendency for extreme values (fatter tails) in
the distribution of v. With these possibilities normality can be a strong assumption to
be used with caution.

Transformation of the data is a time-honored device that sometimes induces “enough”
normality in the data to permit the use of Gaussian-based methodology (as in Section
for the fish model). For example, Henderson et al.| (2009) uses the logit transfor-
mation (logy/(1 — y)) in analyzing the proportion of deletions in mitochondrial DNA.
Plumlee and Tuo| (2014) take a different route by focusing on the quantiles of the out-
put distribution — normality is not needed. Both of these approaches have the appeal
of leading to relatively simple modifications of the methods in Sections and [3.2]

There are also more complex methods that generally lack the same ease of imple-
mentation. For example, Moutoussamy et al.| (2015) attempt to model the underlying
probability density function itself, rather than the output y. Xie and Chen (2017)
devise a Student ¢-process that is not much different than the GP process while at the
same time allowing heavier tails in the distribution of the data/[f]

3.3.1 Quantile Kriging

Quantile Kriging (QK) is an increasingly popular tool for the emulation of stochas-
tic computer models (Rannou et al., |2002; [Plumlee and Tuo, [2014; Zhang and Xie|
2017; |[Fadikar et al., 2018]). These approaches are a natural extension of spatial kriging
formulations (Zhang et all [2008; Zhou et al., [2012; Opitz et al., |2018) used in envi-
ronmental applications, often with modeling further tailored to account for rare events
and extreme quantiles.

The QK method directly models specific quantiles of interest, such as the median
and the lower /upper 95% quantiles at each input. Minimal assumptions about the dis-
tribution of the simulator output are required. @Q,(z), the ¢'" quantile of the simulator
output at input x, is modeled with a GP. Given values @Q,(x;) at inputs xy, ..., x,, the
quantile, Qy(Zpew) for X,ew, can be predicted using equations and . This frame-
work allows the distribution of the variability v to take on almost any shape. Although
a true generative process for the output y is lost, we can describe its distribution.

To implement QK. values of the targeted quantiles at the inputs are needed. Just
as in Section where sample variance estimates at the inputs can be used, sample
quantiles can be used here. Said sample quantiles are calculable given enough repli-

4The hetGP package also implements a Student-t variant (Wang et all 2017; Shah et al.| 2014;
Chung et al., [2019).
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cates r; at each x;. The GPs used to predict new quantile values, Q,(Znew), should
also include a noise term 03 to acknowledge that the sample quantiles are estimates.
Assuming the variability of the sample quantiles is normally distributed may also be
invalid, but is at a level further removed from the quantity of interest, y, and is often
acceptable in practice.

Including the quantile ¢ as an additional input to the GP model can be a useful
modification. The quantile Q,(z) can be reformulated as Q(z, ¢), increasing the di-
mensionality of the inputs from d to d + 1. This strategy allows for the prediction of
Q(x,q) for any desired quantile g, not just those that were empirically estimated, and
is used by [Fadikar et al.| (2018) for the Ebola model.

Alternative QK-based approaches are also under development. For example; a
promising variant of QK called Asymmetric Kriging (AK, Zhang and Xie, 2017) does
not require sample quantiles by leveraging quantile regression methods (Koenker and
Bassett Jr} [1978)).

Fish Example. For the fish simulator, QK is implemented with the same simulated
dataset as before since many replicates are available. The sample 5%, 27.5%, 50%,
72.5% and 95% quantiles at each of the 20 population sizes form the observed data,
and the modification using the quantile ¢ as an added input dimension is adopted.
Figure [1| presents the predicted Q(x,q) mean for 5 different quantiles along with the
data (the left plot) and compares the “true” values with predictions at the 5%, 50%,
and 95% quantiles (the right plot).

---- 95%
---- 75%
— 50%
----- 25%
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40
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|
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Population Population

Figure 3: Same setup as Figure [1| but with a QK surrogate. Mean predictions of 5
quantiles (5%, 25%, 50%, 75% and 95%) are provided on the left along with data, and
mean predictions of 3 quantiles (5%, 50%, and 95%) are provided on the right along
with the “true” values.

The center purple curve in Figure|3|is the predicted median. The outer red lines are
the predicted 5% and 95% quantiles; the inner blue curves are the predicted 25% and
75% quantiles. The non-monotone “wavy” lines for the 5% and 95% quantiles reflect
the natural variability of extreme quantiles based on only 20 observations. Without an
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abundance of replicates, accurately capturing extreme quantiles is difficult, a drawback
of QK. The other quantiles presented display more regularity.

The results from QK do not differ much from those in Figure [1| where the square-
root transformation was sufficient. With more complex problems, such as the Ebola
model, the method is suitable while other approaches may be less so. In any case, QK
can be a good robust choice given adequate data for estimating quantiles.

3.4  Multiple Outputs

The discussion thus far has assumed that the simulator outputs a single scalar quan-
tity of interest. For multivariate output a more comprehensive model would be ideally
used. Sophisticated approaches building multivariate GPs have been employed (Conti
and O’Hagan, 2010; [Fricker et al., 2013; Paulo et al., 2012). Bespoke, problem-specific
formulations for time-series and other outputs have also been entertained (Farah et al.,
2014; Sun et all, 2019). If there are a small number of outputs, treating each inde-
pendently, with its own surrogate model, often suffices. This method can be effective,
despite ignoring any correlation between the different outputs and thus wasting infor-
mation. For example, Spiller et al. (2014) deploy independent surrogates at each of a
multitude of sites in a region to good effect.

Alternatively, by treating the index, ¢, of the T outputs as an additional input
dimension (changing the dimension of the input space from d to d + 1) a GP surro-
gate on d + 1 dimensions can be formed (Bayarri et al., |2009). This method allows
correlation structures between the different outputs to be modeled. This is similar
to the QK modification where quantile levels are treated as an added input (Section
3.3.1). A drawback of this technique is that, if 7" is very large, computational issues
will arise because the GP must be trained on NT' data points rather than just N.
Intrinsic variability prevents simplifications of the sort used in Bernardo et al.| (1992)
for deterministic simulators in this setting.

A different approach reduces the effect of the size of T' to a smaller K, by repre-
senting the output through the use of basis functions, ¥ (t):

sty = 3 welahielt) + 6(z ). (3.5)

Coefficients wy(z;) k = 1,..., Ky are determined by the data; and 6(x,t) is the residual
error between the basis function representation and the data y. If Ky =T then 6 = 0.
Typically, K is taken to be much less than 7" but large enough so that the error, ¢,
is sufficiently small. Each wg(x) can be independently modeled with a surrogate and
predictions for y(x,t) are obtained from equation , ignoring §.

Different choices for the bases can be appropriate in different settings. For example,
Bayarri et al.| (2007a) use wavelets for the s in a deterministic setting where ¢ is
time. A common choice of basis functions are principal components: the s are the
eigenvectors of the matrix Yy Yy, the first Ky of which are in correspondence with
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the first K, eigenvalues in decreasing order. It is often the case that the first few
(five or less) principal components are enough to capture sufficient information about
the full (7) data set. Coefficients wy,(z;) are then equal to 3", y(xi, t)¥r(t). More
information about principal components can be found in Jolliffe| (2011) and software
for obtaining 1 and wy, is prevalent.

Further discussion about using principal components to model high-dimensional
simulator output can be found in [Higdon et al.| (2008). Principal components are also
utilized in Fadikar et al.| (2018) to model the time-series output of the stochastic Ebola
simulator. While principal components are a common default, there is concern that
key features of the data set may be left within the discarded §(x, t) preventing reliable
prediction. [Salter et al.| (2019) document these concerns with regards to calibration
and suggest an alternative.

For problems with functional outputs, with potentially missing data and/or irreg-
ularly spaced data (such as irregularly spaced timesteps or spatial locations), a func-
tional decomposition can also be useful. For example, Ma et al. (2019) use functional
principal component analysis to model satellite observation simulations.

4 Experimental Design

For an experiment, the design (the choice of z values) and analysis (the assessment
of the output y(z)) are, in principle, closely connected. Other considerations can also
enter. For physical experiments, controlling for external influences or nuisance factors
by blocking and randomization is often a vital part of the design. External influences
are absent in computer experiments and so controlling for nuisance factors is usually
irrelevant. However, many minor parameters are often fixed which could instead be
randomized over, with a consequent addition to intrinsic error.

With a specific goal (e.g., predicting simulator output) and a criterion of accuracy
(e.g., the average prediction uncertainty: the integrated mean-squared prediction er-
ror, IMSPEED, designs that optimize the criterion are preferred. Since the criterion
will usually depend on the surrogate, which, in turn, depends on unknown param-
eters, what to use as a stand-in for the parameters before any data are collected is
an issue. Extensive study of single-stage deterministic computer experiments resolved
this dilemma by downplaying optimality and recommending readily computed “space-
filling” designs where no large region of input space is missed. Space-filling designs are
readily computed, whereas optimizing IMSPE is complicated and without substantial
advantage. For practical adoption, designs must be easy to produce as well as effective.

Multiple methods exist for obtaining space-filling designs, the most popular being
Latin hypercube designs (LHDs; McKay et al.| 1979).|ﬂ LHDs have proved adequate,
especially when joined with an additional criterion, such as the maximin criterion,

*With o3;(x), the predictive variance, the IMSPE, of a design D is equal to [ _y 0% () dz.
6A Latin hypercube design is one where: on each dimension, the input space is divided into,
usually, equal intervals and each interval is constrained to contain exactly one data point.
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where one also maximizes the minimum distance between points in the design[/] Even
a random LHD will often suffice. Sobol sequence designs (Sobol, 1967) are equally
effective for predicting the output of a deterministic simulator. The xs for Sobol
designs are generated sequentially making it easy to retain the space-filling character
when a multi-stage or sequential design strategy is usedﬂ Pronzato and Miiller| (2011))
have a lengthy discussion of these and other space-filling methods, some pertinent to
non-rectangular geometries.

For stochastic simulators the picture is far less clear. The presence of intrinsic vari-
ability raises the complication of replication, not present in deterministic experiments.
With the same inputs, a stochastic simulator can be run multiple times (replicated)
providing different output values each time due to the intrinsic randomness. Replicates
obviously have an effect on the estimation of the intrinsic variance, o2, and therefore
on prediction (see Section , and so the number and location of replicates are impor-
tant. A simple approach for a single-stage experiment is to use a space-filling design to
establish the sites X,, = (x1,...,x,) of the experiment and then add replicates at each
site. Determining the number, r;, of replicates at each site x; and how to apportion
between replicates and sites, that is, how to choose the number of unique sites, n, given
a total simulation budget N, is not well understood. In fact, there is limited theoretical
evidence of the need for replicates altogether, although there is numerical evidence and
wide belief that replicates can be advantageous, at least in appropriate contexts. For
example, Wang and Haaland| (2019) produce designs by minimizing bounds on IMSPE.
Their numerical results show no need for replicates unless o2(x) is large compared to
02 (a factor in measuring uncertainty in estimating the mean M).

The presence of intrinsic variability suggests there is value in multi-stage designs
where stage 1 is used to get information about o?(z) and later stages exploit this
information to allocate replicates and select new inputs. Questions arise as to how
inputs should be selected for stage 1, and also how to leverage the results from stage
1 to select new inputs and replicates in later stages. The two factors, replication and
multiple stages (including fully sequential), are central to developing adequate design
strategies. Attention is paid to both factors in the discussion below.

4.1 Single-Stage Design

A common approach in single-stage studies is to use space-filling designs for inputs,
say n in number, and r replicates at each input, sometimes with no repeats i.e., r = 1.
Predictions follow as described in Section 3| depending on the particular prediction
model selected. Choices have to be made about the total number of runs and the
number of replicates at each input site (N = nr). Often, N is a question of budget,

“Such maximin LHDs are purportedly produced for example, by the maximinSLHD function of
the R package SLHD (Bal 2019), or the lhs function from the Python package pyDOE (Lee, 2015).

8In R, the sobol function in the R package randtoolbox (Yohan Chalabi and Wuertz, 2019) can
be used to generate Sobol sequences.
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but there is little insight into how r should be chosen except when meeting a specific
surrogate model requirement, as in SK (Section .

For their single-stage study, Marrel et al. (2012) use a standard LHD with no repeats
to compare the performance of different statistical models. On the other hand, Plumlee
and Tuo| (2014) use a LHD with varying numbers of replicates r; at each x;. In their
case, the number of replicates must be large, because the QK method (Section
depends on computing quantiles of the output y(z;) at each input site of the design.

4.2 Two-Stage Design

The case for a two-stage design is largely to enable estimation of o2 at stage 1 and use
it for the second stage. /Ankenman et al.|(2010) provide one solution in the context of
SK. A first-stage design chooses the z;s via an LHD of size n; with a common number,
r, of replicates at each of the inputs, resulting in a total number of N; = nyr runs at
stage 1. The first-stage analysis uses the r replicates at each input to estimate o2(z;)
using the sample variances. As outlined in Section a GP (working with log s*(x;))
is then used to produce a “plug-in” estimate of o(x) for all z. A different GP uses
that variance estimate to build a predictor for the mean output M.

For stage 2, no additional unique input locations are chosen so that the combined
set of design locations, X,, = (z1,...,2,), remains space-filling. The IMSPE is then
calculated by integrating the MSPE all possible inputs X, using the GP model con-
structed in stage 1. Minimizing the IMSPE with respect to the number of replicates
R, = (r1,...,r,) provides the optimal number of replicates for the chosen X,,. Details
are in |/Ankenman et al| (2010). One difficulty is that the optimal R,, might produce
an r; for a first-stage site that is smaller than the r already used at stage 1. Some fix
to the method would then be necessary.

In this setting, a Sobol sequence could be used to obtain a design that is space filling
at both stage 1 and stage 2. This is not what is done in |Ankenman et al.| (2010), but a
Sobol sequence is easier to implement and likely to yield similar results. Choosing the
unique inputs X,, for stage 2 by optimizing the IMSPE could also be done, but adds
to the computational burden. Suitable recommendations for the values of ni,ny, N
and the replicates at each distinct input are lacking (in Ankenman et al. (2010)) the
recommendations are ad hoc) and, as for one-stage experiments, open for study. A
third-stage design (or indeed, any multi-stage design) can be constructed by repeating
stage 2 in the above process.

4.3 Sequential Design

When the statistical design and resulting analysis are closely coordinated, it may be
feasible to carry out a sequential process whereby, after the first stage, a run is chosen
one-at-a-time. After each run all quantities of relevance can be updated in order to
determine the next run. This addresses the issue of learning about ¢ and obtaining
new runs without pre-specifying their allocations. An advantage of a sequential design
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is the possibility of stopping when a criterion is met before a budget constraint is
reached. Another advantage is the increased likelihood of making useful runs of the
simulator, replicates or otherwise. For some objectives, such as optimization (Section
, a sequential design is usually essential. For global prediction, Binois et al.| (2018b))
present an approach to sequential design, implemented in the previously mentioned
hetGP package.

The strategy in Binois et al. (2018b]) begins at stage 1 with a space-filling design
D, of ny inputs and an allocation of runs (r(xy),...,7(z,,)). Using a GP for M
and a latent GP prior on ¢, as in Section , a MLE computation deals with all
parameters, leads to predictors, and a calculable estimate of IMSPE(D;). A new point
2z is considered, either as a new unique input z,,, 11 or as a replicate of an existing input
in D;. Selection z is added to the design D; if z minimises IMSPE(D; + z), yielding a
new design Ds. This myopic rule can be iterated and each time a new point is added
the surrogate, including MLEs of its parameters is updated. The process stops when
a criterion is met or the computational budget exhausted.

Computational viability is strained by the updating required after each run. On
the other hand, the computational burden is eased by nature of it being “greedy”: it
only seeks the optimal data point for the very next simulator run, ignoring runs that
may be better in the long run.

This is not the only sequential design scheme available for global prediction prob-
lems. For example, the tree-generating processes used in TGP and BART (see Section
deliver specialized sequential design strategies. Details are available in |(Gramacy
and Lee (2009) and [Chipman et al.| (2010)).

Blurring the lines between multi-stage and sequential designs, it can sometimes be
practical to run additional simulations in batches (e.g., as in making efficient use of a
multi-core supercomputer). In such circumstances a “batch design” would be desirable.
These have been developed for deterministic experiments (Loeppky et al.; 2009a; Duan
et al., 2017} Erickson et al., [2018), but not yet explicitly extended to stochastic cases.

When fully sequential methods are feasible the seqhetGP strategy sketched above
is valuable. There are several aspects worth examining:

e The extensive use of a surrogate in the construction of the design requires scrutiny
by diagnostics that assess the quality of the surrogate.

e The first stage of a sequential strategy must avoid a poor (e.g., too small) initial
design lest a poor starting surrogate leads to poor choices thereafter.

e The utility of a sequential design depends on the relative cost of implementation
compared to simulator runs. For challenging problems simulator runs are likely
to be costly enough to make sequential design attractive.

e There may be modifications to a sequential design that reduce computational
load without paying a significant cost in accuracy. For example, re-estimate
parameters periodically rather than after each step.



Stochastic Computer Models 20

Ocean Example. For the ocean model, we use an initial design of 50 sites, chosen
by a maximin LHD in 2-d, each site with 5 replicates. The remaining 750 data points
are then assigned via the sequential scheme. The resulting mean and standard devia-
tion surfaces are in Figure [d] For the standard deviation surface the design sites are
superimposed along with the number of replicates taken at the sites. The mean surface
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Figure 4: Ocean Prediction with seqhetGP. Left plot is the mean, uy, of the predictive
distribution; right plot the standard deviation, oy. Design sites with their replicates
are superimposed on the right-hand plot.

in the left panel is slightly different than for the non-sequential analyses (Figure [2] top
row). The standard deviation surfaces look very different. For the design itself, new
inputs are heavily replicated in regions where the standard deviation is large, and less
so in regions where it is small. Additionally, the sequential design includes more unique
sites than the fixed design, and more points on the boundaries of the input space.

Using the “truth” established in Section [3.2| we can compare the performances of
the three methods. As discussed previously, the visual presence of heteroscedasticity
is a deterrent to using homGP. Visually distinguishing between the performances of
the hetGP and seqhetGP surrogates is more difficult: the means appear similar, and
whilst some patterns in the true standard deviation appear to be captured by hetGP,
imperfections are visible and the magnitude is not always correct. With the seqhetGP
standard deviation, nuance seems lost. To properly compare the different methods, a
numerical comparison can be more valuable.

Two useful numerical measures are root mean squared error, RMSE (the square-
root of the average squared difference between the surrogate’s prediction of the mean
and the “true” mean) and Score (the proper scoring rule from equation 27 in
and Raftery (2007)). RMSE measures the accuracy of the mean predictions and Score
is an overall measure testing the accuracy of the combined mean and variance predic-
tions. With a test set of inputs x4, ..., 2, and simulator outputs v, ..., y,, surrogate
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predictive means py(x1), ..., un(x,) and variances % (1), ..., 04 (x,), Score is
Ly @)
Yi — HN(T;
> |- (2—> —log(ox (1)) | - (4.1)
P4 oy (i)

Smaller RMSE is better while for Score, larger is better.

For the three methods, the RMSE for homGP, hetGP and seqhetGP are respectively
2.056, 1.985, and 1.567; and the Scores are respectively -3.999, -3.880, and -3.834. The
RMSE results reveals that seqhetGP is best at predicting the mean, which was not
obvious from the plots. The Scores for hetGP and seqhetGP are close but noticeably
better than homGP, affirming the presence of heteroscedasticity.

The randomness in stochastic simulators as well as variability in design (there are
many possible maximin LHDs) can induce a large degree of variability in specific results
such as those just cited. It is therefore difficult to rely on a single result for making
comparisons. As such, the above experiment is repeated 100 times and the resulting
100 RMSEs and Scores are summarized in boxplots in Figure
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Figure 5: Performance results of the three ocean model surrogate model fits, repeated
100 times: the boxplots are for RMSE and Score computed, for each repetition, at the
500 test locations.

The boxplots confirm what was found with the single data set: heteroscedasticity
is present and seqhetGP is preferred. Visual inspection of many of the standard devi-



Stochastic Computer Models 22

ation plots for the repeated experiments (as discussed in Section and found in the
supplement) reveals considerable variation and departure from the true standard devi-
ation. The variance (the intrinsic variance and the GP uncertainty for the mean) can
be hard to get right without an abundance of data, and the difficulty is compounded
by the use of plug-in estimates whose uncertainty is not accounted for.

4.4 Designing for Statistical Model Parameter Estimation

Sections and construct designs that rely on a surrogate model based on stage 1
data in order to choose subsequent data points. The quality of the designs depends on
the accuracy of the surrogate which, in turn, depends on the accuracy of its parameters.
An alternate approach to those used in Sections [4.2] and [4.3] is to construct an initial
design with the express purpose of better estimating these parameters.

Boukouvalas et al.| (2014a) address the problem and focus on hetGP models, using
a simple parametric function for the variance (02(x) = exp(h(z)), where h is a simple
function (e.g., a polynomial). They propose designs that maximize a criterion previ-
ously used for deterministic simulators by |Abt and Welch| (1998)): the logarithm of the
determinant of the Fisher information matrix, log|/|. Numerical results suggest this
method gives improvements in estimating the parameters, but overall global prediction
is no better, and sometimes worse, than using a space-filling design. When prediction
is of prime importance, the question arises about how to make use of such designs for
stage 1 in a multi-stage or sequential setting, where its impact on obtaining better
initial surrogate models can be felt. For example, see Zhang et al. (2020)).

5 Calibration

Calibration is needed when there are inputs to the simulator that are neither known nor
measurable, a common condition in practice. Transmissibility in the Ebola simulator
and the diffusion coefficients in the ocean model are examples of such inputs. In order
to infer (indirectly) values for these inputs and produce predictions, added information
in the form of field data (experimental or otherwise) are necessary. Inclusion of field
data and calibration parameters, labelled u¢, leads to the observation model:

yr(x) = ys(x,uc) + dup(z) + €, (5.1)

where yp(z) are real-world field observations at controllable (or measurable) inputs z,
ys is the simulator with additional unknown, non-measurable, inputs u¢, € is measure-
ment error for the observations yr(x) (with variance 0?), and dyp(x) is an important
term that accounts for the simulator not being a perfect representation of reality. yg
“observes” reality with error ¢; reality = ys + dup.

Multiple competing methodologies and even philosophies exist for calibration. Sev-
eral solutions to the calibration problem are outlined below. Despite the centrality of
calibration in computer experiments, comprehensive comparisons are lacking.
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5.1 Kennedy-O’Hagan Calibration (KOH)

The formulation in equation [5.1{ was made by |[Kennedy and O’Hagan| (2001)) for deter-
ministic simulators and is the basis for much of the calibration and related prediction
work since. The strategy pursued by Kennedy and O’Hagan (2001), as implemented
in Bayarri et al. (2007b), obtains a surrogate for ys and models dyp(z) with a GP
(although other choices are possible). After replacing ys with the surrogate, posterior
distributions for all unknowns can be obtained via a Bayesian analysis. In practice,
the surrogate model is fit only using the simulator data, ignoring possible influences
from the field data. Details and discussion of this modular approach can be found in
Bayarri et al.| (2007b) and |Liu et al.| (2009).

The KOH approach emphasizes the necessity to address calibration and model
discrepancy together. Confounding between uc and dyp(x) inevitably occurs because
there are multiple combinations of uc and dyp(z) that result in the same observed
field data. Thus, uc is non-identifiable and its estimation is compromised, as is the
discrepancy. Nonetheless, the resulting predictions for y and E(y) are sound, even if
the individual estimates for uc and dyp(z) aren’t. For details and further discussion
see Higdon et al.| (2004), Bayarri et al.| (2007b)), [Brynjarsddottir and O’Hagan| (2014)),
and [Tuo and Wu| (2016).

Multiple attempts to circumvent confounding have surfaced. (Tuo et al. (2015)
alleviates the ambiguity in uc by formally defining it as a least-squares quantity; |Gu
and Wang (2018)) propose novel priors for the discrepancy that compromise between
the [Tuo et al| (2015) strategy and KOH; and Plumlee| (2017) introduces priors on
the discrepancy that are orthogonal to the prior mean. In the stochastic simulator
literature, (Oakley and Youngman| (2017) removes dyp but compensates by inflating
the variability in the prior distribution for uc. Ignoring dyp altogether can be justified
by strong evidence of the simulator being accurate, but such evidence is rare.

For stochastic problems, where reality is stochastic the discrepancy term dyp(z)
cannot be assumed deterministic. Modeling the discrepancy is likely be influenced by
the model for the simulator while recognizing that discrepancy is often smoother. For
example, if modeling yg calls for a hetGP with the Matern 5/2 correlation function
then it is likely that a hetGP is needed for the discrepancy, perhaps with the smoother
squared exponential correlation. A full Bayesian analysis in such circumstances may
be prohibitively expensive and the above procedure would have to be modified. [Sung
et al (2019) use a hetGP for the discrepancy (but for a deterministic simulator),
estimating parameters via maximum likelihood and following |Tuo et al.| (2015) to avoid
confounding.

Revisiting Ebola. The Ebola study (Fadikar et al., 2018) calibrates an ABM using
the KOH framework. The simulator yg has 5 unknown, unmeasured inputs uc and
the output is the log of the cumulative number of infected individuals up to week
1 and every week thereafter up to 57 weeks. The field data yr is a set of reported
cumulative counts. For the statistical model, a QK strategy (Section is followed
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by replicating each distinct simulation 100 times and then condensed into evenly-
spaced quantiles at each time point (specifically, the 5% 27.5%, 50%, 72.5% and 95%
quantiles). These quantile output trajectories are then reduced to a more manageable
5 dimensions using the principal component decomposition outlined in Section [3.4]

Underlying the approach is an assumption that the epidemic trajectories (actual
and simulated) can be approximated by quantile trajectories (i.e., a realized epidemic
that resembles the ¢*" quantile at time 1 will also resemble the ¢** quantile at a later
time). Accordingly, the quantile ¢ is included as an input parameter (see Section
to allow KOH calibration to learn about the 5 calibration parameters as well as the
(unknown) value of ¢ for the observed epidemic. Because the difference between the
simulator and reality quantile trajectories could not be noisy, the discrepancy is treated
as deterministic (a smoothing spline is used rather than a GP for the discrepancy).
Posterior distributions for unknown wuc, dyp, and ¢ are obtained and used to make
predictions of the cumulative counts and other quantities.

In the main analysis, which restricts the field data to only the first 20 weeks, the
estimate of model discrepancy is almost zero. A subsequent analysis done using field
data up to week 42 exposes some inaccuracy of the simulator (non-zero dyp(x)) — the
simulator continues to predict infections, even after the epidemic has died in reality.

Ocean Example. The previous ocean analyses fixed the two diffusion coefficients.
Realistically, they are unknown and calibration is necessary. “Field” data are arti-
ficially created by averaging over 200 simulations at 150 different longitude-latitude
coordinates, using the previously fixed values of the diffusion coefficients (K, = 700
and K, = 200). “True” values are obtained by adding a fake discrepancy, taken as a
single realization from a GP with a squared-exponential correlation function, a vari-
ance of 1.64, and 6 values of (1, 2) (equation [3.3). To these, normally distributed
pretend “observation errors” with a variance of 4 are added, two such observations at
each site. In real problems, the field data would be observed and not generated like
this. Note that field data for this problem corresponds with the mean of the simulator,
not individual draws from the simulator; a result of the simulator being a stochastic
approximation.

With the diffusion coefficients now uncertain, the simulator has four inputs. A
computer experiment is designed with runs at the 150 sites used for the field data
and 500 unique selections of the calibration parameters K, and K,. This is done by
combining copies of the 150 longitude and latitude sites with a size-500 maximin LHD
for (K., K,), and then improving the combined design by maximizing the minimum
distance between design points in the 4-dimensional space. Call this set of points
D,.. The simulator experiment is carried out by taking 10 replicates at each point in
D,.. Two distinct surrogates (a homGP and a hetGP) are fit with this fixed design. In
addition, a seqhetGP surrogate is constructed, with an initial design of only 4 replicates
of D, and the remainder of the budget assigned following the strategy of Binois et al.
(2018b)), described in Section
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For a KOH analysis done in modular fashion the surrogates are fit only using the
simulated data. Because reality here is represented by the expectation of the simulator
(rather than the simulator output itself), yg in equation is replaced with E(ys).
Similarly, because reality is deterministic, dyp is modeled as a standard GP. Of course,
the simulated data are outputs from yg, not from FE(ys) — the surrogate is used
to approximate the deterministic E(ys). MCMC is then used to obtain posterior
distributions for the remaining unknowns: the diffusion coefficients, K, and K; the
variance and correlation parameters of the model discrepancy GP, o3, and fyp; and
the observational error, 02). The posterior distributions for the key parameters are in
Figure [6} their true values are K, = 700, K, = 200, o3, = 1.64 and 02 = 4.
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Figure 6: Calibration results for the ocean model. The top row shows the poste-
rior densities for the four parameters using homGP with the fixed design, the middle
row uses hetGP with the fixed design, and the bottom row uses the hetGP surrogate
with the sequential design. The budget for all three is 5000 runs. True values are
superimposed as red vertical lines.

For all three surrogate models the posterior distributions for K, are fairly diffuse.
The K, posteriors are highly concentrated, but not quite around the true value. The
three posteriors for observational error are quite similar but all point to estimates
closer to 5 rather than the true 4. The posteriors for the discrepancy variance are



Stochastic Computer Models 26

diffuse. These plots underline the dilemma of calibration: obtaining accurate values of
calibration (and other) parameters in the presence of model discrepancy is problematic.
Additionally, with noisy data, it is difficult to obtain precise estimates. However, KOH
does yield useful posterior predictive distributions.

Table [1] compares predictions by KOH calibration with 3 other calibration ap-
proaches. The first one estimates K, and K, by ordinary least squares (OLS): (K, K)
is chosen such that the sum of the squared residual difference between the mean sur-
rogate prediction and the observed data is minimized. New observations are then
predicted by running the surrogate with the parameters (K, K,) replaced by the OLS
estimates (Kx,Ky) The second approach follows a frequently adopted practice by
guessing, or “judiciously selecting”, specific values for K, and K,. Here, the choices
K, = 600 and K, = 400 are made, and then predictions are made using the surro-
gate. Call this method SINGLE. The third method, NOCAL, generates predictions
as if there were no field data and the distribution for (K, K,) is taken as their prior
distribution, independent uniform priors on [100, 1000]. In these alternative methods,
the observational error variance is fixed at the true value, and 0-discrepancy is assumed
(the former is overly generous and the latter is all too common in practice). For NO-
CAL, a distribution for the oxygen concentration is obtained by sampling values of K,
and K, from their prior distribution and plugging them into the surrogate, while for
KOH, by sampling from the posterior distributions of all unknowns.

(K, Ky) OLS SINGLE NOCAL KOH

homGP | (824.9, 295.4) 9.16 9.16 9.22 9.14

RMSE | hetGP (754.9, 295.8)  9.16 9.16 9.20 9.15
seqhetGP | (496.3 276.0) 9.15 9.15 9.22 9.16

homGP -2.50 -2.66 -2.59 -2.32

Score hetGP -2.55 -2.71 -2.62 -2.32
seqhetGP -2.55 -2.69 -2.61 -2.30

Table 1: Performance results of the three ocean model surrogates under KOH cal-
ibration. RMSE at the 500 test locations with the “true” values used for Figure [5}
similarly for Score. (K, k) are least squares estimates for (K,, K,), OLS presents
the predictive results from least squares calibration, SINGLE the results from arbitrar-
ily choosing (600,400) for the diffusion coefficients, NOCAL the results from sampling
the prior for (K, K,), and KOH the results from performing KOH calibration.

Although the differences in RMSE are negligible, the Scores indicate that KOH
performs the best. It is also possible that the accuracy of OLS, SINGLE, and NOCAL
is overstated, because the observational error variance is taken as known while in KOH
it is estimated. That the least squares estimates (Km, f(y) are not always close to the
true values is unsurprising given the presence of discrepancy, along with possible im-
perfections and high variability in the surrogate. For similar reasons, scant differences
appear among the three surrogates.
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The similarity of RMSEs is a consequence of large variability in the surrogate, the
presence of discrepancy, the dominance of the longitude and latitude inputs, and a weak
effect from the calibration inputs. The first explains the magnitude of the RMSEs and
the last explains why fairly inaccurate calibration inputs (in OLS and SINGLE) don’t
matter. Because KOH addresses discrepancy, its Score exceeds the others’, showing
that accounting for the discrepancy is necessary and can’t be wished away

Estimating Calibration Parameters The focus here, consistent with Section [4]
has been on improving global prediction. If the problem was instead to provide good
estimates for calibration parameters when model bias is absent, then different designs
may be better suited. Damblin et al. (2018)) address this in the context of determin-
istic simulators, but it is unclear how such methods extend to stochastic simulators.
Additionally, whilst KOH facilitates capable predictions, the complexity and recorded
pitfalls in KOH has led to competing calibration techniques that are also in common
usage.

5.2 History Matching (HM)

History Matching (HM) is a common alternative to KOH calibration (Craig et al.,
1997; [Vernon et al., 2010; Boukouvalas et al., 2014b; |Andrianakis et al., |2017). HM
searches for inputs where the simulator outputs closely match observed data, while
recognizing the presence of the various uncertainties, including model discrepancy.
The HM approach rules-out “implausible” inputs in a straightforward way, rather than
attempting to find probable inputs. With an observation yg, and initially assuming
uc makes up all the unspecified simulator inputs, u¢ is deemed implausible if:

lyr — pv (uc))|

Vo (ue) + ofip +02)
where 0%, 0%p, and o2 are the variances of the surrogate, the model discrepancy,
and the observational error respectively. In other words, an input is implausible if
the difference between the observation and the simulator output using that input is
sufficiently large relative to those uncertainties. The number 3 comes from |Pukelsheim
(1994) who shows that at least 95% of any unimodal distribution is contained within
three standard deviations. When there are multiple outputs or additional, controllable
inputs there are modifications to equation (Vernon et al., 2010).

The process can be repeated in so-called “waves”, using non-implausible u¢ found
at one wave to generate simulation runs for the next wave, sequentially reducing the
space where ue could lie. With these waves HM aims to avoid regions of inputs where
uc is unlikely to be and, in that regard, HM is a calibration design scheme. At any
given wave, it is possible for all values of u¢c to be deemed implausible — the so-called
terminal case (Salter et al., 2019) — usually implying that o%;p, is set too low or that
the simulator is not fit for purpose. |Andrianakis et al. (2015) contains a thorough
description of HM whilst applying it to a complex epidemiology model of HIV.

(5.2)
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HM and KOH. With KOH the estimation of u¢ is confounded with discrepancy,
but predictions and their uncertainties are available. However, implementing KOH
in complex problems may be burdensome if not intractable. Speculatively, a hybrid
strategy may be to use HM to reduce the input space, confirm the absence of the
terminal case, and then apply KOH in the narrowed space to get predictions and
uncertainties. Complex models, unlike the fish and ocean examples in this review,
would be ones for which this approach would be most appealing. Such hybrid strategies
are a topic for further exploration.

5.3 Approximate Bayesian Computation (ABC)

Obtaining posterior distributions for calibration parameters uc and predictions (e.g.,
the KOH approach in Section can be computationally challenging. ABC methods
offer an alternative which have been found useful in moderately complex contexts
(Rutter et al., [2019); but less so in more ambitious settings (McKinley et al., 2018]).

ABC aims to produce samples from 7(6|Yx), the posterior distribution of unknowns
6, given the field data Yp. For calibration, think of # as uc. ABC does this by
generating samples for the unknowns 0*) and the output z(*) from 7 (Yz|0)m (), that is,
from the likelihood of the data given the unknowns, multiplied by the prior probability
of the unknowns. For computer models, generating samples from the likelihood is
equivalent to running the simulator. Such samples are only accepted if 2(*) = Y. For
continuous settings, where exact equality cannot occur, acceptance is instead made
if B(2¥),Yr) < 7, where B is a measure of distance and 7 a level of tolerance. An
approximated posterior distribution is then given by the collection of accepted 8)s.
When there are multiple outputs (or there are other controllable inputs x, and so for
any given 0) there are effectively multiple outputs), Yz and 2(*) can be replaced with
informative summary statistics. Finding a single statistic sufficient for all outputs is
challenging, and a poorly chosen one can invalidate results.

The choice of the tolerance 7 is important. If 7 is small then it may take a very
long time to generate a single sample that satisfies the inequality. If 7 is not small then
the approximation to the posterior is less reliable. For calibration, 7 can be interpreted
as a bound on the observational error and model discrepancy, leading to a “correct”
posterior rather than an approximation (Wilkinson, [2013). This is then similar to HM
with the subjective choice of bounds.

ABC can be done without the use of a surrogate, but many runs of the simulator
itself to generate many 6® may be required. Otherwise, too few accepted 6 will
remain, or an overly high value of 7 will be required. In either case accuracy can be
compromised. Such computational barriers can be alleviated by the use of a surrogate.

Fish Example. Here we apply ABC to the fish simulator in order to estimate how
many fish are in the population. Suppose that 25 fish are recaptured in the second
round. A straightforward method to determine the total population size is to simulate
many times from the NetLogo fish model, for many different values of the total fish
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population, and “accept” a simulation every time it leads to 25 fish being recaptured.
This is exactly ABC, and is a fairly common practice with ABMs. Doing so 10,000
times, using a uniform prior on the integers between 200 and 4000, so each such pop-
ulation size has prior probability 1/3801, yields the results in the left panel of Figure
[ This direct use of the simulator produces only 52 accepted samples, which is a very
small number, and this from 10,000 simulator runs. In comparison, a hetGP surrogate
fit from only 400 runs, and from which 1,000,000 samples can be quickly drawn, yields
3811 accepted samples. This result, illustrated in the right panel of Figure [7] gives
a less noisy histogram with the same overall shape. If the agent-based model is even
marginally costly then a surrogate is unquestionably valuable for ABC computations.

AABC posterior given 25 recaptures ABC posterior using hetGP surrogate

o

]

e

=3 -
]

T T T T
500 1000 1500
Population 2z
@
o

g L

il

Number of Marked in Recapture

T 1
1000 2000 3000 4000 0 500 1000 1500

Population Population

Figure 7: ABC fish calibration: directly (left) and via hetGP surrogate (right). The
prior for the true population size is uniform on {200, ...,4000}, and 25 recaptured fish
were observed. The left plot shows 10,000 simulations, highlights the 52 in agreement
with the observation, and the histogram of accepted simulations. The histogram in the
right panel is for the 3811 accepted draws out of 1,000,000 from hetGP.

5.4 Related Calibration Techniques

Bound-to-Bound (Frenklach et al., 2016) is akin to HM, where an error bound that
sweeps up all uncertainties is similarly defined and quadratic programming is then used
to find feasible bounds for uc. Bayesian Melding (Poole and Raftery, 2000; Raftery
et al., [1995) is a technique related to Bayesian calibration, used to reconcile differences
between elicited prior distributions on inputs and outputs of a simulator. It has been

applied in ecology, epidemiology, urban modeling, and pollution monitoring (Sevéikové
et al., 2007; Alkema et al., 2007; Radtke et al., 2002; Fuentes and Raftery, [2005)).

6 Other Methods and Objectives

Here we briefly outline other surrogate modeling and downstream tasks.



Stochastic Computer Models 30

6.1 Regression Trees

In some situations the simulator mean M may have discontinuities or “regime changes”,
where a very different relationship between y and x exists in one part of input space
compared to another part (i.e., non-stationarity). Regression Trees (Breiman et al.,
1984)) form a class of methods that can be useful in these situations. They are also useful
in contexts where some inputs are categorical rather than numerical. The problems
are treated by dividing the input space into mutually exclusive regions within which
independent surrogates (GPs or other regression methods) are fit.

Two approaches: the treed GP (TGP |Gramacy and Lee| [2008) and Bayesian Ad-
ditive Regression Trees (BART |Chipman et al., 2010) have found wide application.
Both use the data to automatically partition the input space, rely on Bayesian compu-
tation, and have public software: TGP in tgp on CRAN (Gramacy and Taddy| [2016;
Gramacy, 2007); BART in several R packages, including BayesTree (Chipman and
McCulloch| [2016]) and BART (McCulloch et al., [2019)).

Other approaches by Rulliere et al.| (2018]), and via Voronoi tessellations instead of
trees (e.g., Kim et al., 2005; Rushdi et al |2017; [Park and Apley, 2018)), have received
less attention. [Pratola et al. (2020) extends BART to heteroscedastic o2 (HBART)
by modeling M as a sum of Bayesian regression trees (as in BART) and the intrinsic

variance o2(z) as a product of Bayesian regression trees, in a joint approach similar to

that in Section 3.2

Calibration methods capitalizing on the KOH approach and using regression trees
as in TGP (Section are explored in Konomi et al.| (2017)). In each terminal node of
the partition a GP with an independent constant intrinsic variance term is assumed for
the computer model output. An independent GP is also deployed for the discrepancy
term. Though o2 is constant at each terminal node the constants can vary across the
terminal nodes so heteroscedasticity is automatically incorporated.

6.2 Qualitative Inputs

Categorical (qualitative) variables are often present in stochastic simulators, especially
those that incorporate characteristics of human behavior. While regression trees are
capable of dealing with categorical inputs (Broderick and Gramacy, [2011; Gramacy and
Taddy|, 2010), GPs may be more effective as surrogates for smooth simulator output.

Qian et al.| (2008), Zhou et al.| (2011)), and |Chen et al.| (2013)) describe ways to extend
the kernels used for numerical inputs to incorporate qualitative variables. Painting
with a broad brush, their approaches take the correlation between two outputs y(x;)
and y(z;) as the product of two correlation functions: C.(w;,w;) dealing with the
continuous inputs, w, and Cy(z;, z;) for the qualitative variables, z. A simple way of
building C, takes

K
Cy(w;, wy) = HTkvwikijk (6.1)
k=1
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represents the correlation

where K is the number of qualitative variables and 7y w,, w;,

between w;, and w;,. One example of Tk wigowsie 15°

Tjwig,wir — exp{—(dir + &) [wi, # wji]} (6.2)

where [ is the indicator function (= 1 if its argument is true, = 0 if false), and ¢ > 0.
The cited references also provide other ways of modeling 7y v, w;,- Alternative methods
exist e.g., Zhang et al. (2018) make use of latent variables for qualitative models.

6.3 Optimization

A common experimental objective is to maximize an output of the simulator, i.e., to
find an input x,., that maximizes the output y(x). For minimization instead, replace
y(z) by —y(x). Optimisation is usually a sequential process where successive xs are
chosen to get closer and closer to the optimal z,,,x — a sequential design problem (see
Section [4)). With stochastic simulators, y(z) is random, and optima are less concretely
defined — the output is different every time the simulator is run at the same z. As
a consequence, interest usually lies in maximizing a non-random quantity of interest,
such as the mean, M, or possibly another scalar quantity such as the ¢'* quantile.
For deterministic simulators Bayesian optimization (Mockus et al., [1978; |Jones
et al., |1998) is a popular technique. An initial set of runs is used to build a GP
surrogate and new runs are chosen by maximizing an “acquisition function” «(x).
[teratively choosing xe, = argmax, a(x)) provides a progressively improved estimate
for the maximum. A widely used choice for a(z) is the expected improvement (EI):

ag (1) = Emax (y(2) = Ymax, 0)]. (6.3)

Maximizing EI chooses the input x,., that maximizes the expected increase in the
maximum value, ymay, of already observed runs. With y modeled by a GP:

() = (s~ () (PXEL ) 4 () (U =) (o

on(z) on(z)

where py(z) is the predictive mean of the GP, on(z) its standard deviation, ¢ is the
standard normal density, and ® the standard normal distribution function.

Alternative acquisition functions have generated extensive work on Bayesian opti-
mization in recent years, mostly in the machine learning literature. The probability of
improvement (Kushner, [1964) is an early example, and others, such as the GP upper
confidence bound (GP-UCB) (Srinivas et al., 2009), consider homoscedastic simulator
error. A recent summary can be found in Frazier| (2018).”

For stochastic simulators, the EI procedure can be extended by replacing ymax,
now a random variable, with the maximum estimated mean of currently run inputs,
Pmax = MaxX;eq1,. N} v (), see |Vazquez et al| (2008). Or, one can seek improvement
over the maximum estimated mean of any possible input, max, puy(z) (Gramacy and
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Lee, 2011). In these cases, the oy(z) term must exclude the o2(z) term that comes
from say, a hetGP. Implementation of this method is provided in the hetGP package.

Alternative criteria for stochastic problems with constant intrinsic noise are dis-
cussed and compared in |Picheny et al. (2013); with the above method is referred to
as the “plugin” method. An R package for implementing several of these choices is
available in DiceOptim (Picheny et al|(2016)); Picheny and Ginsbourger| (2014))). Jalali
et al.| (2017) also do a similar comparison for heteroscedastic noise.

The related goal of level set estimation to find regions where the output exceeds a
threshold T can also be targeted with sequential criteria similar to EI. A simple criterion
is maximum contour uncertainty (MCU), wherein new points are chosen according to
a weighted sum of how close to T' they are believed to be and the degree of uncertainty
for that point. Lyu et al| (2018) provide some discussion here. This method is also
implemented in hetGP.

Optimization using Gaussian processes, specifically in the presence of intrinsic vari-
ability that is potentially heteroscedastic (and potentially non-normal) is an interesting
research question and possibly deserving of its own review. Nonetheless, the references
provided here should provide a good introduction.

6.4 Sensitivity Analysis

Determining and measuring the effect of inputs on the output is usually part of any
simulator experiment. Doing so assists scientific understanding of the system and
enables screening out potentially superfluous variables. This goal has many related
names: sensitivity analysis, screening, variable selection, etc., but the overall objective
is generally the same — summarize and measure the influence of each input.

For deterministic simulators, Sobol indices (Sobol, 1993)) are widely used. Proba-
bilistic distributions are assumed on the inputs of the simulator in order to represent
their range of variations. Then, a functional Analysis of Variance (ANOVA) decom-
position splits the variation of the simulator output into multiple components, each
representing the individual contribution of an input variable z; or combination of in-
put variables. A Sobol index is then computed as the percentage of the total simulator
output variation explained by a component. Key Sobol indices include main effects
(the percentage of variation explained by the individual z;s alone) and variation ex-
plained by interactive additive effects with other inputs. Computing the components
takes large numbers of runs but the use of surrogate GPs make the calculations feasible
(Schonlau and Welch, 2006; Marrel et al.,|2009). An enveloping discussion of sensitivity
is provided by Oakley and O’Hagan! (2004).

Two extensions, by Marrel et al.| (2012) and Hart et al.| (2017)), of Sobol indices for
stochastic simulators yield the following expression for the stochastic simulator:

y(l’) = y(x, 6seed) (65)

where z is the set of controllable inputs. The input € eq is responsible for output
stochasticity, standing in for intrinsic variability, and is sometimes called a seed vari-
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able. As with a deterministic simulator, a probabilistic distribution (typically uniform)
is assumed to represent the range of variation in controllable inputs.

In Marrel et al.| (2012), the total variation in the mean of the stochastic simulator is
analysed through a functional ANOVA decomposition and Sobol indices are computed
based on the percentage of the total simulator variation each component explains. The
variation explained by the seed variable egeq can also be computed, representing the
total variation explained by the intrinsic variance. Additionally, a sensitivity analysis
of the intrinsic variance 0% (x) can be conducted separately to gather information on
which input variables most impact the heteroscedasticity.

Hart et al.| (2017) assumes the simulator can be run at different inputs x with the
same seed €40q. Rather than building a joint stochastic simulator surrogate for the
mean and variance, as described in Section they build a separate surrogate for a
number of seeds. For each seed, they obtain a realization of each Sobol index, and by
aggregating the realizations, they obtain distributions for the indices.

The extensive literature on model selection may have counterparts that can be effec-
tive for stochastic simulators. But a fully satisfactory approach even for deterministic
simulators remains somewhat elusive.

7 Concluding Remarks

There are several key messages to be drawn from this review, each pointing to open or
new research questions:

Gaussian Process Surrogates. GPs are discussed extensively because they pro-
vide a flexible way of allowing the data to inform about the shape of the underlying
process. Moreover, they can be effective predictors and quantifiers of uncertainty. Di-
agnosing shortcomings in a GP for stochastic simulators (available in deterministic
settings (Bastos and O’Hagan, [2009)) is not yet well-established.

As noted in Section 3| neural network (deep learning) methods are in active use and
under study, some of which may, in combination with GPs, offer promising research
directions (Schultz and Sokolov, 2018).

Additionally, it can be difficult to effectively capture non-normal variability. Doing
so with as few simulations as possible, whilst also properly quantifying the various
uncertainties, is likely to be an important research direction for stochastic simulator
analysis. The wider quantile regression literature is likely a good starting point.

Design. Stochastic simulators differ from deterministic ones because they require
much larger sample sizes and permit the use of replicates, whose treatment is generally
ad hoc. This leads to the questions raised in Section {4} forming a direction of important
research. Design size rules of thumb, useful even if imperfect, exist for deterministic
simulators (Loeppky et al., 2009b)), but are lacking for stochastic simulators.

Calibration. Accounting for model discrepancy in calibration is critical but there
is no obvious “one-size-fits-all” method. A broad empirical comparison is needed with
guidance about which strategies are effective under which conditions. Assessing the
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effectiveness of different methods can be challenging (see McKinley et al., 2018, for one
comparison between ABC and HM), but sorely needed.

Simulator Complexity For complex stochastic simulators it may not be feasi-
ble to obtain enough runs. In some instances, the simulator can be replaced with
a less complex one (e.g. Molina et al.| |2005) that captures key features and permits
adequate numbers of simulations. Another path, coupling stochastic simulators with
deterministic simulators has been explored (Baker et al., 2020)) as a way to deal with
low simulation budgets. Multi-fidelity modeling, where multiple simulators of varying
complexity are coupled together (Kennedy and O’Haganl, 2000; Kennedy et al., |2020)
is a promising solution where possible.

In a similar vein, certain outputs may be less noisy than others, and the modeling
of the less-noisy outputs can improve the modeling of the noisier ones. For example
Wang and Ngj| (2020)) use the expectation of a simulator to improve the estimation of
noisier quantiles. This is related to the wider variance reduction literature, which has
a long history (Barton et al., 2017). Variance reduction has been applied in a number
of examples but its use in ABMs is not apparent, perhaps due to the profusion of
stochastic elements in an ABM. Fixing the initial seed in a stochastic simulator has
played a role in sensitivity analysis (see Section , but leveraging information about
the intrinsic randomness for wider purposes is an open problem.

This review strives to raise awareness of existing tools and strategies for treat-
ing stochastic simulators and provide a starting point for practitioners interested in
utilizing up-to-date statistical approaches. Despite the problems being pervasive and
challenging there is a shortage of statistical research in this field. The problems pose
computational and technical questions, as well as theoretical and philosophical ones.
Current solutions are often capable, but there is a lack of comprehensive compari-
son between different solutions, and a lack of testing regarding their generalizability to
complex situations (such as very large data sets). The hope is that the review provokes
statistical researchers to engage the open questions discussed.
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A Appendix - Ocean Truth

Throughout, reference to plots of the “truth” of the Ocean model is made. These plots
are presented here, as well as in the supplementary material, for convenience.
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Figure 8: The “true” mean and standard deviation for the Ocean model, for 500
different sites.
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