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Abstract: Carnobacterium maltaromaticum is a species of lactic acid bacteria found in dairy, meat, and 

fish, with technological properties useful in food biopreservation and flavor development. In more 

recent years, it has also proven to be a key element of biological time–temperature integrators for 

tracking temperature variations experienced by perishable foods along the cold-chain. A dynamic 

model for the growth of C. maltaromaticum CNCM I-3298 and production of four metabolites (formic 

acid, acetic acid, lactic acid, and ethanol) from trehalose in batch culture was developed using the 

reaction scheme formalism. The dependence of the specific growth and production rates as well as 

the product inhibition parameters on the operating conditions were described by the response 

surface method. The parameters of the model were calibrated from eight experiments, covering a 

broad spectrum of culture conditions (temperatures between 20 and 37 °C; pH between 6.0 and 9.5). 

The model was validated against another set of eight independent experiments performed under 

different conditions selected in the same range. The model correctly predicted the growth kinetics 

of C. maltaromaticum CNCM I-3298 as well as the dynamics of the carbon source conversion, with a 

mean relative error of 10% for biomass and 14% for trehalose and the metabolites. The paper 

illustrates that the proposed model is a valuable tool for optimizing the culture of C. maltaromaticum 

CNCM I-3298 by determining operating conditions that favor the production of biomass or selected 

metabolites. Model-based optimization may thus reduce the number of experiments and 

substantially speed up the process development, with potential applications in food technology for 

producing starters and improving the yield and productivity of the fermentation of sugars into 

metabolites of industrial interest. 

Keywords: Carnobacterium maltaromaticum; modeling; microbial growth; optimization; fermentation 

1. Introduction 

Carnobacterium maltaromaticum is a psychotropic species of lactic acid bacteria widely 

found in food such as dairy products, fish, and meat. It is a Gram-positive, facultative 

anaerobic bacterium, able to grow at alkaline pH (up to 9.6) [1,2]. 

In the food industry, C. maltaromaticum has potential applications related to health 

protection and organoleptic properties. These include the biopreservation of food, by 

inhibiting the growth of foodborne pathogens such as Listeria sp. in cold conditions, and 

the development of flavor in ripened cheese varieties [2–4]. 

This lactic acid bacterium may also be used as a biological indicator in time–

temperature integrators (TTI): ‘smart-labels’ that monitor the time–temperature history of 

chilled products throughout the cold-chain [5,6]. Concentrates of the strain CNCM I-3298 

have been selected as inoculum for TopCryo® labels, the only biological TTI that has been 

taken to market to date. A pH decline of the label medium, associated with bacterial 

growth and acid production, produces an irreversible color change from green to red as 

an indication to the consumer about the spoilage of the food to which the TTI is attached 

[7]. 

 



 

 

In these applications, C. maltaromaticum concentrates produced by fermentation may 

be used alone or in association with other microorganisms. Some experimental studies on 

C. maltaromaticum fermentation under different culture conditions have been reported in 

the literature [3–4,6–14]. The effect of temperature and pH on the acidifying activity was 

evaluated and modelled by Girardeau et al. [7]. However, there is a lack of knowledge on 

the characterization and optimization of Carnobacteria growth and production of various 

metabolites such as acids or flavor compounds in a bioreactor.  

Carnobacteria are considered to be homofermentative lactic acid bacteria that produce 

lactic acid from glucose, with pyruvate as a central metabolic intermediate (via the 

Embden–Meyerhof pathway) [15–17]. However, pyruvate may be alternatively converted 

to acetate, ethanol, formate, and CO2 [16,18] under anaerobic conditions and substrate 

limitation [19], arising for example at the end of fermentation [20]. The production of 

organic acids by Carnobacteria is also strain-dependent [8,16,21]. A recent study reported 

that lactic, formic, and acetic acids are key organic acids produced by C. maltaromaticum 

in a meat juice medium [22], indicating that this microorganism has the enzymatic 

machinery to perform mixed-acid fermentation (Figure 1). 

 

Figure 1. Mixed-acid fermentation pathway likely used by C. maltaromaticum to ferment trehalose. 

End products are shown in blue. ACK, acetate kinase; ADH, acetaldehyde dehydrogenase; LDH, 

lactate dehydrogenase; PFL, pyruvate formate lyase; PTA, phosphate acetyltransferase; PYK, 

pyruvate kinase; TreH, neutral trehalose. Adapted from [19–23]. 
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For optimization purposes, modeling has proven to be a powerful tool, enabling the 

exploration of a wider range of operating conditions while minimizing cost, compared 

with the experimental approach [24–29]. To our knowledge, the only dynamic model 

dealing with C. maltaromaticum strains has been published by Ellouze et al. [6]. That 

research was oriented towards a biological TTI setting associated with a sausage-like 

packaging instead of a bioreactor and taking into account lactic acid as the single 

metabolite. 

The aim of this study was thus to develop and validate a dynamic model predicting 

the impact of fermentation conditions (temperature and pH) on the growth and 

bioconversion fermentation dynamics of C. maltaromaticum CNCM I-3298 using trehalose 

as a carbon source and considering the four main identified metabolites: formic acid, 

acetic acid, lactic acid, and ethanol. This study was conducted as part of a research project 

on the production and conservation of C. maltaromaticum concentrates. In that context, the 

growth of C. maltaromaticum was tested in different sugars: glucose, maltose, mannitol, 

and trehalose, with similar growth rates. Trehalose was chosen in this study because this 

molecule is known for its ability to protect cells during bacterial stabilization processes 

(freeze-drying in particular). Therefore, the residual trehalose (not consumed during 

fermentation) could be used as cryoprotectant after production of bacterial concentrates. 

The model development involved four major steps, presented in Section 3: derivation 

of the main governing equations based on the known mixed-acid fermentation pathway, 

mass balances, and kinetic rate expressions (Section 3.1); parameter identification for each 

fermentation experiment (Section 3.2); construction of response surfaces of the calibrated 

parameters as a function of temperature and pH (Section 3.3); and final validation of the 

complete model. The resulting model is shown to be a useful tool in determining the 

optimal conditions for producing bacterium concentrates in bioreactors and for assessing 

the productivity of the bioconversion fermentation of sugars into metabolites of potential 

industrial interest (Section 4.4). 

2. Materials and Methods 

Data used to calibrate and validate the model were partially reported in a previous 

study, in which a modified central composite experimental design was carried out to 

study the effect of operating conditions on the technological properties of C. 

maltaromaticum CNCM I-3298 [7]. Sixteen lab-scale fermentations (hereafter named F01 to 

F16) were performed using a wide range of regulated operating conditions (Figure 2): 

temperature between 20 and 37 °C and pH between 6.0 and 9.5. 



 

 

 

Figure 2. Operating conditions of C. maltaromaticum CNCM I-3298 fermentation experiments. 

 

Fermentation durations varied between 20 h and 45 h, and the initial conditions were: 

for biomass (X0) 0.077 molC·L−1, trehalose (S0) between 0.091 mol·L−1 and 0.107 mol·L−1, and 

medium volume (V0) 3.5 L. 

The main fermentation settings and the kinetic measurements are reported below. 

2.1. Fermentation 

2.1.1. Culture Medium and Bacterial Strain 

The fermentation medium was composed of the following ingredients for 1 kg of 

final solution: 40 g of trehalose (Treha™; Tokyo Japan); 10 g of proteose peptone (Oxoid; 

Waltham, MA, USA); 5 g of yeast extract (Humeau; La-Chapelle-sur-Erdre, France); 5 g of 

Tween 80 (VWR; Leuven, Belgium); 0.41 g of MgSO4 (Merck; Darmstadt, Germany); 0.056 

g MnSO4 (Merck; Darmstadt, Germany); and water to reach a total of 1 kg of solution. All 

medium components were sterilized together at 121 °C for 20 min. Fermentations were 

carried out on C. maltaromaticum CNCM I-3298 pre-cultures. Pre-cultures were prepared 

by inoculating 10 mL of sterilized fermentation medium with 100 µL of C. maltaromaticum 

CNCM I-3298 stock culture and were incubated for 13 to 16 h at 30 °C. An amount of 1 

mL of the resulting culture was transferred into 50 mL of fresh medium and then 

incubated again for 11 h under the same conditions. The resulting culture was then used 

to inoculate the bioreactor. Inoculation was performed at an initial concentration of 

approximately 107 CFU mL−1. 

2.1.2. Bioreactor and Parameter Control 

The bioreactor (Minifors, Infors HT, Bottmingen, Switzerland) had a total volume of 

5 L and was equipped with a heat mantle and a cryostat for temperature control. It 

contained 3.5 L of fermentation medium, inoculated with an initial cell concentration of 

approximately 107 CFU·mL−1. Initial pH was adjusted to the desired value with 5 M NaOH 

or 0.01 M H2SO4 solutions. During fermentation, pH was controlled to the desired setpoint 

for each investigated condition (Figure 2) by automatic addition of 5 M NaOH. Culture 

homogenization was performed with an agitation device set at 150 rpm. Temperature was 

set according to the investigated operating conditions mentioned above (Figure 2). 



 

 

2.2. Kinetic Measurements 

2.2.1. Cell Growth 

Cell growth was monitored using an infrared probe (Excell210, CellD, Roquemaure, 

France) continuously measuring absorbance at 880 nm and storing data every minute. The 

absorbance data were calibrated in dry weight. Dry cell weight was determined by 

filtering 10 mL of bacterial suspension (straight out of the bioreactor) through a 0.20 µm 

polyethersulfone membrane (Supor®, PALL Biotech, Saint-Germain-en-Laye, France). The 

filter was then dried for 24 h at 80 °C. Measurements were obtained in triplicate. Mass 

concentrations were finally converted to molC L−1 (carbon-mol of biomass per liter), 

assuming the simplified unit-carbon biomass formula CH1.8O0.5 [30]. 

2.2.2. Total Acid Production 

Total acid production was determined according to the volume of NaOH solution 

injected into the bioreactor to maintain a constant pH. The pH was regulated/controlled 

to set values using the IRIS NT V5 software (Infors, AG, Bottmingen, Switzerland). 

2.2.3. Substrate Consumption and Metabolite Production 

Trehalose consumption and metabolite production were determined using high-

performance liquid chromatography (HPLC, Waters Associates, Millipore; Molsheim, 

France). HPLC was performed on culture media samples of a few mL, aseptically 

retrieved from the bioreactor at different times during fermentation and filtered through 

0.22 µm pores (Sartorius stedim, Biotech; Göttigen, Germany). Analyses were made using 

a cation exchange column (Aminex Ion Exclusion HPX-87 300 × 7.8 mm, Bio-Rad, 

Richmond, VA, USA) at 35 °C. Mobile phase was 0.0005 M H2SO4, and flow rate was set 

at 0.6 mL·min−1 (LC-6A pump, Shimadzu, Courtaboeuf, France). 

HPLC analysis showed that C. maltaromaticum CNCM I-3298 produced not only lactic 

acid but also formic acid, acetic acid, and ethanol in variable proportions according to the 

fermentation conditions. 

3. Dynamic Model 

The mathematical model was a set of ordinary differential equations implemented in 

MATLAB R2018b (the MathWorks Inc. Natick, MA, USA). Model parameters and 

response surface coefficients were identified by nonlinear regression analysis using the 

Statistic and Machine Learning Toolbox of MATLAB. 

3.1. Model Formulation 

The dynamic model developed in this study combined biochemical knowledge about 

the metabolism of the selected bacterium and mass balances of the main compounds: 

substrate, biomass, and identified metabolites. Expressions of specific growth and 

metabolite production rates included substrate limitation, product inhibition phenomena, 

and time lags due to microbial metabolism adaptation [31]. The surface response method 

was used to express the empiric dependence of some model parameters on operating 

conditions. The model assumed the bioreactor was perfectly stirred and there were no 

differences between individual cells. It was thus unsegregated and zero-dimensional, 

predicting average spatial concentrations [32]. 

Seven state variables were considered: six volume concentrations (biomass [X], 

trehalose [S], formic acid [F], acetic acid [A], lactic acid [L], and ethanol [E], Figure 1) and 

the culture medium volume (V). This latter variable varied continuously with the addition 

of base (NaOH) for pH control but also changed in a discrete way due to periodic 

sampling for biological and chemical analysis. 

Mass balances for the considered metabolites resulted in the following set of 

differential equations: 
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Here, μX is the specific growth rate (h−1); πF, πA, πL, and πE are the specific production 

rates of four metabolites (h−1); and YX/S, YF/S, YA/S, YL/S, and YE/S are the yield of biomass and 

metabolites with respect to the substrate (mol.mol−1). Q is the experimentally measured 

rate of NaOH solution (L.h−1) added for pH control throughout fermentation. 

In Equation (6), [AT] is the total acid concentration, defined as the sum of formic, 

acetic, and lactic acid concentrations. These compounds are assumed to be mainly 

responsible for the pH change of the liquid medium. 

Specific growth and production rates were defined using the Monod law to account 

for substrate limitation, modified with product inhibition and enzymatic activation factors 

[33–35]: 

𝜇𝑋 = 𝜇𝑚𝑎𝑥,𝑋𝐼𝑋𝐸𝐴

[𝑆]

𝐾𝑆𝑋 + [𝑆]
 (9) 

𝜋𝑚 = 𝜋𝑚𝑎𝑥,𝑚𝐼𝑚𝐸𝐴

[𝑆]

𝐾𝑆𝑚 + [𝑆]
      𝑚 = 𝐹, 𝐴, 𝐿, 𝐸 (10) 

In these equations, IX and Im are inhibition factors that depend on the inhibitor 

concentration. They vary between 1 and 0. Inhibition increases with the inhibitor 

concentration, and its effect on the specific rate is maximal when the corresponding factor 

is 0. In this model, progressive inhibition factors of the following form were used [36,37]: 

𝐼𝑋 =
1

1 + (
𝐶𝐼

𝐾𝐼𝑋
)

𝑛 
(11) 

𝐼𝑚 =
1

1 + (
𝐶𝐼

𝐾𝐼𝑚
)

𝑝      𝑚 = 𝐹, 𝐴, 𝐿, 𝐸 (12) 

KIX and KIm represent characteristic concentrations of the inhibitors (mol L−1) such 

that the corresponding rates (μX and πm) are reduced by a factor of 2 compared with the 

absence of inhibitor, n and p are shape factors, and CI is the concentration of the inhibitor. 

Since all the metabolites were produced in similar proportions and no biochemical 

knowledge about their relative inhibiting nature was available, CI was simply defined as 

the sum of the four metabolite concentrations: 

𝐶𝐼 = [𝐹] + [𝐴] + [𝐿] + [𝐸] (13) 



 

 

To illustrate the role of the shape factor n, Figure 3a depicts the evolution of IX with 

CI for different n values and a lag-time of 5 h. A more or less sharp change in the inhibition 

factor occurs around the characteristic inhibitor concentration, CI = KIX. The significance 

of the shape factor p is similar. 

Figure 3. (a) Example of inhibition factor IX as a function of CI for different n values and KIX = 0.2 

mol L−1. (b) Example of enzymatic activation factor EA as a function of t for different r values, and 

tlag = 5 h. 

The enzymatic adaptation factor EA is an empirical representation of the lag time, a 

period of adaptation to the culture environment where the microorganism produces new 

enzymatic machinery [38–40]. Based on the shape of experimental data, the following 

equation was proposed: 

𝐸𝐴 =
1

1 + 𝑒𝑥𝑝 (−𝑟(𝑡 − 𝑡𝑙𝑎𝑔))
 (14) 

where tlag (h) is the lag time experimentally observed. Figure 3b shows that EA is an 

increasing function of time, tending to 1 when t ≫ tlag. In analogy with n, r is a shape factor 

that describes the gradual transition from the lag phase to the active phase of growth. A 

higher value of r implies a steeper change of EA around t = tlag. 

To illustrate the features of the proposed model, a representation of the 

dimensionless specific growth and production rates (μ/μmax and π/πmax) over time is 

depicted in Figure 4. The dynamic behavior of both variables is similar given the similarity 

of Equations (1)–(5). The specific rates achieve a maximum value in the active growth 

phase, and they are zero when t ≪ tlag and when the substrate is depleted. The shape of 

the curve is defined by three factors: in the increasing region (0 to 10 h in Figure 4), the 

dominant effect is enzyme activation EA (Equation (14)); in the slowly decreasing region 

(10 to 20 h), the rate is controlled by inhibition (Equation (11) or (12)), whereas in the 

sharply decreasing region (20 to 22 h) it is controlled by substrate limitation, 

corresponding to the Monod-like factor in Equation (9) or (10). 
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Figure 4. Typical evolution of the relative production rate over time. 

3.2. Model Parameter Identification 

The system of kinetic equations for a single fermentation experiment included 24 

parameters: five yield coefficients, five inhibition parameters, five growth/production 

rates, five Monod-like saturation constants, three shape factors, and one lag time. Due to 

a limited number of experimental data and to facilitate the identification procedure, a 

single value was adopted for the inhibition parameter (KIm) and the Monod saturation 

constant (KSm) of the four identified metabolites. Moreover, 10 parameters were fixed for 

all experiments: the shape factors, the yield coefficients, and the Monod saturation 

constants (KSX and KSm). For each fermentation, lag time was determined by graphical 

readout. This simplification of fixing parameters independent of operating conditions is 

supported by two assumptions often used in the literature: (1) metabolite production 

yields are constant and therefore independent of culture conditions [41] and (2) the 

saturation constant of the Monod model depends only on the nature of the substrate 

[33,38], which was the same in all experiments of this study. 

The remaining group of seven parameters (μmax,X, πmax,F, πmax,A, πmax,L, πmax,E, KIX, KIm) 

were identified for each fermentation of the experimental design by nonlinear regression. 

Here, the Levenberg–Marquardt algorithm [42] was used to minimize the sum of squares 

of the errors between experimental and predicted concentrations. However, since the 

ranges and the number of measurements were slightly different among the metabolites, 

the values compared in the least squares function were normalized by dividing by their 

maximum value and were weighted by the relevant number of experimental 

measurements. 

The quality of the model representation was quantified with two error indicators, 

defined as follows:  

Root mean square error: 

RMSE= [
1

N
∑(Cmodel,i - Cexp,i)

2
N

i=1

]

1/2

 (15) 



 

 

Relative mean error (as a percentage):  

RME=
1

N
∑

|Cmodel,i - Cexp,i|

Cexp,max - Cexp,min

N

i=1

 ∙100% (16) 

where N is the number of available measurements, Cmodel and Cexp are respectively the 

values of the concentration variables calculated with the model and measured 

experimentally. 

3.3. Response Surface Model for Parameter Dependence on Fermentation Conditions 

Nonlinear regression was performed to model the relationship between the seven 

parameters of the dynamic model specific to each experiment and the fermentation 

operating conditions—namely, temperature (T) and pH. The regression model had a 

similar form for all parameters, the logarithm of the parameter being expressed as a 

second-order polynomial with interaction: 

log10 𝑃𝑎𝑟𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑇 + 𝛽2𝑖𝑝𝐻 + 𝛽3𝑖𝑇
2 + 𝛽4𝑖𝑝𝐻2 + 𝛽5𝑖𝑇𝑝𝐻 (17) 

The regression coefficients (β) for all parameters depending on operating conditions 

(μmax,X, πmax,F, πmax,A, πmax,L, πmax,E, KIX, KIm) were simultaneously computed by least-squares 

optimization based on all available concentration measurements. In this way, the accuracy 

and standard errors of the coefficients were statistically acceptable, due to a large number 

of degrees of freedom: several hundreds of concentration data were used to estimate 42 

coefficients. Initial guesses for these coefficients were obtained using Equation (17), and 

parameter values were determined separately for each experiment. 

In this procedure, two sets of data from the experimental design were defined as 

indicated in Figure 2: eight calibration experiments, located in extreme positions of the 

experimental domain, used simultaneously for coefficients (β) estimation, and eight 

validation experiments, only used a posteriori to verify the accuracy of the complete 

dynamic model. 

4. Results and Discussion 

4.1. Model Parameter Identification 

The values of the parameters that are independent of operating conditions, 

summarized in Table 1, were determined from the experimental data of experiment F10. 

This run was placed in a central position in the composite experimental design (T = 30 °C, 

pH = 8) (Figure 2). Monod saturation constants are usually difficult to determine from 

batch experiments because the number of measurements is typically very low in the 

substrate limitation zone. Saturation constants were thus fixed to a common value with a 

typical order of magnitude [43]. As for yields, they were found to differ from the 

theoretical ones defined through standard stoichiometric reactions of anabolism and 

catabolism. These differences can be due to other reactions involving the carbon substrate, 

whose products were not analytically measured and were not considered in the model. 



 

 

Table 1. Model parameters independent of operating conditions, determined from the experimental 

data of experiment F10 (T = 30 °C, pH = 8) with tlag = 10 h. 

Parameter Constant Value 

YX/S (molC.mol−1) 6.9 

YF/S (mol.mol−1) 5.6 

YA/S (mol.mol−1) 3.8 

YL/S (mol.mol−1) 7.0 

YE/S (mol.mol−1) 4.7 

KSX (mol L−1) 0.001 

KSm (mol L−1) 0.001 

n 3 

p 1 

r (h−1) 0.8 

After fixing the parameters in Table 1 for the whole set of experiments, the group of 

seven adjustable parameters of the model (μmax,X, πmax,F, πmax,A, πmax,L, πmax,E, KIX, KIm) were 

identified for each run by nonlinear regression. 

The parameters obtained by this procedure are summarized in Table 2. Standard 

errors were computed from the variance–covariance matrix of the nonlinear optimization 

algorithm. These errors represented between 5% and 13% of the value of the identified 

parameters, a reasonable uncertainty level for a biological model. 

Table 2. Model parameters determined for each experiment by nonlinear regression. 

Fermentation µmaxX (h−1) πmaxF (h−1) πmaxA (h−1) πmaxL (h−1) πmaxE (h−1) KIX (Mol.L−1) KIm (Mol.L−1) 

F01 
Value 0.224 0.152 0.064 0.215 0.078 0.117 0.069 

Standard error 0.003 0.003 0.003 0.005 0.001 0.004 0.003 

F02 
Value 0.096 0.122 0.064 0.053 0.064 0.143 0.142 

Standard error 0.021 0.012 0.007 0.006 0.006 0.083 0.036 

F03 
Value 0.164 0.137 0.064 0.131 0.072 0.099 0.102 

Standard error 0.012 0.009 0.004 0.009 0.005 0.006 0.013 

F04 
Value 0.078 0.063 0.031 0.072 0.034 0.144 0.092 

Standard error 0.012 0.004 0.002 0.004 0.002 0.047 0.016 

F05 
Value 0.130 0.130 0.060 0.196 0.070 0.160 0.100 

Standard error 0.005 0.002 0.002 0.004 0.001 0.004 0.004 

F06 
Value 0.094 0.129 0.063 0.159 0.063 0.163 0.092 

Standard error 0.001 0.002 0.001 0.003 0.001 0.003 0.002 

F07 
Value 0.074 0.028 0.010 0.089 0.022 0.122 0.139 

Standard error 0.002 0.001 0.001 0.004 0.002 0.005 0.004 

F08 
Value 0.060 0.055 0.024 0.126 0.048 0.149 0.060 

Standard error 0.002 0.002 0.000 0.003 0.002 0.001 0.002 

F09 
Value 0.071 0.097 0.048 0.114 0.071 0.108 0.044 

Standard error 0.009 0.007 0.004 0.010 0.006 0.021 0.007 

F10 
Value 0.220 0.230 0.100 0.300 0.120 0.193 0.091 

Standard error 0.051 0.013 0.007 0.022 0.007 0.044 0.015 

F11 
Value 0.121 0.127 0.060 0.116 0.066 0.179 0.133 

Standard error 0.004 0.007 0.004 0.005 0.003 0.006 0.003 

F12 
Value 0.132 0.155 0.082 0.076 0.086 0.043 0.059 

Standard error 0.010 0.026 0.003 0.002 0.006 0.002 0.007 

F13 
Value 0.147 0.162 0.077 0.219 0.092 0.164 0.106 

Standard error 0.006 0.006 0.002 0.008 0.004 0.009 0.003 

F14 
Value 0.047 0.045 0.020 0.112 0.032 0.140 0.130 

Standard error 0.005 0.004 0.001 0.006 0.003 0.016 0.007 

F15 
Value 0.160 0.180 0.080 0.330 0.110 0.260 0.170 

Standard error 0.056 0.013 0.008 0.030 0.010 0.022 0.010 

F16 
Value 0.110 0.110 0.050 0.200 0.070 0.320 0.280 

Standard error 0.003 0.004 0.002 0.007 0.003 0.051 0.104 



 

 

For the whole set of experiments, the prediction errors are reported in Appendix 

Table A1. Except for some runs for variables S, F, and A, all RME were lower than 15%. 

Additionally, the average RMSE and RME values for each concentration were of the same 

order of magnitude as the experimental variability, here defined as the biological 

repeatability for run F01, for which three independent replicates were performed. These 

results validate the formulation and accuracy of the proposed model under the operating 

conditions included in the experimental design. 

In the specific case of reference run F10, a comparison between the model simulation 

(using the corresponding parameters from Table 2) and experimental data is illustrated in 

Figure 5. 

 

Figure 5. Evolution of concentrations over time for experiment F10 (T = 30 °C, pH = 8). Comparison between model 

(continuous line, using parameters from Tables 1 and 2) and experimental data (symbols). The error bars for data represent 

the biological standard deviation, calculated from three independent repetitions of the run F01. 

Three growth phases are apparent in Figure 5: a lag phase (phase 1, between 0 and 

10 h); a phase of active growth, substrate consumption, and metabolite production (phase 

2, between 10 h and 21 h); and a final phase where concentrations do not change over 

time, owing to the depletion of the carbon source or growth inhibition by metabolites 

(phase 3, after 21 h). Regarding culture volume evolution, as already mentioned, the 

discrete variations at regular intervals were due to sampling for analysis of the culture 

medium and the gradual increase was due to NaOH addition for pH control. One can also 

observe that the four metabolites were produced simultaneously, with no gap for the 

growth dynamics. The metabolites were thus primary end products generated during a 

single trophophase [44]. This justifies the choice of a global inhibitor concentration 

(Equation (13)), which included four correlated concentrations. 

In consideration of the visual fit from Figure 5, the model representation is 

reasonably satisfactory. The most pronounced discrepancy between the model and 

experimental data appears for lactic acid, for which the model predicted a lower 

concentration before substrate depletion. This is related to a slightly underestimated yield 

factor YL/S. 

 

 



 

 

4.2. Response Surface Model for Parameter Dependence on Fermentation Conditions 

Model parameters were expressed as a function of temperature and pH, according to 

the surface model (Equation (17)). The values of the β regression coefficients were 

adjusted globally using the whole set of calibration data. 

The resulting response surfaces for the seven model parameters are plotted in Figure 

6. For the five kinetic parameters, (i.e., the maximum specific growth and production 

rates), the response surfaces have the same convex shape, with a well-defined maximum 

value at intermediate T and pH conditions. These maxima likely indicate the optimal 

temperatures and pH for cellular growth, as well as the enzymatic activity catalyzing each 

of the reactions, leading to the production of the different metabolites (Figure 1). 

Concerning the inhibition concentrations, the response surface for KIm has a concave 

shape with a local minimum, whereas that of KIX resembles a saddle surface. For this latter 

case, the surface shape indicates that for every pH there is a T where KIX is minimal, and 

for every T there is a pH where KIX is maximal. Both KIm and KIX represent the combined 

effect of several inhibiting metabolites (Equations (11)–(13)) with potentially different 

inhibition mechanisms. 

 

Figure 6. Response surfaces for model parameters, calculated with globally adjusted β coefficients in Equation (17). 

For completeness, the final values of the regression coefficients of Equation (17) for 

the seven adjustable parameters of the dynamic model are reported in Appendix Table 

A2. All coefficients in Equation (17) for each model parameter were significantly different 

from zero at a 0.05 level. A comparison between the parameter values determined for each 

experiment (Section 4.1) and the parameter values computed with Equation (17) (from 

globally adjusted β coefficients) is depicted in Appendix Figure A1. The goodness of the 

fit was assessed through the coefficient of determination, R2. This coefficient is higher than 

0.89 for six out of seven model parameters, which is a high threshold for biological data. 

In the case of KIm, only 66% of the variance of this parameter was explained by variables 

T and pH. The remaining 34% could be associated with inherent experimental variability 

and factors not included in the model, for instance transient variability of the inhibition 

and kinetics parameters and actual dependence of the fixed parameters (Table 1) with T 

and pH [45]. From a more general point of view, differences from experimental data could 

be due to features that were not represented by the mathematical model, such as 

population segregation, internal pH variability, and concentration gradients in the culture 

medium [46,47]. 

 

 

 



 

 

4.3. Model Validation  

The ability of the dynamic model including the parameters calculated from operating 

conditions (Equation (17)) to predict data of independent experiments was assessed with 

a set of validation experiments. 

A comparison between the average RMSE values obtained in Section 4.1 (determined 

for each experiment) and Section 4.2 (calculated from operating conditions) for calibration 

and validation sets is depicted in Figure 7. In most cases, RMSE values were higher than 

the corresponding experimental variabilities, indicating that more complex models could 

capture additional phenomena not included in the present model, such as dependence of 

yields, saturation constants, or lag time (Table 1) on operating conditions. As one might 

expect, RMSE was generally lower for the calibration experiments than for the validation 

experiments, which were not used for parameter determination. However, the relative 

difference remained small (less than 30%), indicating a satisfactory ability of the 

developed model to predict time evolution of the considered biomass, substrate, and 

metabolites under new conditions within the explored experimental range. 

 

Figure 7. Comparison between experimental variability and average RMSE values for concentrations computed using 

parameters determined for each experiment (Table 2) and the response surface models (Table A2 and Equation (17)). 

It also appears in Figure 7 that average RMSE values with parameters given by the 

response surface model (Table A3) are about 50% higher than with parameters 

determined separately for each experiment (Table A1), for both calibration and validation 

sets. This result could be expected since in the global calibration step, data from eight 

independent experiments were combined as a whole for the least squares estimation, with 

a detrimental effect on the individual representation of each experiment. However, results 

with the parameters calculated from operating conditions are the most useful in 

engineering purposes since they enable a quick prediction of growth and metabolites 

production dynamics, based on the selected combination of temperature and pH. 

In light of this quantitative analysis, the prediction accuracy of the empirical dynamic 

model coupled to the regression model may be considered satisfactory within the 

operating domain covered in this study. 

4.4. Model-Based Optimization of Fermentation Operating Conditions for Industrial Use 

Optimal conditions for growth and metabolite production of C. maltaromaticum 

calculated using the developed model are summarized in Table 3. Two optimization 

criteria were considered: final concentrations and final productivities calculated for a 

99.9% substrate consumption. 

For a detailed representation of the evolution of final concentrations and 

productivities for biomass and metabolites with temperature and pH, the reader is 

referred to Appendix Figure A2 and Figure A3. As a general trend, the highest 

productivities were obtained around 35 °C and pH 7.5, although the exact optimal 

conditions depended on the considered metabolite (Table 3). No general trend was readily 

apparent for the maximization of the final concentrations. 
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Table 3. Optimal conditions for growth and production of metabolites according to the developed model. In bold: targeted 

metabolite for each set of operating conditions. Final concentrations and productivities calculated with initial conditions: 

[X]0 = 80 mmol L−1, [S]0 = 100 mmol L−1, [F, A, L, E]0 = 0. 

↑ maximization,  ↓ minimization,  conc.: final concentration,  prod.: batch-average productivity 

A. Target T (°C) pH 
Final Concentrations (mmol L−1) Final Productivities (mmol L−1.h−1) 

X F A L E AT X F A L E AT 

Biomass Bconc.↑ 20.0 7.8 227 129 56 177 73 363 6.56 3.73 1.61 5.11 2.09 10.46 

Formic acid Fconc.↑ 28.0 9.5 133 176 89 123 94 387 1.68 2.20 1.12 1.54 1.18 4.86 

Acetic acid Aconc.↑ 28.0 9.5 133 176 89 123 94 387 1.68 2.20 1.12 1.54 1.18 4.86 

Lactic acid Lconc.↑ 37.0 6.0 180 95 42 296 72 433 1.68 2.20 1.12 1.54 1.18 4.86 

Ethanol Econc.↑ 37.0 9.5 118 147 77 128 139 352 2.35 2.90 1.54 2.54 2.76 6.98 

Ethanol Econc.↓ 27.0 7.6 217 143 62 166 68 372 6.93 4.57 1.98 5.31 2.16 11.86 

Total acids ATconc.↑ 37.0 6.0 180 95 42 296 72 433 3.33 1.76 0.77 5.48 1.33 8.01 

Total acids ATconc.↓ 37.0 9.5 118 147 77 128 139 352 2.35 2.90 1.54 2.54 2.76 6.98 

Biomass Bprod.↑ 33.5 7.5 199 139 64 178 73 382 7.49 5.25 2.41 6.71 2.77 14.38 

Formic acid Fprod.↑ 34.5 8.0 178 148 71 163 82 381 6.77 5.61 2.70 6.18 3.12 14.48 

Acetic acid Aprod.↑ 35.0 8.1 172 148 72 161 85 381 6.49 5.58 2.71 6.06 3.21 14.35 

Lactic acid Lprod.↑ 37.0 7.1 188 123 58 215 78 395 6.60 4.31 2.04 7.54 2.73 13.89 

Ethanol Eprod.↑ 37.0 8.3 158 144 73 162 97 378 5.57 5.08 2.56 5.70 3.43 13.34 

Ethanol Eprod.↓ 28.0 6.0 175 108 41 278 78 427 2.14 1.32 0.50 3.38 0.95 5.20 

Total acids ATprod.↑ 35.5 7.7 184 139 67 177 81 384 7.16 5.41 2.59 6.90 3.13 14.90 

Total acids ATprod.↓ 25.0 9.5 146 173 88 126 87 386 1.71 2.03 1.03 1.48 1.02 4.53 

These data can be useful in optimizing industrial processes involving the growth of 

C. maltaromaticum cells in a trehalose-based substrate. A first application consists of 

producing C. maltaromaticum concentrates, regardless of metabolite production. In this 

case two conditions of cultivation appear advisable: 20 °C and pH 7.8 to maximize 

concentration (227 mmolC·L−1) or 33.5 °C and pH 7.5 in order to maximize productivity 

(7.49 mmolC·L−1·h−1) and thus the biomass production per unit of time, at the expense of a 

12% reduction of the final biomass concentration (199 mmolC·L−1). 

A second application deals with the development and parametrization of time–

temperature integrators (TTI), labels in which a pH decline, associated with acids 

synthesis, entails an irreversible color change from green to red. Modulating the 

acidifying activity of C. maltaromaticum thus allows a reliable shelf-life estimation of 

different food products. Long shelf-lives can be tracked using TTI composed of 

concentrates exhibiting low acidifying activities (minimal production of total acids), while 

short shelf-lives can be tracked using concentrates exhibiting high acidifying activities. In 

the scenario of maximizing acidifying activity, the production of total acids must be 

favored, and thus fermentation should be carried out under two possible conditions: 37.0 

°C and pH 6.0 to maximize their final concentration (433 mmol·L−1) or 35.5 °C and pH 7.7 

to maximize their productivity (14.90 mmol·L−1·h−1). Under these conditions, the biomass 

production decreases respectively by 20% and 4% with respect to its optimal values. If the 

objective is, on the contrary, to minimize acidifying activity, two conditions can be 

envisaged to favor the lowest production of total acids: 37.0 °C and pH 9.5 for a final 

concentration of 352 mmol L−1 or 25.0 °C and pH 9.5 for a final productivity of 4.53 

mmol·L−1·h−1. Under these conditions, the mean biomass production would decrease 

respectively by 48% and 77% with respect to the maximal values. 

Data from Table 3a show that the conditions to minimize the total acids concentration 

(37.0 °C and pH 9.5) coincide with those to maximize the ethanol concentration (the non-

acidifying metabolite, 139 mmol L−1) and lead to a lactic acid concentration close to its 

minimal value (128 mmol L−1 versus the minimum around 120 mmol L−1). Conversely, 

when the production of total acids is maximized, the lactic acid concentration is also 

maximal (296 mmol L−1) and that of ethanol is close to its minimum (72 mmol L−1 versus 

68 mmol L−1). 

Furthermore, it should be noted that the condition 27 °C and pH 7.6 leads both to a 

good biomass productivity (6.93 mmol·L−1·h-1 versus the maximum 7.49 mmol·L−1·h−1) and 



 

 

a low total acids concentration (372 mmol L−1 versus the minimum 352 mmol L−1). 

Cultivation under this condition turns out be advantageous to ally a high biomass 

production and a relatively low total acidification. 

5. Conclusions 

The dynamic model developed in this study is able to predict with satisfactory 

accuracy the growth of C. maltaromaticum CNCM I-3298 (average error of 10%) as well as 

the conversion of trehalose into four primary metabolites (average error of 14%) under a 

wide range of conditions of temperature and pH. The interpolation capability of the model 

was verified with a set of eight independent validation experiments, for which the average 

relative error was 13%. 

This model constitutes a useful tool for optimizing C. maltaromaticum cultures. Based 

on two easily controllable parameters, pH and temperature, it could be implemented in 

industrial applications of food technology to define optimal growth and metabolite 

production conditions with various objectives, such as the maximization of biomass for 

production of bacterium concentrates or the maximization or minimization of the 

acidifying activity. A typical operating condition for this bacterium could be, for instance, 

30.0 °C and pH 7.0. If the goal is to produce bacterium concentrates, to maximize final 

biomass concentration, our results suggest that a quite different condition should be 

selected (20.0 °C and pH 7.8), while for maximum biomass productivity, 33.5 °C and pH 

7.5 is most appropriate. Such results are quite difficult to anticipate from the qualitative 

knowledge of the bacterium alone, and a large number of time-consuming experiments 

would be required to locate these optimal conditions experimentally without constructing 

a dynamic model of the process. 

The effort of developing the model is especially cost effective when a variety of 

scenarios are explored. If the goal is to develop time–temperature integrators (TTI) to track 

the cold-chain of food products, a set of labels with specific shelf-lives has to be designed 

for various target products. The range of desired shelf-lives can be as large as 1 to 30 days, 

requiring very different TTI designs. In a traditional approach, for each desired shelf-life 

duration, a range of factors such as the initial bacterium concentration and the buffer 

properties of the medium have to be explored in a series of relatively time-consuming 

experiments. In such an environment, temperature varies in an arbitrary but known way, 

and pH depends on the produced acids. The presented dynamic model can be extended 

to predict the moment when a specific amount of acids is produced, corresponding to the 

pH-induced color change of the TTI label and hence to the desired shelf-life. Model-based 

design of the TTI labels is expected to be faster and more accurate than a trial and error 

procedure. 

On a more fundamental level, further work is required to incorporate the effect of 

other culture parameters, such as aeration, nutrient concentrations, or the use of a 

different carbon source, which may modify growth kinetics and metabolite production. 

Additionally, it would be relevant to deepen the understanding of inhibition mechanisms 

of the metabolites to give more biological significance to the associated parameters in the 

model. 
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Nomenclature 

A Acetic acid 

E Ethanol 

F Formic acid 

L Lactic acid 

S Carbon substrate (trehalose) 

X Biomass 

EA Enzymatic activation factor 

C (mol·L−1) Concentration (in the calculation of errors and the definition of the inhibition 

factors) 

[i] (mol·L−1) Concentration of species i (substrate, metabolite, biomass) in the culture 

medium (in the system of differential equations) 

Im Production inhibition factor of metabolite m 

IX Biomass growth inhibition factor 

KIm (mol·L−1) Concentration for 50% production rate inhibition of metabolite m 

KIX (molC·L−1) Concentration for 50% growth rate inhibition of biomass 

KSm (mol·L−1) Concentration of production rate saturation of metabolite m 

KSX (molC·L−1) Concentration of biomass growth rate saturation 

molC Carbon-mol of biomass 

n Shape factor of the growth inhibition function 

p Shape factor of the production inhibition function 

pH Potential of hydrogen 

Q (L·h−1) Rate of base addition for pH control 

R Shape factor of the enzymatic activation function 

T (K) Temperature 

TTI Time–temperature indicator 

RMSE Root-mean square error 

RME Relative mean error 

SE Standard error 

t (h) Time 

tlag (h) Lag time 

V (L) Culture medium volume 

Yi/S 

(mol·mol−1) 

Yield of product i on substrate S 

YX/S 

(molC·mol−1) 

Biomass yield on substrate S 

μX (h−1) Specific growth rate  

μmax,X (h−1) Maximal specific growth rate  

πm (h−1) Specific production rate of metabolite m 

πmax,m (h−1) Maximum specific production rate of metabolite m 



 

 

Appendix A 

Appendix A.1. Model Parameter Identification 

Table A1. Residual modelling error with model parameters determined for each experiment and summarized in Table 2. 

  RMSE (Mol L−1) RME (%) 

  X S F A L E A Total X S F A L E A Total 

F01 0.008 0.006 0.010 0.007 0.022 0.007 0.033 4 4 7 13 6 10 7 

F02 0.005 0.007 0.006 0.003 0.004 0.003 0.005 4 16 8 8 8 7 3 

F03 0.005 0.006 0.003 0.001 0.003 0.001 0.006 4 9 3 2 3 2 1 

F04 0.006 0.006 0.003 0.001 0.005 0.002 0.005 7 13 5 5 6 6 3 

F05 0.008 0.005 0.014 0.007 0.027 0.007 0.034 4 4 9 11 10 9 8 

F06 0.006 0.004 0.012 0.005 0.024 0.006 0.012 5 2 7 7 8 8 3 

F07 0.006 0.007 0.011 0.006 0.009 0.006 0.007 4 5 14 33 4 11 2 

F08 0.006 0.007 0.011 0.005 0.030 0.004 0.003 4 5 17 23 8 7 1 

F09 0.004 0.005 0.002 0.001 0.002 0.002 0.003 7 17 6 7 5 6 2 

F10 0.005 0.009 0.006 0.004 0.028 0.004 0.026 3 7 4 7 9 5 6 

F11 0.003 0.018 0.009 0.005 0.011 0.006 0.032 3 27 9 10 9 11 6 

F12 0.005 0.013 0.002 0.001 0.003 0.001 0.004 13 61 3 4 8 2 2 

F13 0.002 0.006 0.012 0.005 0.024 0.005 0.007 2 4 7 6 6 5 2 

F14 0.003 0.003 0.009 0.005 0.012 0.006 0.015 4 3 16 20 5 12 4 

F15 0.009 0.005 0.009 0.006 0.023 0.005 0.011 5 4 7 13 8 8 2 

F16 0.003 0.001 0.001 0.001 0.008 0.001 0.014 2 1 2 4 6 2 3 

Mean 0.005 0.007 0.008 0.004 0.015 0.004 0.014 5 11 8 11 7 7 4 

Response surface model for parameter dependence on fermentation conditions. 

Table A2. Response surface coefficients fitted to experimental data by multiple regression. 

Variable Coefficient µmaxX (h−1) πmaxF (h−1) πmaxA (h−1) πmaxL (h−1) πmaxE (h−1) KIX (Mol L−1) KIm (Mol L−1) 

Constant 
Value (β0) −1.38·101 −1.64·101 −1.74·101 −1.21·101 −1.12·101 −8.61·10−1 1.19·101 

Standard error 0.05·101 0.07·101 0.09·101 0.09·101 0.07·101 0.05·10−1 0.03·101 

T 
Value (β1) 2.63·10−1 2.66·10−1 2.71·10−1 1.82·10−1 1.27·10−1 −1.87·10−1 −5.80·10−1 

Standard error 0.13·10−1 0.26·10−1 0.28·10−1 0.23·10−1 0.14·10−1 0.05·10−1 0.17·10−1 

pH  
Value (β2) 2.42·100 2.89·100 3.01·100 2.27·100 2.02·100 6.65·10−1 −1.27·100 

Standard error 0.11·100 0.14·100 0.19·100 0.16·100 0.13·100 0.45·10−1 0.16·100 

T² 
Value (β3) −4.26·10−3 −3.45·10−3 −3.26·10−3 −2.05·10−3 −1.92·10−3 3.97·10−3 7.95·10−3 

Standard error 0.13·10−3 0.32·10−3 0.33·10−3 0.81·10−3 0.22·10−3 0.09·10−3 0.32·10−3 

pH² 
Value (β4) −1.46·10−1 −1.63·10−1 −1.66·10−1 −1.34·10−1 −1.22·10−1 −4.03·10−2 4.35·10−2 

Standard error 0.06·10−1 0.10·10−1 0.12·10−1 0.10·10−1 0.09·10−1 0.31·10−2 0.55·10−2 

T·pH 
Value (β5) −3.53·10−3 −7.58·10−3 −9.17·10−3 −7.22·10−3 −4.68·10−3 −3.54·10−3 1.86·10−2 

Standard error 0.11·10−3 0.97·10−3 1.17·10−3 0.91·10−3 0.05·10−3 0.06·10−3 0.01·10−2 



 

 

 

Figure A1. Comparison between model parameters determined for each experiment (Table 2) and parameters computed 

with the response surface models (Equation 17 using coefficients in Table A2). 



 

 

Appendix A.2. Model Validation 

Error indicators RMSE and RME for calibration and validation sets are summarized 

in Appendix Table A3. The RME values varied from 1% to 53%, with an average of 15% 

for calibration set and 13% for validation set. Likewise, the average RME was lower than 

15% for most of experiments, except for runs F12 (17%), F15 (18%), F09 (20%), and F16 

(34%). Considering both calibration and validation sets, the average RME was 10% for 

biomass and 14% for substrate and metabolites. 

Table A3. Quality of fit of the model with parameters computed with the response surface models. 

Fermentation 
RMSE (Mol L−1) RME (%) 

X S F A L E At X S F A L E At 

Calibration 

F01 0.010 0.010 0.021 0.010 0.041 0.014 0.033 5 6 14 20 10 18 7 

F03 0.021 0.009 0.008 0.005 0.008 0.003 0.012 15 14 7 9 7 5 4 

F04 0.005 0.010 0.009 0.006 0.007 0.005 0.015 5 26 18 23 9 17 9 

F07 0.012 0.009 0.010 0.006 0.015 0.006 0.009 9 8 13 31 5 10 3 

F12 0.003 0.011 0.008 0.005 0.003 0.004 0.009 8 53 13 16 8 11 6 

F13 0.010 0.007 0.006 0.003 0.036 0.003 0.011 7 5 4 4 8 4 2 

F14 0.015 0.002 0.013 0.007 0.004 0.009 0.012 20 2 23 28 2 16 3 

F16 0.011 0.023 0.033 0.014 0.064 0.018 0.085 9 33 50 45 48 38 18 

Mean 0.011 0.010 0.014 0.007 0.022 0.008 0.023 10 18 18 22 12 15 7 

Validation 

F02 0.005 0.003 0.017 0.009 0.008 0.009 0.007 5 8 20 22 15 21 4 

F05 0.011 0.008 0.007 0.006 0.045 0.005 0.016 7 7 4 8 13 8 4 

F06 0.008 0.009 0.013 0.005 0.044 0.007 0.032 6 5 7 6 11 9 6 

F08 0.009 0.010 0.012 0.006 0.026 0.008 0.003 7 8 19 25 8 14 1 

F09 0.011 0.006 0.005 0.004 0.018 0.004 0.009 19 22 15 24 35 15 7 

F10 0.021 0.014 0.025 0.011 0.063 0.014 0.044 11 10 17 18 20 20 10 

F11 0.018 0.013 0.007 0.003 0.017 0.004 0.050 16 20 7 6 12 8 9 

F15 0.028 0.023 0.026 0.010 0.047 0.014 0.036 15 20 22 21 17 21 7 

Mean 0.014 0.011 0.014 0.007 0.033 0.008 0.025 11 13 14 16 16 15 6 

Model-based optimization of fermentation conditions. 



 

 

 

Figure A2. Evolution of final concentrations (left) and batch-average productivities (right) with temperature and pH for 

biomass, formic acid, and acetic acid. 
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Figure A3 Evolution of final concentrations (left) and batch-average productivities (right) with temperature and pH for 

lactic acid, ethanol, and total acids. 
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