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The development and maintenance of body composition and functions require an adequate
protein intake with a continuous supply of amino acids (AA) to tissues. Body pool and AA
cellular concentrations are tightly controlled and maintained through AA supply (dietary
intake, recycled from proteolysis and de novo synthesis), AA disposal (protein synthesis
and other AA-derived molecules) and AA losses (deamination and oxidation). Different
molecular regulatory pathways are involved in the control of AA sufficiency including the
mechanistic target of rapamycin complex 1, the general control non-derepressible 2/activat-
ing transcription factor 4 system or the fibroblast growth factor 21. There is a tight control of
protein intake, and human subjects and animals appear capable of detecting and adapting
food and protein intake and metabolism in face of foods or diets with different protein con-
tents. A severely protein deficient diet induces lean body mass losses and ingestion of suffi-
cient dietary energy and protein is a prerequisite for body protein synthesis and maintenance
of muscle, bone and other lean tissues and functions. Maintaining adequate protein intake
with age may help preserve muscle mass and strength but there is an ongoing debate as to the
optimal protein intake in older adults. The protein synthesis response to protein intake can
also be enhanced by prior completion of resistance exercise but this effect could be somewhat
reduced in older compared to young individuals and gain in muscle mass and function due
to exercise require regular training over an extended period.

Protein: Amino acid: Regulatory pathways: Nutrient sensing: Metabolism

A daily intake of an adequate quantity of protein from
foods provides nitrogen and amino acid (AA) to support
the synthesis of body proteins and as precursors of vari-
ous nitrogenous and other important compounds in the
body. A continuous supply of AA to tissues, and particu-
larly essential AA (EAA) which are not de novo synthe-
sised in the body, is required for survival, for the
development and maintenance of body composition
and to support AA-dependent metabolic processes and
most if not all physiological functions. AA sufficiency
in the body and in tissues and cells is tightly and continu-
ously controlled through different sensing and signalling
processes that modulate and adapt protein and energy

metabolism and feeding behaviour to prevent or counter-
act protein deficiency and to reach and maintain a well-
balanced protein status.

Molecular mechanisms for the sensing of protein and
amino acid sufficiency

AA play a central role in the metabolism and their body
pool and cellular concentrations are tightly controlled
and maintained through AA supply (dietary intake,
recycled from proteolysis and de novo synthesis), AA dis-
posal (protein synthesis and other AA-derived molecules)
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and AA losses (deamination and oxidation). At the body
and cellular levels, the control and maintenance of AA
sufficiency proceeds through complex sensing and signal-
ling pathways(1). Different mediators, hormones, signal-
ling regulatory molecules and their upstream and
downstream pathways are involved in the control and
maintenance of AA sufficiency including insulin, the
insulin growth factor 1 (IGF1), the fibroblast growth fac-
tor 21 (FGF21), the mechanistic target of rapamycin
(mTOR) complex 1 (mTORC1), the AMP-activated pro-
tein kinase and the general control non-derepressible 2
(GCN2)/activating transcription factor 4 (ATF4) system.
Numerous AA transport processes and transporters
adapt to intracellular AA level and modulate cellular
AA exchange with the extracellular medium through
AA uptake and excretion(1–5).

The cellular availability of AA is involved in the ana-
bolic response to feeding through mRNA translation and
protein synthesis(1,6–10). The mTOR pathway, and more
precisely the mTORC1 complex constituted by the pro-
tein mTOR and the regulatory associated protein of
mTOR is a central regulatory component in the sensing
and signalling of cellular AA sufficiency(9,11–16). It is a
main regulator of cell growth with the capacity to phos-
phorylate target proteins involved in cellular anabolic
pathways including protein synthesis, and in catabolic
pathways including autophagy(17–19). Under low intracel-
lular AA concentration, mTORC1 is inactivated, leading
to reduced protein synthesis and increased proteolysis
through protein autophagy(19). Under high intracellular
AA concentration, mTORC1 is activated, promoting
protein synthesis and inhibiting protein degradation
and autophagy(7). The active mTORC1 complex initiates
mRNA translation and protein synthesis by phosphoryl-
ation of downstream target effectors including the
70-kDa ribosomal protein S6 kinase and the eukaryotic
initiation factor 4E binding proteins 1 and 2(20). The acti-
vation of mTORC1 is associated with its recruitment to
the surface of the lysosome with a direct role in the con-
trol of autophagy and lysosomal biogenesis(21).

Signals that modulate mTORC1 activity and mTORC1-
dependant metabolic pathways involved in the anabolic
response to feeding protein, associate hormones, growth
factors, increased AA concentration as precursors of
protein synthesis and some specific AA also identified
as signal molecules, including particularly leucine, other
branched-chain AA, arginine, glutamine and lysine.
Sestrin2 and CASTOR1 proteins are proposed as mole-
cular sensors for leucine and arginine, inducing through
the same cascade of cellular events mTORC1 activa-
tion(22–25). The ingestion of protein, free branched-chain
AA or free leucine, is associated with higher cellular
uptake of leucine through specific transport systems, its
transfer to the lysosome, the colocalisation of mTORC1
with the lysosome and the activation of mTORC1(26).
Glutamine could increase the cellular uptake of leucine
through solute carriers expressed at the plasma and lyso-
somal membrane and also participate to induce lysosomal
mTORC1 colocalisation and activation(27–29). The inges-
tion of a meal containing 20–30 g leucine-rich proteins
induces the activation of mTORC1 and the stimulation

of skeletal muscle synthesis within 2 h, and this effect is
reinforced by regular physical training(30).

The GCN2/ATF4 system controls AA insufficiency
and imbalance in mammalian cells and subsequently
increases the cellular AA pool by reducing translation
and AA oxidation and enhancing AA uptake and bio-
synthesis(31–33). In these processes, AA and insulin exert
a coordinated action on translation involving mTOR,
AMP-activated protein kinase and GCN2 transduction
pathways and inhibition of AMP-activated protein
kinase and activation of mTOR transduction pathways
are required for the downregulation of the protein ubi-
quitination proteolytic pathway in response to high AA
and insulin concentrations(34,35). A situation of AA defic-
iency induces an increase in uncharged transfer ribo-
nucleic acid that binds to GCN2 with subsequent
phosphorylation of eukaryotic initiation factor-2 and
the glutamate receptor 1. Interestingly, FGF21 is under
the control of GCN2 that senses AA deficiency through
the ATF4 pathway(36,37). FGF21 appears as a signal of
protein insufficiency and has been involved in the down-
stream control of metabolic processes in different organs
(liver, brown adipose tissue and skeletal muscle), such as
lipid oxidation, ketogenesis and glucose uptake, and in
the stimulation of adaptive diet-induced thermogenesis
in response to a low protein diet or to EAA restriction
as shown for leucine, methionine or threonine(36,38–46).
Both energy expenditure and food intake are increased
after intracerebroventricular infusion of FGF21 without
affecting body composition(47,48).

A tight control of protein intake

Subjects are able to detect and adapt food and protein
intake and metabolism to maintain or restore an
adequate protein status in face of different foods or
diets with different protein contents classified as high
(above 25–30% energy as protein), normal (10–20 %
energy), moderately restricted (5–8% energy) or severely
restricted (2–3% energy) in protein(49). Protein and AA
sufficiency is controlled in the body including a control
of the availability of the nine EAA which are not synthe-
sised in the body and must be provided by the diet.

With an adequate or high-protein content of the diet
there is no signal of AA insufficiency, and the control
of food intake is mainly driven by the need for energy
although conditioning and learning processes contribute
to maintain a motivation for consuming protein to pre-
vent protein deficiency. High-protein feeding usually sti-
mulates satiety pathways by increasing anorexigenic
signals and reducing both orexigenic signals and the sen-
sitivity to feeding of reward-driven mechanisms in the
brain(50–53). This is associated with low ghrelin and
high leptin plasma concentrations, low neuropeptide Y
and high proopiomelanocortin levels in the hypothal-
amus(49,51,54–57), increased neuronal activity in the
nucleus of the tractus solitary(51,58,59), reduced neuronal
activity in the amygdala(60) and lower sensitivity of
dopamine-dependent reward pathways to feeding food
and protein(54,61–63). This is also associated with lower
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body weight gain, and fat mass without affecting lean
body mass(64–66). Such high-protein diets have been
repeatedly discussed in the context of body weight man-
agement and prevention or treatment of overweight and
obesity(52,67,68). In human subjects, a protein threshold of
at least 30 g protein is required to increase fullness ratings
and to elicit satiety responses compared to low-protein
preloads(69,70). Interestingly, in rats submitted to food
selection with protein-rich food, there is a trend to choose
a high level of protein intake that is often significantly
above the protein intake required to meet protein needs
derived from nitrogen balance(71–73).

With a diet marginally low in protein, the metabolic
needs for protein are probably the main determinant of
food intake and feeding behaviour, with different strat-
egies such as a preference for protein-rich foods when a
choice is offered or, when no food choice is allowed,
hyperphagia and an increase in food intake(54,71). Many
studies indicate that, to preserve the protein intake with
diets marginally reduced in protein content, subjects usu-
ally tend to eat more than a control group fed an
adequate protein diet if they are not offered a choice in
which protein-rich foods are included(38,74–77). Feeding
moderately deficient low-protein diet or marginally
deficient in some AA more often increases orexigenic
pathways and appetite and motivation for food and
induces an appetite and a preference for protein-rich
foods(78–80), to increase protein intake and compensate
for protein and AA deficiency(75,77,81–84). This correlates
with low concentrations of leptin, insulin and IGF1,
and high concentrations of ghrelin and FGF21 in the
plasma with high levels of neuropeptide Y and cortico-
tropin releasing hormone and low level of proopiomela-
nocortin(38,54,84–90) in the hypothalamus, and with
increased sensitivity of central regions involved in reward
and increased response of reward-driven mechanisms to
foods, protein-rich foods(54) and savoury food cues(80).
In both animals and human subjects, a moderate protein
deficiency produced by foods with a low protein content
or by protein deprivation induces a specific appetite for
protein(91,92).

In rats a moderately low-protein diets induces hyper-
phagia, but the overconsumption of food remains limited
and does not allow to meet an adequate intake of protein,
and therefore, body protein is decreased, whereas growth
and different metabolic pathways are altered(74,75,77). The
higher energy intake also leads to a risk of excess fat
deposition and body fats are increased, but this is also
associated with an increase in energy expenditure that
compensates in part for the overconsumption of energy
and the resulting fat accumulation and adipos-
ity(38,74,75,84,93,94). In human subjects, energy intake is
also increased with a low-protein diet with either a low-
protein high-fat diet or a low-protein high-carbohydrate
diet(95), and this is also associated with an increase in
energy expenditure(90) that could prevent in part for the
excess fat accumulation. The origin of the increase in
energy expenditure in low-protein-fed subjects remains
unclear and has been related to an increase in both
diet-induced thermogenesis in adipose tissue, the cost of
muscle activity and spontaneous activity(74,94,96–99).

It also remains unclear whether the energy expenditure in
low-protein-fed subjects is secondary to the increased
energy intake or if, inversely, it represents the primary
specific response that is responsible for the increase in
energy intake, because according to some studies, the
higher energy expenditure induced by low-protein diets
can occur without hyperphagia(36,100–102).

Severely deficient protein diets (2–3% energy as pro-
tein) or devoid in one EAA usually depress food intake
and induce lower weight, fat mass and lean tissues, and
lower plasma protein concentrations that are characteris-
tic of the status of protein deficiency(54,75). When diets are
severely deficient or devoid of protein or at least one
EAA, both protein or AA intake cannot be efficiently
increased, and this leads to metabolic imbalance that
induces an aversive response to the diet by a learning
process, allowing for detection and rejection of these
diets(103). A diet severely deficient in at least one EAA
is rapidly rejected by rats, and the animals can recognise
the missing EAA when offered a choice between different
foods(104). The deficiency is very rapidly detected within
the hour following the ingestion in relation to the
decrease in the corresponding EAA in the blood, leading
to a rapid decrease in food intake. An incomplete protein
diet is also recognised in human subjects and results in a
decrease in food intake, through a signal of hunger sup-
pression rather than satiation or satiety(105,106). An
extremely low-protein diet or diets severely deficient in
at least one EAA induce imbalanced plasma and brain
AA patterns, producing a conditioned taste aversion to
the diet(107–109). In this process, the decrease of the defici-
ent EAA in the plasma, cerebrospinal fluid and brain is
sensed by GCN2 that subsequently triggers a glutamater-
gic signalling(110). The associated loss of γ-aminobutyric
acid (GABA)ergic/inhibitory control contributes to acti-
vating glutamatergic excitatory circuits, which project to
different brain regions, leading to the modification of
feeding behaviour(111).

Protein intake, protein synthesis and body composition

Protein supply is required for the development and main-
tenance of body composition. A balanced diet provides
an adequate quantity of protein (average requirement
for adults is 0⋅66 g/kg/d according to WHO/FAO) con-
taining an adequate quantity of each of the nine EAA
to support protein synthesis and achieve nitrogen
balance.

A severely protein deficient diet induces lean body
mass losses, and ingestion of sufficient dietary energy
and protein is a prerequisite for body protein synthesis
and maintenance of muscle, bone and other lean tissues
and their functions. Proteins, the main compartment of
AA in the body, are in constant turnover with free-AA
through protein synthesis and degradation, and a small
fraction of free-AA that is lost by oxidation in the mito-
chondria is replaced by AA uptake and non-EAA de
novo synthesis. Protein synthesis, protein degradation
and AA oxidation are regulated by AA availability in
the cell(112–116). In the fed state with increased
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intracellular AA concentrations, protein synthesis is
increased, protein degradation is reduced and AA oxida-
tion is increased, whereas the inverse processes are
induced in the fasting state. Body protein content is
related to protein intake up to a plateau considered to
indicate a well-balanced protein status, and above this
plateau there is no more protein deposition and add-
itional dietary AA are oxidised and lost. The exact
amount of protein intake to meet the requirements for
body remodelling is currently defined as the minimum
amount resulting in a whole-body nitrogen and protein
net balance but this remains debated due to difficulties
in the identification of the more relevant markers to be
used (e.g. nitrogen balance, whole-body protein mass,
muscle mass, bone mass, physical function, immune
function and metabolic function).

There are several mechanisms by which dietary protein
improves muscle and bone mass and strength(117).
Increasing dietary protein increases circulating levels of
IGF1, a key regulatory factor of bone growth but also
of the skeletal response to anabolic signals, and con-
versely, a low-protein diet decreases IGF1(118).
Increasing the availability of AA induces an anabolic
state that stimulates muscle protein synthesis and a
mild suppression of protein breakdown with protein syn-
thesis exceeding breakdown and leading to a positive
protein balance(119–121). There is a direct relationship
between intracellular appearance of AA and muscle pro-
tein synthesis up to a plateau occurring with ingestion of
20–35 g high-quality protein(122–124). However, with
increasing protein ingestion, if protein synthesis rapidly
increases but reaches a plateau, in contrast protein break-
down could decrease more slightly but more continu-
ously even above the amount of protein intake at
which synthesis reach a plateau. This could lead to an
extra net protein balance due to decreased breakdown
although this was not measured at the muscle level but
mainly at the whole body level(125,126). EAA stimulates
protein synthesis while non-EAA does not have any add-
itional effect, and the intracellular availability of EAA is
the primary determinant of the rate of muscle protein
synthesis(127). EAA (especially leucine) and insulin are
anabolic stimuli for muscle and share a common path-
way of action via activation of mTOR(128). The branched
chain AA leucine is a key regulator of anabolic signalling
in skeletal muscles and bind with Sestrin2 to induce pro-
tein synthesis(6,30,127,129–131). However, although leucine
initiates the translational processes, the other EAA are
probably required to efficiently induce a protein synthesis
response following protein intake in human subjects(132).

Dietary protein is important for muscle and bone
development and maintenance. Short-term bed rest or
disuse accelerates the loss of muscle mass, function and
glucose intolerance(133). It is known that muscle inactiv-
ity leads to loss of muscle mass, loss of muscle strength
and reduced muscle oxidative capacity in human sub-
jects(125). Muscle protein synthesis response to protein
intake is reduced in immobilised muscle and an elevated
protein intake could be required to maintain whole-body
postabsorptive protein turnover during inactivity(134,135).
The onset of age-related bone and muscle losses

associated with osteoporosis and sarcopoenia may be
increased or decreased according to lifestyle practices in
early-middle age(70). The loss of muscle and bone tends
to occur at approximately the same time, and changes in
muscle and bone mass are correlated(136,137). Reduction
in muscle mass and functional capacity related to ageing
account for 3–8% reduction in muscle mass per decade,
starting in the fourth or fifth decade of life. There is evi-
dence that mTORC1- and ATF4-mediated AA-sensing
pathways, triggered by impaired AA delivery to skeletal
muscle, reduced the anabolic responses to feeding, even
if the anabolic sensitivity of tissues is not directly
impaired(138,139). Maintaining adequate protein intake
with age may help to preserve muscle mass and
strength(140). There is an ongoing discussion on the opti-
mal protein intake in older adults that could be higher
than usually proposed and on the optimal feeding
profile between meals(141–145). Increasing dietary protein
also resulted in lower markers of bone resorption and
higher circulating levels of IGF1 in healthy older men
and women(146). Additionally, IGF1 and skeletal muscle
fibre decrease in older women fed a low-protein diet, sug-
gesting that increasing IGF1 by increasing dietary pro-
tein intake may promote muscle protein synthesis(147).

Muscle inactivity decreases and muscle activity
increases muscle protein synthesis and the net balance
of AA incorporated into muscle protein, but gain in mus-
cle mass and function due to exercise require regular
training over an extended period of time(125,148).
Exercise sensitises the muscle to AA and potentiates
the rise in protein synthesis that, when repeated over
time, results in gradual radial growth of skeletal muscle
and improved muscle strength and function(149,150).
Protein supplementation during resistance exercise train-
ing increases muscle mass gain with a protein dose-
dependent effect on translational regulation through
mTORC1 signalling that could be enhanced by an
adequate leucine intake(124,144,145,151–153). Regular phys-
ical activity may preserve and even enhance the respon-
siveness of skeletal muscle to protein intake in older
subjects(142). The protein synthesis response to protein
intake can also be enhanced by prior completion of
resistance exercise in older subjects but this effect could
be somewhat lower in older compared to young indivi-
duals(125,148,154–157).

Conclusion

An adequate protein status is required for survival to bal-
ance nitrogen losses, for the development and mainten-
ance of body composition, and to support most if not
all physiological functions. Protein quality is based on
EAA content to meet metabolic needs. The control of
protein sufficiency proceeds through complex sensing
and signalling pathways that control protein and food
consumption and the metabolic response to feeding.
Ingestion of protein promotes body protein synthesis
and maintenance of lean and muscle mass and function
and this effect is potentiated by exercise. These processes
are particularly important to prevent lean body mass
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losses and decreased muscle strength and bone health
with ageing. There is a direct relationship between intra-
cellular appearance of AA and the rate of muscle protein
synthesis. With increasing protein ingestion, body and
muscle protein synthesis increases fast but reaches a plat-
eau above which additionally provided AA are catabo-
lised. Whether ageing is associated with diminished
accretion of muscle proteins after the ingestion of protein
or EAA remains under discussion. The strategies to
improve protein synthesis, lean mass and muscle per-
formance in older subjects, include per meal dose and
frequency of protein consumption. The protein synthesis
response to protein intake can also be enhanced by prior
completion of resistance exercise but this effect could be
somewhat reduced in older compared to young indivi-
duals and gain in muscle mass and function due to exer-
cise requires regular training over an extended period.
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