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Biosynthesis, Accessibility via
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1URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France, 2Department of Chemistry, University of
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Sinapic acid (SinA) and corresponding esters are secondary metabolites abundantly found
in plants of Brassica family. Belonging to the family of p-hydroxycinnamic acids, SinA and
its esters analogues are present in different plant parts and involved in multiple biological
processes in planta. Moreover, these metabolites are also found in relatively large
quantities in agro-industrial wastes. Nowadays, these metabolites are increasingly
drawing attention due to their bioactivities which include antioxidant, anti-microbial,
anti-cancer and UV filtering activities. As a result, these metabolites find applications in
pharmaceutical, cosmetic and food industries. In this context, this article reviews innate
occurrence, biosynthesis, accessibility via chemical synthesis or direct extraction from
agro-industrial wastes. Biological activities of SinA and its main corresponding esters will
also be discussed.
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INTRODUCTION

p-Hydroxycinnamic acids represent one of the most widely distributed chemicals in the plant
kingdom, along with other phenylpropanoids such as flavonoids, stilbenes, and lignans.
p-Hydroxycinnamic acids occur in fruits, vegetables, cereals, and beverages and are involved in
plant tissue development and response to external stress (Nicholson and Hammerschmidt, 1992;
Beckman, 2000).

Primary roles of p-hydroxycinnamic acids in different parts of plants include coloration of flowers
that attract pollinating animals, protection from injurious UV radiation, natural aromas and tastes
that defend against predators, resistances to pathogens, and enhancing the host plants by affecting
the growth of other, neighboring plants (Beckman, 2000).

Sinapoyl esters (SinEs) are the most important p-hydroxycinnamoyl esters present in plants of the
Brassicaceae species (Nićiforović and Abramovič, 2014; Chen, 2016). SinEs possess a p-hydroxyphenol
moiety with two methoxy substituents at the meta-positions. Along with its free acid form sinapic acid
(SinA) (1), many SinEs have been found in plants, such as sinapoyl choline [also known as sinapine (2)],
sinapoyl malate (3), sinapoyl glucose (4), and many more. The structure of SinA and its major
corresponding esters present in this review are illustrated and listed in Figure 1.

SinEs have various biological properties such as antimicrobial (Maddox et al., 2010; Engels et al.,
2012), anti-inflammatory (Yun et al., 2008; Oueslati et al., 2012), anticancer (Oueslati et al., 2012;
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Raj Preeth et al., 2019; Boeing et al., 2020), and anti-anxiety
activities (Yoon et al., 2007). Moreover, it is suggested that SinEs
could be used as food and cosmetic additives, as well as bioactive
compounds in the pharmaceutical industry (Nićiforović and
Abramovič, 2014). SinA, the carboxylic acid form of SinE,
could be employed as a building block for the design of
renewable monomers and polymers (Jaufurally et al., 2016;
Janvier et al., 2017; Hollande et al., 2019).

Here, we review the innate accumulation of
p-hydroxycinnamic acid and its derivatives in Brassica plants,
mainly focusing on SinA and SinE. Moreover, we will discuss
their biosynthesis, accessibility via chemical synthesis or direct
extraction, and biological activities.

INNATE ACCUMULATION OF SINAPIC
ACID AND ITS DERIVATIVES IN BRASSICA

Phenylpropanoids are omnipresent in the plant kingdom and have
been identified in a wide variety of edible plants including fruits,
vegetables, cereals, and spices. The concentration of SinA and its
derivatives varies from one species to another. For instance,
strawberries, Fragaria ananassa L., was reported to possess the
highest concentration of SinE (up to 450.30 μg/g of biomass), while
the lowest concentration was determined in rye Secale cereale L. (a few
µg/g of biomass) (Nićiforović and Abramovič, 2014). The review by
Niciforovic and Abramovic provides a detailed report on the natural
occurrence of these phenolic compounds (Nićiforović andAbramovič,
2014). Within the Brassicaceae vegetables, SinA and its derivatives are
ubiquitously present in both free and esterified forms.Many SinEs have
been identified in different species from Brassica family (Lin and
Harnly, 2010; Cartea et al., 2011). Generally, the concentration of
naturally occurring SinA appears to be lower than its choline ester,
sinapine. The concentrations of SinEs,mainly sinapine, range from8 to

10.4mg/g of biomass, whereas SinA ranges from 0.49 to 2.49mg/g of
biomass (Thiel et al., 2015; Odinot et al., 2017; Reungoat et al., 2020).

The accumulation of phenolic compounds has been probed
within different parts of Brassica plants. Many SinEs have been
identified in edible parts such as leaves, stems, flower buds, and
roots (Fernandes et al., 2007). Malate derivatives were determined
to be the main p-hydroxycinnamic esters presented in the leaves
of pak choi Brassica campestris L subsp. chinensis and Chinese
mustard Brassica junceaCoss (Harbaum et al., 2008). SinA and its
esters have also been found in large amounts within rapeseed
seeds and in their defatted residues. In their study of rapeseed
meal, Laguna et al. reported that the SinA concentration in non-
industrial and industrial meals, after alkaline hydrolysis, was up
to 14.0 and 10.5 mg/g of dry matter, respectively (Laguna et al.,
2019). Another study on aqueous ethanol extracts from mustard
bran (B. juncea) reported that the sinapine concentration was up
to 8.7 mg/g of dry matter (Reungoat et al., 2020).

The accumulation of SinA and its derivatives, along with other
phenylpropanoids, is believed to favor the adaptation process in
plants under environmental stresses. By soaking B. juncea seeds
prior to germination in 24-epibrassinolide, Sharma et al. observed
enhanced accumulation of phenolic compounds in the presence
of imidacloprid (Sharma et al., 2016). The levels of SinA and its
derivatives in seedlings that grew from soaked seeds were
increased by over 100% compared to seedlings derived from
untreated seeds. The accumulation of SinA and its derivatives also
occurred under biotic stress including insect attack and pathogen
infection. Gunnaiah et al. observed that the up-regulation of
phenylpropanoid biosynthesis occurred in wheat infested with
Fusarium graminearum, a fungal plant pathogen (Gunnaiah
et al., 2012). An increased cell wall thickness prompted an
excessive accumulation of SinA and its derivatives in infested
plants, which is thought to be a physiological response to biotic
stress. It was furthermore suggested that Brassica plants

FIGURE 1 | Structures of SinA and its main corresponding esters present in this review.
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accumulate phenolics and other metabolites to enhance survival
rates against environmental stresses, which is in agreement with
Beckman et al.’s suggestion (Beckman, 2000).

The involvement of these secondary metabolites in response to
environmental stresses, however, exacts a cost to the plants with
regard to the energy devoted to accumulating phenolic
compounds, which leads to lower growth rates. In the study
conducted by Moreno et al., chinese cabbage (Brassica rapa L.
subsp. Pekinenesis) grown under sub-optimal conditions
accumulated higher phenolic concentrations than those grown
under optimal conditions (Moreno et al., 2003). The weights of
plants grown under sub-optimal conditions were, as a result,
lower than those grown under optimal conditions.

The accumulation of SinA and its derivatives varies with
the growth environment since these modulate the
physiological state of the plants. We therefore suggest that
adverse environmental factors should be included in future
studies in order to anticipate potential over-accumulation of
these secondary metabolites. The concentration of SinA and
its derivatives in plant can also be used as an indicator to
monitor plant growth and the effects of growth conditions on
plant development.

BIOSYNTHESIS OF SINAPIC ACID AND
DERIVATIVES

Plant growth depends on environmental conditions and accumulating
phenolics enables plants to survive under sub-optimal growth

conditions (Blokhina et al., 2003; Toscano et al., 2019). SinA
and its derivatives, along with other secondary metabolites, are
biosynthesized by plants via a set of chemical reactions (Vogt,
2010). Studying these pathways within plants will therefore allow
us to understand how environmental stresses affect phenolic
accumulation generally, and more specifically, SinA and SinE
in Brassica plants. In recent years, the biosynthesis of these
secondary metabolites has been extensively studied thanks to
the advanced development of model plants including Arabidopsis
thaliana, a member of the Brassica family (Vogt, 2010; Fraser and
Chapple, 2011).

The biosynthesis of SinA derivatives involves the
phenylpropanoid pathway via the formation of shikimate
intermediate (5). This route is composed of three sequential
stages: (i) formation of phenylalanine (6) via the shikimate
pathway; (ii) non-oxidative deamination of 6 followed by
oxygenation to yield activated p-coumaroyl CoA (7); (iii)
further transformations of 7 to afford a broad range of SinEs
(Vogt, 2010). As an example, the biosynthesis of SinE from
erythrose 4-phosphate and phosphoenolpyruvate (PEP) is
shown in Figure 2.

Formation of Phenylalanine Following
Shikimate Pathway (i)
As depicted in Figure 3, the formation of phenylalanine (6) starts
with the 3-deoxy-D-heptulosonate 7-phosphate (DAHP)
synthase-catalyzed condensation of PEP and erythrose 4-
phosphate to afford DAHP (Schmid and Amrhein, 1995). The

FIGURE 2 | Three main stages of SinE biosynthesis: (i): Formation of Phe; (ii): Formation 4-coumaroyl CoA intermediate; (iii) Formation of sinapoyl esters.
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latter is then transformed by 3-dehydroquinate synthase into 3-
dehydroquinate (DHQ) that is subsequently dehydrogenated and
reduced by 3-dehydroquinate dehydratase and the shikimate:
nicotinamide adenine dinucleotide phosphate (NADP)
oxidoreductase, respectively, to afford shikimate (5).

The multi-step conversion of 5 to phenylalanine requires its
conversion to chorismate (8). Shikimate is phosphorylated by
shikimate kinase to yield shikimate 3-phosphate. 5-
Enolpyruvylshikimate 3-phosphate (EPSP) synthase then
installs a phosphoenolpyruvate group at the 5-position.
Finally, chorismate synthase eliminates the phosphate group to
afford 8.

Chorismate (8) is converted to prephenate via a chorismate
mutase-catalyzed Claisen rearrangement of the enolpyruvyl side
chain. Prephenate aminotransferase installs the amino group to
yield arogenate, then this is simultaneously decarboxylated and
dehydrated by arogenate dehydratase to yield 6.

The formation of aromatic amino acids from PEP and erythrose
4-phosphate has been well studied and many of these enzymes
have been isolated and characterized (Herrmann and Weaver,
1999; Maeda and Dudareva, 2012). Detailed discussions of
regulation and mechanisms for each of the enzymes involved in
the shikimate pathway can be found in a number of previously
published reviews (Schmid and Amrhein, 1995; Herrmann and
Weaver, 1999; Maeda and Dudareva, 2012).

Formation of 4-Coumaroyl CoA (ii)
The conversion of phenylalanine (6) to 4-coumaroyl CoA (7)
requires consecutive modifications by phenylalanine ammonia
lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumaroyl
CoA-Ligase (4CL) (Vogt, 2010). The conversion of 4-coumaroyl
CoA to its CoA-linked ester is illustrated in Figure 4.

The first step of this pathway involves the non-oxidative
deamination of phenylalanine (6) catalyzed by PAL (Koukol and
Conn, 1961). The proposed mechanism of PAL is similar to that
of histidine ammonia lyase (MacDonald and D’Cunha, 2007).
Although no exogenous cofactor is required, an electrophile is still
needed for the deamination; hence, the enzyme contains a 3,5-
dihydro-5-methyldiene-4H-imidazol-4-one (9) moiety, formed by
the cyclization and elimination of water from the inner tripeptide
Ala-Ser-Gly (Jun et al., 2018). The mechanism of this conversion is
shown in Figure 5.

C4H belongs to the CYP73A family of P450 enzymes and
catalyzes the hydroxylation of cinnamic acid (10) at the 4-
position, yielding 4-coumaric acid (11). This transformation
requires NADPH-cytochrome P450 reductase, which acts as
an electron donor (Werck-Reichhart and Feyereisen, 2000).
The crystal structure of C4H from Sorghum bicolor (PDB
accession number 6VBY) was recently solved and provides
critical structural insights into the substrate specificity of
this enzyme (Zhang et al., 2020). The mechanism of the

FIGURE 3 | Formation of phenylalanine following the shikimate pathway. Squared boxes indicate relevant intermediates.
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FIGURE 4 | The formation of 4-coumaroyl CoA.

FIGURE 5 | Mechanism of the deamination of phenylalanine catalyzed by PAL.

FIGURE 6 | Mechanism of the formation of p-coumaric acid catalyzed by C4H.
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C4H-catalyzed transformation of 10 into 4-coumaric acid (11)
is described in Figure 6.

The final step of this biosynthetic pathway involves the 4CL-
mediated conversion of (11) into the corresponding Coenzyme-A
thioester (7). A reactionmechanism has been proposed by Knobloch
and Hahlbrock (Knobloch and Hahlbrock, 1975). As depicted in
Figure 4, the activation of 11 requires ATP and a CoA unit. The
substrate specificity of 4CL has been well studied by Lindermayr
et al. (Lindermayr et al., 2003); and. these authors have reported that
recombinant 4CL can utilize several different p-hydroxycinnamic
acids besides 11 including caffeic acid, ferulic acid, and SinA to
afford the corresponding CoA-linked thioesters. The recently
published crystal structure of 4CL provided further insight into
this enzyme with regard to its substrate specificity (Li and Nair,
2015). It is noteworthy that 4CL isoforms also contribute to the
biosynthesis of lignin and other secondary metabolites in addition to
its involvement in the biosynthesis of SinEs (Goujon et al., 2003;
Soubeyrand et al., 2019). The mechanism of the conversion of 10
into 11 is described in Figure 6.

Formation of Sinapic Acids and
Derivatives (iii)
An enzyme-catalyzed conversions of 4-coumaroyl CoA (7) to
other phenolic-CoA esters following pathway of

phenylpropanoid biosynthesis was suggested (Figure 7)
(Boerjan et al., 2003). The first step of this biosynthetic
pathway involves adding a hydroxyl group at the 3-position,
which converts 7 to caffeoyl-CoA (Figure 8). Interestingly, this
modification is catalyzed by p-hydroxycinnamoyl-CoA: quinate
shikimate p-hydroxycinnamoyltransferase (HCT), which also
catalyzes a condensation of 7 with 5 to form the
corresponding p-coumaroyl-shikimate ester (Matsuno et al.,
2009). A hydroxyl group is then added by CYP98A3 to afford
the caffeoyl-shikimate ester. The transformation of caffeoyl-
shikimate ester to caffeoyl-CoA is also catalyzed by HCT.

Caffeoyl CoA is next converted into feruloyl-CoA via
methylation of the 3-hydroxyl by caffeic acid
O-methyltransferase (CMOT). It is noted that this enzyme
also contributes to the defense systems in plants in addition to
its involvement in phenylpropanoid biosynthesis (Wang
et al., 2018). The resulting feruloyl-CoA is furthermore
transformed by cinnamoyl-CoA reductase (CCR) to afford
coniferaldehyde. Ferulate 5-hydroxylase (F5H) then adds a
hydroxyl group onto the coniferaldehyde at the 5-position to
provide 5-hydroxyconiferaldehyde. The 5-hydroxyl is then
methylated by CMOT to yield sinapaldehyde. Finally,
sinapate is formed from sinapaldehyde in the presence of
reduced epidermal fluorescence 1 aldehyde dehydrogenase
(Nair et al., 2004).

FIGURE 7 | Biosynthesis of sinapoyl esters. HCT: p-Hydroxycinnamoyl-CoA: quinate shikimate p-hydroxycinnamoyltransferase; COMT: Caffeic acid
O-methyltransferase; CCR: Cinnamoyl-CoA reductase; F5H: Ferulate 5-hydroxylase; REF: Reduced Epidermal Fluorescence Aldehyde Dehydrogenase.
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Further modifications of sinapate yield three main sinapoyl
esters including sinapine (2), sinapoyl malate (3), and sinapoyl
glucose (4) (Figure 9). It has been suggested that sinapoylglucose:
malate sinapoyltransferase (SMT) is also responsible for the
conversion of sinapate to 4 (Lorenzen et al., 1996). 1-O-
Sinapoylglucose:choline sinapoyltransferase (also known as
sinapine synthase) converts 4 to 2 (Vogt et al., 1993).
Sinapoycholine esterase can also convert 2 back to 1 in order

to provide the required amount of choline during the seedling
stage (Clauß et al., 2011). On the other hand, replacing the
glucose moiety of 4 by malate is catalyzed by sinapoylglucose:
malate sinapoyltransferase (SMT), producing sinapoyl malate (3)
(Lorenzen et al., 1996). By using these three sinapoyl esters as the
main building blocks, plants produce a broad range of SinEs that
are involved in many different biological processes (Nićiforović
and Abramovič, 2014).

FIGURE 8 | Transformation of 4-coumaroyl CoA (7) into caffeoyl CoA.

FIGURE 9 | Biosynthetic modification of sinapate to afford three main SinE in plants.
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CHEMICAL SYNTHETIC PATHWAY OF
SINAPIC ACIDS AND DERIVATIVES

Sinapic Acid
SinA can be readily synthesized chemically via a Knoevenagel-
Doebner condensation of syringaldehyde (12) and malonic acid
(13) in piperidine (Figure 10) (Horbury et al., 2018; Flourat et al.,
2020). Several greener approaches involving microwave
activation (Mouterde and Allais, 2018) or L-proline as a
catalyst in ethanol (Peyrot et al., 2019) have been developed in
order to reduce the use of hazardous base and to enhance the
overall yield and greenness of the synthetic process. Nevertheless,
these improvements also have their own limitations. For example,
substituting L-Pro for piperidine in ethanol requires an extra
purification step by chromatography (Peyrot et al., 2019) whereas
using piperidine as the catalyst requires only a simple acidic
washing to afford pure SinA (Horbury et al., 2018). Taken
together, the current protocols are straightforward and provide
access to SinA; however further improvements should be made in
order to enhance the greenness of the process.

Sinapate Esters
Sinapoyl Choline or Sinapine
Sinapine is omnipresent in Brassica plants. The first synthetic
approach to 2was reported by Clausen et al. (Figure 11) (Clausen
et al., 1982; Clausen et al., 1983). Using SinA isolated from Sinapis
Alba L., and AgNO3, the corresponding SinA-Ag complex was
reacted with bromocholine bromide to afford the pure product
after chromatographic purification. Although pure sinapine was
obtained, there were several drawbacks to this approach including
low overall yield, toxic reagents and waste-generating
purification steps.

Mouterde et al. have recently reported a more
straightforward multigram-scale synthetic process for (2)
(Figure 12) (Mouterde et al., 2020). Their approach relies
on the well-established Knoevenagel-Doebner condensation
of syringaldehyde and choline malonate. This two-step
strategy gives access to desired SinE in a decent overall
yield, while avoiding the use of toxic reagents. This
enhances both the cost-efficiency and the environmental
friendliness of the process. Moreover, this method was
reported to be applicable to other naturally occurring
p-hydroxycinnamic acids such as coumaric, caffeic, and
feruloyl acids. We believe that this approach is, to date,
the most cost- and time-efficient protocol as well as the
most attractive in the context of green chemistry.

Sinapoyl Glucose
Sinapoyl glucose is the precursor of sinapoyl malate (3) in SinE
biosynthesis (Figure 9). The enzymatic conversion of
p-hydroxycinnamic acid into the corresponding glucose
derivative using recombinant Gomphrena globosa sinapate
glucosyltransferase was studied by Matsuba et al. (Matsuba
et al., 2008). This biochemical approach was applicable to
most naturally occurring p-hydroxycinnamic acids such as
ferulic acid, caffeic acid, 4-coumaric acid, and SinA.
Unfortunately, the reported yield was low for sinapoyl and
feruloyl glucose.

Zhu et al. therefore devised another synthetic strategy to
overcome the limitations of the previous method (Zhu and
Ralph, 2011). The authors carried out a stereoselective
glycosylation between a protected glycosyl donor and 4-O-
chloroacetylated p-hydroxycinnamic acids (either ferulic or
sinapic acid) (Figure 13). The subsequent cleavage of the

FIGURE 10 | Synthesis of SinA via a sinapoyl malate-piperidine intermediate following the Knoevenagel-Doebner condensation approach.

FIGURE 11 | Synthesis of sinapine described by Clausen et al.
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chloroacetyl groups was then performed under mild
conditions to yield desired sinapoyl or feruloyl glucose
derivatives. This method successfully furnished the sinapoyl
glucose (4) in high yields. To the best of our knowledge, this

synthetic strategy remains the most efficient way to obtain 4.
Nevertheless, one drawback is that this synthesis requires
multiple protection/deprotection steps for both the sugar
and the p-hydroxycinnamic moieties.

FIGURE 12 | Synthesis of sinapine described by Mouterde et al.

FIGURE 13 | Synthesis of sinapoyl glucose described by Zhu et al.

FIGURE 14 | Synthesis of sinapoyl malate described by Allais et al.
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Sinapoyl Malate
Biosynthesized from sinapoyl glucose (4) in planta, sinapoyl
malate (3) is crucial for regulating lignin biosynthetic enzymes
in plants (Goujon et al., 2003). A total synthesis of 3 was reported
by Allais et al. (Allais et al., 2009). This strategy employed a
convergent approach from sinapic acid (1) and the corresponding
protected malate moiety to afford the desired malate ester
(Figure 14).

Although pure final product was obtained with a decent
yield, the extensive use of toxic solvents along with multiple
protection/deprotection steps throughout the pathway will
likely hinder of the application of this approach at multigram-
scales. With this in mind, Peyrot et al. have devised a more
sustainable and straightforward, protecting group-free
procedure based on the Knoevenagel-Doebner
condensation of syringaldehyde (12) and malic
monomalonate ester (Figure 15) (Peyrot et al., 2020b).
Sinapoyl malate and analogues were thereby obtained in

higher yields. In addition, the method is more
environmentally friendly as it avoids toxic solvents and
reagents as well as waste-generating protection/
deprotection steps. It is noteworthy to mention that
sinapoyl malate (3) also helps plants to protect themselves
from UV radiations.58

Other Sinapoyl Esters
Other synthetic SinEs are of great interest with regard to
their photophysical and biological properties (Dean et al.,
2014; Baker et al., 2018; Peyrot et al., 2020a). Most SinEs are
obtained via Knoevenagel-Doebner condensations (Baker
et al., 2018; Peyrot et al., 2020a). The is more
advantageous than direct acid-catalyzed esterification of
SinA, as it enables access to a larger range of SinEs while
remaining simple and ecologically attractive (e.g., no
protection/deprotection sequences). Some structural
examples are shown in Figure 16.

FIGURE 15 | Synthesis of sinapoyl malate described by Peyrot et al.

FIGURE 16 | Several structural examples of other sinapate esters.

Frontiers in Chemistry | www.frontiersin.org May 2021 | Volume 9 | Article 66460210

Nguyen et al. Sinapic Acid and Its (Non-)Natural Derivatives

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


RECOVERY OF AND PURIFICATION OF
SINAPIC ACID AND DERIVATIVES FROM
BRASSICA BIOMASS

Recovery of Sinapic Acids and Derivatives
From Brassica Biomass
The extraction of bioactive molecules from agro-industrial
wastes has drawn increasing attention (Chuo et al., 2020;
Flourat et al., 2020). The recovery of SinA and derivatives
mainly relies on solid-liquid extraction where water/alcohol
mixtures are often used as the extraction solvent
(Prapakornwiriya and Diosady, 2014; Flourat et al., 2019;
Laguna et al., 2019; Reungoat et al., 2020). Despite its
popularity, only few optimization studies of the extraction
process under these conditions have been reported. Indeed,
most of the authors use high temperatures (close to the boiling
point) to increase the yields of SinA and derivatives. However,
Flourat et al. have optimized extraction conditions of sinapine
from mustard bran using response surface methodology. An
extraction temperature of 55°C with a concentration of 66%
ethanol represents their optimal conditions (Flourat et al.,
2019). Another optimization study revealed that 75°C and
55% ethanol lead to the highest yield from mustard bran
(Reungoat et al., 2020). In summary, optimal conditions to
recover SinA and SinEs from Brassica biomass must be
considered as around 60% of alcohol and temperature
ranged from 50°C to boiling point of using alcohol.
Although water/methanol mixtures have been
conventionally used to recover phenolics from processed
biomass (Lin and Harnly, 2010; Prapakornwiriya and
Diosady, 2014; Laguna et al., 2018), aqueous ethanol
mixtures are more attractive thanks to the low toxicity of
ethanol over the more hazardous methanol (Flourat et al.,
2019; Reungoat et al., 2020).

Solid-liquid extraction using water/alcohol mixtures remain
the conventional method to recover phenolic compounds from
Brassica biomass thanks to its simplicity, time, and cost efficiency.
This method, however, requires an additional purification step, as
the use of mixture alcohol/water also extracts other non-phenolic
compounds such as proteins, glucosinolates, carbohydrates and
many other water-soluble chemicals. A more selective and
straightforward recovery method of these secondary
metabolites remains to be established.

An innovative recovery of SinA and innate SinE under
corresponding alkyl ester form using different alcohols has been
reported by Li and Guo (Li and Guo, 2017). Base-catalyzed alcohol
extraction of rapeseed meal was conducted and followed by a
purification by column chromatography with silica as stationary
phase. The recovery of SinE (methyl sinapate) was reported to be up
to 7.2 mg/g of rapeseed meal. Several alkyl SinEs (including ethyl,
propyl, butyl, hexyl, octyl, decyl and dodecyl sinapate) were
obtained through this method; however, their purification
proved difficult due to the similar polarity of the alcohol and the
corresponding alkyl sinapate ester. It is worth mentioning that the
subsequent valorization of carbohydrates and residual meal was
included into the extraction process. In summary, this method

allows to simultaneously isolate desired phenolic compounds under
corresponding ester forms and other valuable components from
rapeseed meal.

Intensified Recovery of Sinapic Acid and
Derivatives Using Physical Accelerators
Intensified water/alcohol extraction techniques enhance the
recovery of secondary metabolites from various Brassica
biomass samples (Sparr Eskilsson and Björklund, 2000; Li
et al., 2010; Dubie et al., 2013; Nandasiri et al., 2019). These
advanced technologies are more time- and energy-efficient as
compared to conventional extraction methods since they reduce
the extraction temperature as well as the amount of extraction
solvent required. This avoids the need for high alcohol
concentrations and extended extraction durations. In this
context, we provide in this section relevant examples of
intensified SinA and derivative recovery from many that have
reported in the literature.

Physical accelerators, such as ultrasound, have been employed
in a number of studies (Dubie et al., 2013; Szydlowska-Czerniak
and Tulodziecka, 2015; Yu et al., 2016). Dubie et al. reported that
low-frequency, high-intensity ultrasound treatment (20 kHz and
0.5 W/ml) of B. juncea meal improves the aqueous ethanol
extraction. Several parameters, i.e., extraction temperature,
ethanol concentration, sonication duration, and solvent/
material ratio were subjected to a one-factor-at-a-time
optimizations (Dubie et al., 2013). The results show that the
extraction of SinA and derivatives under mild conditions (70%
EtOH/water for 30 min at 25°C) yields comparable results to the
conventional water/ethanol extraction that require an extended
extraction time (70% EtOH for 7 days at room temperature).
These results furthermore confirm the interest of this
intensification strategy.

Microwave-accelerated extraction also enhances the recovery
of bioactive molecules by increasing the motion of free water
molecules within the plant tissue which then releases the target
metabolites (Sparr Eskilsson and Björklund, 2000). This
extraction method is believed to be advantageous compared to
the conventional method (Jokić et al., 2012; Yang et al., 2014;
Zago et al., 2015; Yu et al., 2020). Jokic et al. studied the extraction
of phenolics from broccoli using microwave treatment with
aqueous methanol under optimal conditions (Jokić et al.,
2012). Microwave irradiation reduces extraction time while
enhancing the phenolic concentration in the extracts.
Unfortunately, the relatively high cost of the microwave
apparatus, along with undesired chemical reactions due to the
application of high temperatures during the extraction hinders
wider use of this method, despite its benefits (Khoddami et al.,
2013).

Accelerated solvent extraction (ASE) is a technique carried out
under high pressure and an inert atmosphere with a range of
extraction temperatures from 35 to 200°C. This intensification
method has been applied to recover secondary metabolites from
Brassica biomass (Mohn et al., 2007; Blažević et al., 2020; Nguyen
et al., 2020), including SinA and its derivatives (Li and Guo, 2016;
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Nandasiri et al., 2019). Aqueous alcoholic extraction of phenolics
at high temperature (140–180°C) and high pressure resulted in
better extraction yield than conventional method (Nandasiri
et al., 2019). On the other hand, it was also reported that,
under similar extraction conditions (200°C, 20 min), SinA was
degraded into canolol through decarboxylation (Li and Guo,
2016). The relatively high cost of the extractor apparatus must
also be considered a drawback for industrial scale applications.

Nowadays, supercritical carbon dioxide (Sc-CO2) as extraction
solvent has become attractive as an environmentally friendly
technique for the extraction of secondary metabolites. The
advantages of using Sc-CO2 for phenolic extraction from
canola press cake over conventional methods was reported by
Li et al. (Li et al., 2010). The results show that Sc-CO2 extraction
using ethanol as co-solvent enhances the extraction of phenolics,
with ca. 10 mg of phenolics extracted per gram of dry matter from
selected biomass. In addition, this extraction method appears to
avoid the conversion of sinapine into SinA during the extraction
process. The major drawback is the need for very specific
technical expertise as well as material costs.

Advanced extraction techniques exhibit many advantages in
terms of time, solvent consumption, and energy efficiency.
Ultrasound-accelerated extraction, microwave-assisted
extraction, and Sc-CO2 become more attractive in industrial
scale whereas ASE is the most rapid and efficient method for
recovering valuable chemicals from biomass in laboratory scale.
Taken together, these intensification techniques allow a more
profitable recovery of desired SinA and derivatives from selected
Brassica biomass.

Enzyme Assisted Recovery of Sinapic Acid
and Derivatives
Carbohydrase (Viscozyme L.) and pectinase (Rapidase) were used
to assist the recovery of phenolics from cauliflower (B. oleracea L
var. botrytis) outer leaves by disrupting linkages between
phenolics and cell-wall polymers (Huynh et al., 2014). In this
study, cauliflower leaves were pretreated with either carbohydrase
or pectinase prior to aqueous alcohol extraction of phenolics.
Multiple extraction parameters related to the enzyme

TABLE 1 | Biological activities and properties of SinA and SinEs reported in this review.

Metabolite Biological
activities or
properties

Effects Reference(s)

SinA (1) Antioxidant Good ABTS scavenging activity Hussain et al. (2020)
Antioxidant DPPH, ABTS, hydroxyl, and superoxide radical scavenging Mathew et al. (2015)
UV-filter Good absorption activity within UV-B region Dean et al. (2014)
Antibacterial Inhibition on polygalacturonase- (54%) and polygalacturonic acid lyase

activities (43%) from Erwinia cartovora subsp. carotovra at 400 μg/ml
Lyon and McGill (1989)

Antibacterial High antibacterial activity of extract from rapeseed flour against different
strains of Escherichia coli

Nowak et al. (1992)

Anti-inflammatory Inhibition on different proinflammatory factors such as nitric oxide
synthase, cyclooxygase 2, and proinflammatory cytokines via Factor-ΚB
inactivation

Yun et al. (2008)

Anti-inflammatory Inhibition of monocyte adhesion to lipopolysaccharide-stimulated
endothelial cells

Calabriso et al. (2019)

Anticancer Cytotoxicity and anti-angiogenic activity of SinA-copper oxide
nanoparticles

Raj Preeth et al. (2019)

Anticancer Antitumor activity against colon (Caco-2) and cervical (HeLa, SiHa, and
C33a) human cancer cell lines of extract from Butia odorata noblick fruit

Boeing et al. (2020)

Antidiabetic Amelioration of hyperglycemia in streptozotocin-induced type 1-like
diabetic rats

Cherng et al. (2013)

Antidiabetic Prevention of the progression of diabetes mellitus in streptozotocin-
induced type 2 diabetic rats

Alaofi (2020)

Antihypertensive Effects on systolic blood pressure by attenuating fibrosis and oxidative
stress

Silambarasan et al. (2014)

Anti-anxiety Anxiolytic property mediated via GABAA receptor in mice Yoon et al. (2007)
Methyl/Ethyl sinapate (structure
shown in Figure 16)

UV-filter UV-photostability and absorption of cis-and trans- isomers Baker et al. (2018), Horbury et al.
(2018)

Sinapine (2) Antioxidant Good ABTS scavenging activity Hussain et al. (2020)
Antioxidant 33.2 and 88.4% at a molar ratio of SinA to DPPH• of 0.2 and 0.5,

respectively
Kikuzaki et al. (2002), Nenadis and
Tsimidou (2002)

Antimicrobial Excellent antimicrobial activity against Escherichia coli K12 strain at 10%w
concentration

Mouterde et al. (2020)

Sinapoyl malate (3) Antioxidant DPPH scavenging (EC50 � 10.6 nmol) Peyrot et al. (2020b)
UV-filter Good UV-absorption activity within UV-A (315–400 nm) and UV-B

(280–315 nm) regions
Peyrot et al. (2020a), Peyrot et al.
(2020b)

UV-filter Good absorption activity within UV-B region Dean et al. (2014)
Antibacterial Comparable antibacterial activity to phenoxyethanol Peyrot et al. (2020b)

Sinapoyl glucose (4) Antioxidant 35.8 mM to scavenge 25 × 1018 DPPH radicals Thiyam et al. (2006)
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pretreatment step including type of enzyme, concentration,
incubation temperature, pH, and time were studied. As a
result, enhanced recovery yields were observed in enzyme
pretreated samples.

Another study employing enzyme-assisted extraction of
rapeseed meal was also disclosed by Laguna et al. (Laguna
et al., 2019). Recombinant cinnamoyl or feruloyl esterase from
Aspergillus niger was applied to the methanolic extract of
rapeseed meal in order to hydrolyze ester linkages between
p-hydroxycinnamic acids and carbohydrates. This enhanced
the specific recovery of SinA.

Enzyme-assisted recovery becomes an attractive and
environmentally friendly method to recover SinA and its
derivatives from biomass. This approach is straightforward
and accessible thanks to the convenient operating conditions.
Nevertheless, the substrate specificity and the high cost of using
enzymes limit the wide use of this methodology.

Purification of Recovered Sinapic Acid and
Derivatives
The use of mixture alcohol/water enables the extraction of other
non-phenolic compounds such as proteins, glucosinolates,
carbohydrates and many other water-, alcohol- and water/
alcohol mixture soluble chemicals. Additional process is
therefore necessary in order to recover SinA and derivatives at
the necessary levels of purity.

For this, three technologies are commonly used: membrane
processes, liquid/liquid extraction and adsorption
chromatography. The latter is often employed with many
studies reported in literature (Prapakornwiriya and Diosady,
2014; Thiel et al., 2015; Odinot et al., 2017; Laguna et al.,
2018). Crude biomass extracts were adjusted to acid pH values
prior to loading onto preparative ion exchange columns. Bound
SinA was then eluted with an aqueous alcohol solution. Moreno-
Gonzalez et al. have improved the binding capacity by studying a
large range of anionic resins (Moreno-González et al., 2020). The
authors further showed that, compared to the batch adsorption
method, the column adsorption approach afforded higher
selectivity towards SinA, which led to a higher recovery rate.
Although the adsorption/desorption approach allows an efficient
recovery of SinA on preparative scales, sinapine was not
recovered in its native ester form, as this method takes
advantage of charge differences between sinapine and SinA.

Liquid-liquid extraction (LLE) is commonly used as a
preparation step, at the analytical stage, to measure the
phenolic content in plant extracts. First step consists of
increasing the partition coefficient by acidifying the extracts to
pH 2 (Berthod and Carda-Broch, 2004). Aprotic organic solvents
such as diethyl ether (DE) and ethyl acetate (EA) were then used
to recover desired phenolics (Dabrowski and Sosulski, 1984;
Galanakis et al., 2013). Unfortunately, this technique is
solvent-consuming, and, therefore, does not fit into a
sustainable context.

Membrane processes are also employed to isolate desired
phenolic compounds from Brassica biomass (Xu and Diosady,
2002; Sinichi et al., 2019). Biomass was extracted under usual

alkaline conditions and the extracts were then filtered multiple
times through selected membranes until reaching the optimized
purity. Adjusting pH to acid between filtration steps was often
required to separate desired SinA from proteins and other
undesired compounds (Xu and Diosady, 2002; Sinichi et al.,
2019). The efficiency of these process was reported between 70
and 90%.

Although membrane processes are rapid and efficient
purification techniques, however the purity is lower than that
of adsorption chromatography. Hence, the adsorption
chromatography, despite being cost- and time consuming,
remains the conventional purification method for SinA and
derivatives.

Biological Activities
Along with other ubiquitous p-hydroxycinnamic acids in the
plant kingdom, SinA and its derivatives have been extensively
studied regarding their biological activities (Neelam et al., 2020;
Sova and Saso, 2020). Mainly recognized as potent antioxidant
reagents, these metabolites are particularly of interest regarding
their antibacterial and UV-filter properties along withmany other
health benefits (Taofiq et al., 2017; Sova and Saso, 2020). Here,
biological activities and properties of SinA and its main
corresponding SinEs including sinapine, sinapoyl malate, and
sinapoyl glucose, are discussed and summarized in Table 1.

Antioxidant Activity
Free radical and other oxidizing reagents are generated during
metabolic processes. These compounds lead to oxidative stress in
the body and are often associated to numerous human diseases
(Taofiq et al., 2017; Sova and Saso, 2020). Antioxidant reagents
scavenge these free radical and oxidizing reagents, thus efficiently
reducing their harmful effects (Cartea et al., 2011).

p-Hydroxycinnamic acids including SinA and corresponding
SinEs are prominent as potent antioxidants. The radical
scavenging activity of SinA for 2,2-diphenyl-1-picrylhydrazyl
(DPPH•) was determined to be 33.2 and 88.4% at a molar
ratio of SinA to DPPH• of 0.2 and 0.5, respectively (Kikuzaki
et al., 2002; Nenadis and Tsimidou, 2002). Sinapine, on the other
hand, exhibits even higher antioxidant activity than SinA
(Thiyam et al., 2006). The antioxidant activities of sinapoyl
malate and sinapoyl glucose were reported to be comparable
to conventional antioxidants such as butylated hydroxyanisol
(BHA), butylated hydroxytoluene (BHT), or trolox (Thiyam
et al., 2006; Peyrot et al., 2020b). In addition, antioxidant
activity of Canola meal extract was also studied by Hussain
et al. (Hussain et al., 2020). Their results showed that SinA
and sinapine exhibited good radical scavenging activity
towards 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS). We highly recommend reviews by Niciforovič and
Abramovič (Nićiforović and Abramovič, 2014) and Chen
(Chen, 2016) for further details concerning the free radical
scavenging activity of SinA and other derivatives toward other
free radical molecules such as superoxide anion radicals,
hydroperoxyl radical, hypochlorite, and nitric oxide.

The antioxidant property of p-hydroxycinnamic acids mainly
relies on the hydroxyl group at the para-position (Pei et al., 2016).
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Besides this characteristic functional group, addition of extra
hydroxyl groups on to the phenyl core allows higher radical and
oxidizing reagent scavenging activities. For instance, caffeic acid
shows better antioxidant activity than that of SinA (Mathew et al.,
2015). Furthermore, extra methoxyl group on the
p-hydroxycinnamic acid core further improves the radical
scavenging activities of these metabolites (Mouterde et al., 2020).

UV-Filter Activities
Sunscreen lotions are often advised to avoid permanent skin damages
due to long-term light exposure. p-hydroxycinnamic acids such as
ferulic and caffeic acid are supplemented in these cosmetical products
to improve skin protection efficiency (Kumar and Pruthi, 2014;
Taofiq et al., 2017; Coman and Vodnar, 2020).

As prominent p-hydroxycinnamic acid, SinA and its
derivatives also exhibit high photo-stability and UV-absorption
(Dean et al., 2014; Horbury et al., 2019; Peyrot et al., 2020a). The
photophysical properties of numerous synthetic SinEs were
recently studied by Peyrot et al. (Peyrot et al., 2020a; Peyrot
et al., 2020b) who have reported comparable, or even better,
photo-activities of these synthetic p-hydroxycinnamic acids than
octinoxate (a conventional fossil-based UV-filter reagent) in term
of UV absorption and photostability.

It is noteworthy that the structural conformation of these
metabolite plays an important role in the UV activities. The
activities of SinA and its derivatives are mainly attributed to the
trans-isomers, whereas the cis-isomers have shown limited
absorption thresholds (Baker et al., 2018; Horbury et al., 2018)
and exhibit genotoxicity activity (Sharma et al., 2017). In order to
address this symmetric drawback, addition of an acrylic functional
group by the esterification of SinE allows to negating the
aforementioned negative effects (Horbury et al., 2019).

Antimicrobial Activity
The antimicrobial activities of SinA and its derivatives have also
been well studied. In an early study (Lyon and McGill, 1989), the
antimicrobial activity of SinA against Erwinia carotovora subsp.
carotovora which causes foodborne illness in root vegetables was
reported. Inhibition of a broad range of Gram-negative and
Gram-positive bacteria have also been demonstrated using a
SinA fraction isolated from the ethanolic extract of rapeseed
(Nowak et al., 1992). The antimicrobial activities of sinapine
(Mouterde et al., 2020) and other SinEs (Peyrot et al., 2020b)
against Escherichia coli have also been recently highlighted. These
literature reports strongly suggest that SinA and its derivatives are
potential biobased antimicrobial reagents.

Other Health Benefits
Many human health benefits of SinA and derivatives have been
reported, and these include anti-inflammatory (Yun et al., 2008;
Calabriso et al., 2019), anticancer (Raj Preeth et al., 2019; Boeing et al.,
2020), anti-diabetic (Cherng et al., 2013; Alaofi, 2020), and
antihypertensive properties (Silambarasan et al., 2014) as well as
their protections of the nervous, respiratory, and digestive systems

(Sova and Saso, 2020). For further details on the health benefits of
these metabolites, we highly recommend the reviews by Sova and
Saso (Sova and Saso, 2020) and byNeelam et al. (Neelam et al., 2020).

CONCLUSION

The therapeutic and biological benefits of SinA and its derivatives
have been extensively studied. Although the use of advanced
extraction techniques to recover these metabolites remains limited,
mainly due to their relatively high cost, the accessibility of these
metabolites from biomass extraction has been improved. Meanwhile,
chemical synthesis of natural and non-natural SinEs through
sustainable approaches have been devised to provide a
straightforward access to these molecules while taking into
account the environmental impacts of the processes. Biochemical
studies of SinA and its derivatives have been also been extended to
provide crucial information concerning their innate accumulation
and their important biological roles in plants.

As mentioned above, SinA and its common derivatives
including sinapine, sinapoyl malate, and sinapoyl glucose,
exhibit many valuable properties for human health beyond
their well-known antioxidant and antibacterial activities.
Their photo-physical properties are also important for
applications as biobased UV-filters. Further extended SinEs,
with regards to their interesting biological activities, also
represent attractive ingredients in the pharmaceutical,
cosmetic and food industries.

We believe that SinA and derivates are prospective bio-based
substitutes for conventional antioxidants with regards to their
high antioxidant and antimicrobial activities, along with many
other health benefits. These metabolites are furthermore potential
sustainable and non-toxic alternatives to the conventional UV-
filters that are currently flagged as human- and eco-toxic (Burnett
and Wang, 2011; Krause et al., 2012). Despite several
aforementioned limitations, SinA and its derivatives represent
potential multifunctional chemicals with a bright future that
deserves to be further investigated and developed.
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