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1. Introduction

We propose a new definition of weak dependence for point processes that is an alternative
to the different mixing properties definitions. In the context of processes on R or Rd,
mixing properties of processes are very effective to prove asymptotic results for statistics
that correspond to sum of functions of the variables of the process. The drawback is
that mixing conditions are difficult to check even on simple models and they are not
conservative under simple transformations. [7] defined weak dependence in a way that is
much simpler to check on various models (see [4]). For point processes, mixing has been
extended and studied on examples. [16] showed that strong mixing may be stable under
clustering transformations but φ-mixing is not except under very restrictive assumptions.
[12] proved regular and Brillinger mixing for some Markov point processes. Our aim is
to extend weak dependence as they extended mixing to point processes, to show that
some classes of point processes (Cox and Neyman-Scott processes) are weakly dependent
under mild assumptions.

The second part of the paper is an application of weak dependence to the study of
the asymptotic behaviour of a cluster statistic. This is not only an illustration of the
theorical part; it has its own importance as providing a way to evaluate clustering tests
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powers. Let us recall the applications of cluster detection. Point processes are designed to
model for locations of equivalent individuals on a map; this is the simplest kind of spatial
data available, relevant in forestry for trees, in economics for shops or factories [17], or
in biology for proteins fixed on cell membranes [14]. An introduction to the methods and
applications can be found in [5, 13, 18]. Repartitions are roughly classified in three types:
regular or overdispersed when the local density is everywhere constant, clustered if the
points are grouped and random when the situation is in between. Regularity may procede
from subjacent regularity in local conditions, as for example, when young trees were
planted on a grid. It may also be the result of repulsive interactions between individuals
as selection by concurrence for light. Clusters may derive from local better conditions or
from positive interaction between individuals: for factories they may result from better
local conditions in the access of a ressource; it may also come from mutual interest in
a common formation of an adapted human capital; in a forest it may come either from
better soil conditions or from spreading of seeds of a same mature individual.

Clusters and voids are also observed in random distribution with no interaction and no
local heterogeneity as a homogeneous Poisson process sample. It is therefore essential to
distinguish between clusters resulting from relevant interactions and inhomogeneity or
from complete randomness. A wide literature is devoted to the question of the presence
of significative clusters in spatial repartitions of a set of points. The first step was to pro-
pose a measurement of the clustering of the points. Many statistics have been defined,
counting points in balls centered around fixed locations or points of the observed set. The
Ripley statistic K̂(r) counts the number of couples of points with interdistance less than
a fixed distance r. The distribution of cluster statistics under the homogeneous Pois-
son hypothesis was computed; [11] proposed the first multiscale Kolmogorov-Smirnov,
Cramer-von Mises and chi-square goodness-of-fit tests based on the Ripley statistic for
Poisson processes. [15] use an unbiased Ripley statistic to avoid edge effects. [10] propose
a test that counts the number of points having exactly k neighbors at distance less than r.
Less is known of the distribution of these statistics under counter-hypotheses: general re-
sults have been obtained by [8] for inhomogeneous Poisson processes. But there are still
few results concerning the distribution of cluster statistics under dependent processes
counter-hypotheses, such as Cox processes, Neyman Scott processes or Gibbs processes.
To conclude on dependent point processes, recall that they find applications on the real
line also. In extreme theory, the existence of clusters of values over a threshold has been
studied under mixing conditions. Recently asks and bids arrivals in high-frequency trad-
ing have been modelised by Poisson processes [3]. But the question of clustering in time
of the orders is a challenging problem that may be modelised with weak dependent point
processes on the line.

In this paper, we define a general setting that characterizes weak dependence for point
processes. The dependence is an extension of the weak dependence as defined by [7].
In Section 2, we set the definition and compare it with dependence at finite range. In
section 3, we give conditions for Cox and Neyman-Scott processes to be weakly dependent
in this sense. In section 4, we apply the condition of weak dependence to establish the
central limit theorem of a vector of empty space function statistics computed for different
distances. We conclude with perspectives of further work for other models and statistics.

2. Weak dependence for point processes

Here we give the definition of the generalization of weak dependence for point processes.
First we recall the definition of dependence at finite range. Let X be a point process on
Rd. Let N denote the corresponding counting process. For convenience, we will use the
L1-distance in Rd.
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2.1. Definition

The simplest notion of weak dependence is the finite range dependence:

Definition 2.1 X is a point process with dependence range r if for any compact subsets
A and B of Rd such that the distance between A and B is more than r then N(A) and
N(B) are independent.

This definition is equivalent to the condition that for any square integrable functions f
and g

Cov (f(N(A), g(N(B))) = 0.

It will be relaxed in two ways, by considering bounded functions and bounding the
covariance by a sequence decreasing to zero when the interdistance r tends to infinity.
This leads to a definition of weak dependence that mimics the definition of [7] for time
series and fields.

Definition 2.2 X is a η-weakly dependent point process with rate η(r) if for any in-
tegers u and v, any bounded real functions f on Ru and g on Rv, any collection of
non-intersecting compact sets (Ai)i=1,...,u of Rd and any collection of non-intersecting
compact sets (Bj)j=1,...,v such that the distance between

⋃
i=1...,uAi and

⋃
j=1...,v Bj is

more than r then

|Cov (f(N(A1), . . . , N(Au)), g(N(B1), . . . , N(Bv))) |

≤ ψ ((Ai)i=1,...,u, (Bj)j=1,...,v) ‖g‖∞‖f‖∞η(r). (1)

The set function ψ is in general
∑u

i=1 1 ∨ δ(Ai)d +
∑v

j=1 1 ∨ δ(Bj)d, where δ(K) is
the diameter of the compact set K. But for Neyman-Scott processes, we will also use
a different version of η-weak dependence, replacing ψ is by its square. We will use the
short notation ψ ((Ai), (Bj)) in formulas.
Remarks:

• The counting variables N(Ai) for compact sets Ai generate the σ-algebra generated
by the point process. They are the reference variables adapted to the study of the
dependence in the process. This covariance inequality will be used to prove the Central
Limit Theorem for cluster statistics.

• The definition may be extended to processes with count expectations that are contin-
uous with respect to another measure than the Lebesgue measure. The ψ function is
then written with respect to this measure.

Note that the superimposition of two independent processes with dependence range r
has dependence range r. The same property holds for weak dependent processes:

Proposition 2.1 Consider two independent point processes X and Y . If these processes
are η-weakly dependent with rates ηX(r) and ηY (r) respectively then their superimposition
is η-weakly dependent with rate ηX(r) + ηY (r).

Proof. Define Z as the superimposition of X and Y . Denote N its counting process;
denote

ZA = f(N(A1), . . . , N(Au))

ZB = g(N(B1), . . . , N(Bv)).
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Denote NX and NY the counting processes of X and Y . Let nx and ny be elements of
Nu and px and py be elements of Nv. Let n = nx + ny and p = px + py. Denote

PXAB(nx,px)=P
(
(NX(A1), ..., N

X(Au))=nx, (NX(B1), ..., N
X(Bv))=px

)
PXA(nx)=P

(
(NX(A1), ..., N

X(Au))=nx
)
.

Because X and Y are independent:

Cov (ZA, ZB) =
∑

nx,ny,px,py

f (n) g (p)×

(PXAB(nx,px)PY AB(ny,py)− PXA(nx)PY A(ny)PXB(px)PY B(py)).

The probabilities may be split into two parts:

Cov (ZA, ZB) =∑
nx,px

PXAB(nx,px)
∑
ny,py

f (n) g (p) (PY AB(ny,py)− PY A(ny)PY B(py))

+
∑
ny,py

PY A(ny)PY B(py)
∑
nx,px

f (n) g (p) (PXAB(nx,px)− PXA(nx)PXB(px))

so that

|Cov (ZA, ZB) | ≤
∑
nx,px

PXAB(nx,px)‖g‖∞‖f‖∞ψ ((Ai), (Bj)) η
Y (r)

+
∑
ny,py

PY A(ny)PY B(py)‖g‖∞‖f‖∞ψ ((Ai), (Bj)) η
X(r)

≤ ‖g‖∞‖f‖∞ψ ((Ai), (Bj)) (ηY (r) + ηX(r)).

�

As a direct corollary of Definition 2.2, we get a bound for products of count variables,
when the count process itself is bounded (for example, when the total number of points
is fixed).

Proposition 2.2 Assume that X is a η-weakly dependent point process and that its
count process is bounded by a constant M . Let (Ai)i=1,...,u and (Bj)j=1,...,v be two finite
collections of compact sets separated by a distance r.∣∣∣∣∣∣Cov

 u∏
i=1

N(Ai),

v∏
j=1

N(Bj)

∣∣∣∣∣∣ ≤ ψ ((Ai), (Bj))M
u+vη(r).

3. Examples

In this section, we show that some well known classes of processes are η-weakly dependent
under relatively mild assumptions.
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3.1. A simple example on the line

We first build a simple process that is weakly dependent in the sense of Proposition
2.2 but not strongly mixing. Recall the time series defined in [1] : let (εi)i∈Z be a i.i.d.
Bernoulli sequence with parameter p = 1/2. Define the stationary linear process

Xn =
∑
i>0

2−iεn−i;

Note that Xn is uniform in [0, 1]; one can use a binary representation Xn =
0.εn−1...εn−i.... The sequence (Xn) is weakly dependent (see [6]) but not regularly mix-
ing, because X0 is a deterministic function of Xn; deleting the n first binary digits of
Xn gives X0. Define the point process Z on the positive halfline with one point in each
unit interval: Pn is the only point in [n, n+ 1) and is located at n+Xn. then this point
process is not regularly mixing in the sense of theorem 2 of [12], because the location of
Pn determines the location of P0. We begin the study of the dependence of this process.
Define A(n, k) as a dyadic interval of length 2−k in [n, n+ 1] and B(n+ r, k′) as a dyadic
interval of length 2−k

′
in [n+ r, n+ r+ 1]; denote I the event {P0 ∈ A} and J the event

{Pn ∈ B}.

• If k′ ≤ r, the set of εi involved in the definition of I and J have no intersection. I and
J are independent. Thus P(I ∩ J)− P(I)P(J) = 0.

• If k′ > r, then the k′ − r first digits of the location of P0 are known, so that P0 ∈ C,
where C is the dyadic interval of length 2−k

′+r corresponding to these first digits.
◦ If A ∩ C = ∅ then P(I ∩ J) = 0 so that |P(I ∩ J)− P(I)P(J)| = 2−k2−k

′ ≤ 2−k2−r.
◦ If A∩C 6= ∅ and k > k′−r then I ⊂ J and k+r of the εi are fixed in the definition of
I∩J so that P(I∩J) ≤ 2−k−r and |P(I∩J)−P(I)P(J)| = 2−k(2−r−2−k

′
) ≤ 2−k2−r.

◦ If A ∩ C 6= ∅ and k ≤ k′ − r then J ⊂ I and E(I ∩ J) = P(J) = 2−k
′

so that
|P(I ∩ J)− P(I)P(J)| = 2−k

′
(1− 2−k) ≤ 2−k

′ ≤ 2−k−r.

Consider now two collections (A(ki, ni))i=1,...,u and (B(k′j , n
′
j) =j=1,...,v) of dyadic in-

tervals with n1 < . . . < nu < n′1 + r < . . . < n′v. We give a bound to cA,B =
Cov (

∏u
i=1N(Ai),

∏v
i=1N(Bj)) .

• If for all j, n′j − k′j > nu,
∏u
i=1N(Ai) and

∏v
i=1N(Bj) are independent.

• If not, define jm as the index corresponding to the minimum value of n′j − k′j . Then

the n′jm−k
′
jm
−nu first digits of the location of Pnu

are known, so that Pnu
∈ C, where

C is the corresponding dyadic interval of length 2n
′
j−k′j−nu .

◦ If A(ku, nu) ∩ C = ∅ then E(
∏u
i=1N(Ai)

∏v
i=1N(Bj)) = 0 so that |cA,B| =

2−ku2−k
′
j ≤ 2−ku2−r.

◦ If A(ku, nu) ∩ C 6= ∅ and ku > k′j − n′j + nu then ku + n′j − nu of the εi are fixed in

the definition of (
∏u
i=1N(Ai)

∏v
i=1N(Bj)) so that |E(

∏u
i=1N(Ai)

∏v
i=1N(Bj))| ≤

2−ku−n
′
j+nu and |E(

∏u
i=1N(Ai))E(

∏v
i=1N(Bj))| ≤ 2−ku−k

′
j . We get |cA,B| ≤

2.2−ku2−r.
◦ If A(ku, nu)∩C 6= ∅ and a ku ≤ k′j−n′j+nu then k′j of the εi are fixed in the definition

of (
∏u
i=1N(Ai)

∏v
i=1N(Bj)) and so that |E(

∏u
i=1N(Ai)

∏v
i=1N(Bj))| ≤ 2−k

′
j . We

get |cA,B| ≤ 2−k
′
j (1 + 2−ku) ≤ 2.2−ku2−r.

From this, we get proposition 2.2 with M = 1 and η(r) = 21−r.
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3.2. Neyman-Scott process

Recall that a Neyman-Scott process is defined as follows. First, germs of the process
are drawn following a homogeneous Poisson process. Then each germ is replaced by
its offspring. The offspring process is an inhomogeneous point process centered on the
corresponding germ. The offsprings of the different germs are identically independently
distributed (up to translation to the parent germ).

Proposition 3.1 A Neyman-Scott process with an offspring process with compact sup-
port K in the ball B(0, r/2) is dependent with range r.

Proof. Note that the offspring process has dependence range r, because if two sets
have interdistance larger than r, one of them is constantly void. Assume that
the two collections of sets (Ai) and (Bj) have interdistance larger than r. Denote
XA = f(N(A1), . . . , N(Au)) and XB = g(N(B1), . . . , N(Bv)). Define AK = {x :
there exist y ∈ ∪iAi, z ∈ K such that x = y + z} and BK = {x : there exist y ∈
∪iBi, z ∈ K such that x = y + z}. Then, XA depends only on offsprings of germs lo-
cated in AK and XB depends only on offsprings of germs located in BK . As these two sets
do not intersect the corresponding offspring points comes from independent populations
so that Cov (XA, XB) = 0. �

Assume now that the offspring process is an inhomogeneous Poisson process with an
isotropic intensity ρ(r). Define pO(r) as the probability that the offspring process has no
points outside the ball of radius r:

pO(r) = exp

(
−
∫ ∞
r

ad−1ρ(s)sd−1ds

)
where ad = 2π(d+1)/2/Γ((d+1)/2) is the measure of the d-dimensional unit sphere. Define
P (δ, r) as the probability that for a given ball B(0, δ), at least one point in B(0, δ) comes
from out of the ball B(0, δ + r). Then

P (δ, r) ≤
∫ ∞
r

λad−1(1− pO(s))(s+ δ)d−1ds

≤ 2d−1λad−1

∫ ∞
r

(1− pO(s))(s ∨ δ)d−1ds

≤ 2d−1λad−1

(
δd−1

∫ ∞
r

(1− pO(s))ds+

∫ ∞
r

(1− pO(s))sd−1ds

)
≤ (1 ∨ δd)λf1(r) + λf2(r),

with f1(r) = 2d−1ad−1
∫∞
r (1− pO(s))ds and f2(r) = 2d−1ad−1

∫∞
r (1− pO(s))sd−1ds.

Proposition 3.2 If the offspring process is an inhomogeneous Poisson process such that
f2(r) tends to zero, then the corresponding Neyman-Scott process is η-weakly dependent.
Its rate η(r) is less than λ(f1(r/2)+f2(r/2)), where λ is the intensity of the germ process.

Proof. Denote XA = f(N(A1), . . . , N(Au)) and XB = g(N(B1), . . . , N(Bv)). Let m =
(Fi)i∈N be the locations of the germs, then

Cov (XA, XB) = E Cov (XA, XB|m) + Cov (E(XA|m),E(XB|m)) .

Conditionally to the germ process, the process is a countable superimposition of inho-

6
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mogeneous Poisson processes, that is, an inhomogeneous Poisson process itself so that
the first covariance is zero.
Denote YA = E(XA|m) and YB = E(XA|m). We distinguish points that come from
close germs from the others. As δ(Ai) is the diameter of Ai, there exists a ball of ra-
dius δ(Ai)/2 that contains Ai. Inflating this ball to a radius (δ(Ai) + r)/2 gives a ball
Ari containing the r/2-neighborhood of Ai. Let Ar = ∪i=1...uA

r
i and Br = ∪j=1...vB

r
j .

Define N loc(A1) as the number of points that are offsprings of germs inside Ar and
Y loc
A = f(N loc(A1), . . . , N

loc(Au)):

|YA − Y loc
A | ≤ 2‖f‖∞

u∑
i=1

I{N(Ai) 6= N loc(Ai)}.

Define similarly Y loc
B with respect to YB, then:

|YB − Y loc
B | ≤ 2‖g‖∞

v∑
i=1

I{N(Bi) 6= N loc(Bi)}.

Define ZA, Z locA , ZB and Z locB as the recentered variables corresponding to YA, Y loc
A , YB

and Y loc
B . As E

(
I{N(Ai) 6= N loc(Ai)}

)
≤ P (δ(Ai), r/2), we get

E|ZA − Z locA | ≤ 4‖f‖∞
u∑
i=1

P (δ(Ai), r/2)

E|ZB − Z locB | ≤ 4‖g‖∞
v∑
i=1

P (δ(Bi), r/2)

so that

|Cov (YA, YB)− Cov
(
Y loc
A , Y loc

B

)
|

≤
∣∣∣E(ZA(ZB − Z locB )

)∣∣∣+
∣∣∣E((ZA − Z locA )Z locB

)∣∣∣
≤ 4‖g‖∞‖f‖∞

(
u∑
i=1

P (δ(Ai), r/2) +

v∑
i=1

P (δ(Bi), r/2)

)
.

But Y loc
A and Y loc

B are independent so that

|Cov (YA, YB)) | ≤ 4‖g‖∞‖f‖∞ [ψ((Ai), (Bi))f1(r/2) + (u+ v)f2(r/2)]

≤ 4‖g‖∞‖f‖∞ψ((Ai), (Bj)) (f1(r/2) + f2(r/2)) .

and

|Cov (XA, XB) | ≤ 4‖g‖∞‖f‖∞ψ((Ai), (Bj)) (f1(r/2) + f2(r/2)) .

�

Now we can mix the weak dependence effect coming from possible superimposition of
independent offspring populations as in the preceding process and a weak dependence
inherited from the weak dependence of the offspring process itself.
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Proposition 3.3 If the offspring process is η-weakly dependent and its intensity is
isotropic and such that f2(r) tends to zero, then the corresponding Neyman-Scott process
is η-weakly dependent. Its rate is

η(r) ≤ λ
(

2d−1ad−1
2d

(2d + rd)ηO(r) + 8 (f1(r/2) + f2(r/2))

)
,

where λ is the intensity of the germ process and ηO(r) is the rate of the offspring process.
The set function ψ has to be replaced by ψ2.

This leads to a new class of stationary processes that can be used for modelling two
scales effects. Assume that the offspring process is repulsive. Then we observe clusters
with size depending on the range of the intensity of the offspring process and repulsive
effects at a lesser range between points of the offspring.

Proof. The only difference with the preceding result comes from the first term, for which
we use the weak dependence property. Let R be a distance and UR be the union of balls
(Ai)

R or (Bj)
R each covering the R-neighborhood of the corresponding compact set in

the collection (Ai) or (Bj). We consider the process as the independent superimposition
of the offspring processes of germs in UR and the offspring processes of germs outside
UR. Let N be the number of germs that are in UR and u = (ui)i,...,N their locations. Let
v = (vi)i∈N be the collection of germs that are outside UR. Define YA as the value of XA

obtained when erasing all the offsprings of the germs of v. then:

Cov (XA, XB) = E Cov (XA, XB|u,v) + Cov (E(XA|u,v),E(XB|u,v)) .

|Cov (XA, XB|u,v)− Cov (YA, YB) | ≤ 4‖g‖∞‖f‖∞ψ((Ai), (Bj)) (f1(R) + f2(R))).

Conditionally to the germ process, YA and YB result from is the superimposition of N
independent η-weakly dependent processes, so that, following proposition 2.1:

|Cov (YA, YB) | ≤ N‖g‖∞‖f‖∞ψ((Ai), (Bj))η
O(r).

Integrating with respect to the locations ui keeps the bound unchanged. Integrating with
respect to N gives

|E Cov (YA, YB)| ≤ ‖g‖∞‖f‖∞ψ((Ai), (Bj))λm(UR)ηO(r).

Note that

m(ARi ) ≤ 2d−1ad−1
d

(
δ(Ai)

d +Rd
)

and

m(UR) ≤ 2d−1ad−1
d

(
u∑
i=1

δ(Ai)
d +

v∑
i=1

δ(Bi)
d + (u+ v)Rd

)

≤ 2d−1ad−1
d

ψ((Ai), (Bj))(1 +Rd).

8
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|E Cov (XA, XB|u,v)| ≤ λ‖g‖∞‖f‖∞ψ2((Ai), (Bj))

×
(

2d−1ad−1
d

(1 +Rd)ηO(r) + 4 (f1(R) + f2(R))

)
.

The bound of the second term is unchanged:

|Cov (E(XA|u,v),E(XB|u,v)) | ≤ 4‖g‖∞‖f‖∞ψ((Ai), (Bj)) (f1(r/2) + f2(r/2))).

so that

|Cov (XA, XB) | ≤ λ‖g‖∞‖f‖∞ψ2((Ai), (Bj))

×
(

2d−1ad−1
d

(1 +Rd)ηO(r) + 4 (f1(R) + f2(R) + f1(r/2) + f2(r/2))

)
.

A rough bound may be obtained by choosing R = r/2, leading to the result. But R may
be also be chosen less than this value to balance the first and second term. �

3.3. Cox process

We consider Cox processes whose random measure of intensity is continuous with respect
to the Lebesgue measure of the plane:

Definition 3.1 Consider a stationary positive bounded Lipschitz field Z on Rd. The
Cox process is the point process that is conditionally to Z an inhomogeneous Poisson
process of intensity Z.

The weak dependence property is inherited from the weak dependence property of the
intensity field (see [4]): recall that a field is η-weakly dependent with rate η(r) if for any
integers u and v, any bounded real functions f on (Rd)u and g on (Rd)v that are Lipschitz
with respect to the L1-norm, any sequences (xi)i=1...,u and (yj)i=1...,v of Rd such that the
distance between the xi’s and the yj ’s is more than r then :

|Cov (f(x1, . . . , xu), g(y1, . . . , yv)) | ≤ (u‖g‖∞Lip (f) + v‖f‖∞Lip (g))η(r).

Proposition 3.4 A Cox process is η-weakly dependent with rate η(r) if its intensity field
is bounded, Lipschitz and η-weakly dependent with rate ηZ(r), and η(r) ≤ (4K/ad)ηZ(r),
where K is the Lipschitz constant of Z.

Proof. Define XA and XB as in the preceding section, then:

Cov (XA, XB) = E Cov (XA, XB|Z) + Cov (E(XA|Z),E(XB|Z)) .

Conditionally to Z, X is a Poisson process. The first term is zero because the counting
processes N(Ai) and N(Bj) are independent for a Poisson process as soon as the sets

9
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are non intersecting. Then

E(XA|Z) =
∞∑

n1,...,nu=0

f (n1, . . . , nu)
u∏
i=1

P(N(Ai) = ni)

=
∞∑

n1,...,nu=0

f (n1, . . . , nu)
u∏
i=1

fni
(Z(Ai)).

where fn(x) = e−xxn/n!. Define

F (x1, . . . , xu) =
∞∑

n1,...,nu=0

f (n1, . . . , nu)
u∏
i=1

fni
(xi).

Then E(XA|Z) = F (Z(A1), . . . , Z(Au)). We first prove that F is Lipschitz. Recall that
fn(x) is a bounded and C1 function with derivative f ′n(x) = e−x(nxn−1 − xn)/n!. Then

∣∣∣∣ ∂F∂x1 (x1, · · · , xu)

∣∣∣∣ ≤ ∞∑
n1,...,nu=0

|f (n1, . . . , nu)|

× (n1x
n1−1
1 + xn1

1 )
e−x1

n1!

u∏
i=2

fni
(xi)

≤ ‖f‖∞
∞∑

n1,...,nu=0

(n1x
n1−1
1 + xn1

1 )
e−x1

n1!

u∏
i=2

fni
(xi)

≤ ‖f‖∞
∞∑

n1=0

(n1x
n1−1
1 + xn1

1 )
e−x1

n1!

u∏
i=2

∞∑
ni=0

fni
(xi)

≤ 2‖f‖∞

and the same bound is true with the other partial derivatives so that the Lipschitz
coefficient of F is less than 2‖f‖∞. Let (Ai,j)j∈Ji

be a collection of partitions of Ai such
that the diameters of the Ai,j are less than ε. Fix a point xi,j in each of the Ai,j . Then

Z(Ai) =

∫
Ai

Z(x)dx = Z̄(Ai) +Ri,

with |Ri| ≤ m(Ai)Kε and

Z̄(Ai) =
∑
j∈Ji

m(Ai,j)Z(xi,j).

Then

|Cov (XA, XB)|≤
∣∣Cov

(
F (Z̄(A1), · · · , Z̄(Au)), G(Z̄(B1), · · · , Z̄(Bu))

)∣∣
+‖g‖∞E

∣∣F (Z(A1), · · · , Z(Au))− F (Z̄(A1), · · · , Z̄(Au))
∣∣

+‖f‖∞E
∣∣G(Z(B1), · · · , Z(Bu))−G(Z̄(B1), · · · , Z̄(Bu))

∣∣ .

10
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Write F (Z̄(A1), · · · , Z̄(Au)) = F̄ (((xi,j)i=1,..u;j∈Ji
) then Lip F̄ ≤ 2‖f‖∞εdK and the

number of xi,j is less than ε−d
∑
m(Ai).

∣∣Cov
(
F (Z̄(A1), · · · , Z̄(Au)), G(Z̄(B1), · · · , Z̄(Bu))

)∣∣
≤ 2‖g‖∞‖f‖∞

 u∑
i=1

m(Ai) +
v∑
j=1

m(Bj)

KηZ(r)

≤ 2‖g‖∞‖f‖∞ψ((Ai), (Bj))(K/a
d)ηZ(r)

E
∣∣F (Z(A1), · · · , Z(Au))− F (Z̄(A1), · · · , Z̄(Au))

∣∣ ≤ 2‖f‖∞Kε
u∑
i=1

m(Ai)

Choosing ε < ηr gives the result. �

4. Empty space function

Recall that the empty space function F (r) is the probability that a fixed point of the space
has no sample point at distance less than r. This function is used alone or together with
the G(r) function corresponding to the probability that the nearest neighbor of a point
in the sample is at distance greater than r . These two functions are known and equal
in the case of a homogeneous Poisson process. The empirical empty space function and
the empirical nearest neighbor function are summary statistics used to detect regularity
(F (r) < G(r)) or clustering (G(r) < F (r)) for a small scale r (see [5] and [9]). In the
section, we prove the Central Limit Theorem for the empirical estimator Fn(r) under the
weak dependence assumption.

4.1. Assumptions and notations

We assume that we observe samples of a η-weakly dependent process on the set An =
[0, n]d and that the size n goes to infinity. Fix a grid step 1/k, where k > 0 is an integer.
Divide An in (nk)d cube of side 1/k and consider the regular grid G formed by the
centers (mi)i∈{0,...,nk}d of these cubes. Given a distance r < 1/(2k) , the statistic counts

the number of points of the grid that have no sample points at distance L1 less than r:

F̂n(k, r) =
1

(nk)d

∑
i∈{0,...,nk−1}d

I{N(Ci,r)) = 0},

where Ci,r is a cube centered in mi with half side r. Note that this statistic is a count,
so that it is additive with respect to sets. Define ηi(r) = I{N(Ci,r)) = 0} and ζi(r) =
ηi(r)− E(ηi(r)) then

F̂n(r)− E(F̂n(r)) =
1

(nk)d

∑
i∈{0,...,nk−1}d

ζi(r).

11



December 7, 2015 Statistics: A Journal of Theoretical and Applied Statistics weakdepst4

4.2. Central Limit Theorem for the empirical empty space function

We show that a normalized vector of empirical empty space function for different r
converges in distribution to a normal vector. For this statistic is a M -statistic, we can
apply results on sums of weak dependent variables to prove the following CLT:

Theorem 4.1 Assume that X is a η-weakly dependent point process

• η(r) ≤ C, if r < 1
• η(r) ≤ Cr−γ, if r ≥ 1,

with C > 1 and γ > 5d/3. Let ` be an integer, 0 < r1 < . . . < r` <
1

2k
a set of reals, and

denote Fn = (F̂n(r1), . . . , F̂n(r`)):

(nk)d/2(Fn − E(Fn)) −→ N (0,Σ)

where Σs,t =
∑

i∈Zd Cov (ζ0(rs), ζi(rt)).

Proof. We prove the theorem for the special case where k = 1. Then for k > 1, we
consider the rescaled process where all distances are multiplied by k and observe it on
A′(n) = [0, n′]d with n′ = kn. The empty space empirical function F̂n(k, r) for the original

process X is equal to F̂n′(1, kr) for the rescaled process X ′ and X ′ is η-weak dependent for
η′(r) = η(kr). Defining C ′ = max(1, Ck−γ), X ′ satisfies the weak dependence property
and we may apply the result for k = 1.
Fix k=1. We prove first that the series defining the covariance matrix is convergent. Note
that if two grid points mi and mj have interdistance j > 1, the corresponding variables
ζi(rs) and ζj(rt) are counting measures on cubes with interdistance j − rs − rt and

Cov (ζi(rs), ζi(rt)) ≤ 2η(j − rs − rt) ≤ 2C(j − 1)−γ

There are at most 2d(2j + 1)d−1 grid points mi at distance j from the grid point m0, so
that

∣∣∣∣∣∑
i∈Zd

Cov (ζ0(rs), ζi(rt))

∣∣∣∣∣ ≤ 4dC3d−1 + 4dC
∑
j>1

(2j + 1)d−1(j − 1)−γ <∞.

We show that any linear combination of the F̂n(rt) is asymptotically normal. Let
(λ1, . . . λ`) be a vector of real coefficients and

Ln =
∑̀
t=1

λtF̂n(rt).

We use the Bernstein blocks technique. Set p = [nα] and q = [nβ] with 0 < β < α < 1
to be chosen later. We divide the grid G into cubic grids of cardinal pd. These grids are
separated by gaps of q grid points. Let a be the integer quotient of n by p+ q. To each
multi-index i in {0, . . . , a}d corresponds a cubic grid Pi,n and we define Qn = An\

⋃
i Pi,n

12
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as the set of grid points that are in none of the Pi,n’s. For each set Pi,n and Qn, we define:

ui,n =
1

nd/2

∑
mi∈Pi,n

∑̀
t=1

λtζi(rt)

vn =
1

nd/2

∑
mi∈Qn

∑̀
t=1

λtζi(rt).

then

nd/2(Ln − ELn) =
∑

i∈{0,...,a}d
(ui,n − Eui,n) + vn − Evn.

We show that the sum of the ui,n converges in distribution to a Gaussian variable and
that the other term is negligible in L2. We check the conditions of the following CLT
from [2].

Theorem 4.2 Let (zi,n)0≤i≤k(n) be an array of random variables satisfying

(1) There exists δ > 0 such that
∑k(n)

i=0 E|zi,n|2+δ tends to 0 as n tends to infinity,

(2)
∑k(n)

i=0 Var zi,n tends to σ2 as n tends to infinity,

(3) T (n) =
∑k(n)

j=1

∣∣Cov (eit(z0,n+···+zj−1,n), eitzj,n)
∣∣ tends to 0 as n tends to infinity.

then
∑k(n)

i=0 zi,n tends in distribution to N (0, σ2) as n tends to infinity.

To check Condition 1, we compute the fourth order moment of u1,n−Eu1,n. For each mi

in P1,n, denote for short ζi =
∑d

t=1 λtζi(rt). Define as in [6],

A2 =
∑

i1,i2∈{0,...,p−1}d
|E(ζi1ζi2)|, A4 =

∑
i1,...i4∈{0,...,p−1}d

|E(ζi1ζi2ζi3ζi4)|,

E((ui,n − Eui,n)4) ≤ A4

n2d
.

For each multi-index i = (i1, . . . i4), we define the gap r as the largest L1-distance ob-
tained by separating the grid points mi1 , mi2 , mi3 and mi4 into two groups. This defines a
partition of the indices in i into two non void sets. For the two members of this partition,
we denote Π(i, 1) and Π(i, 2) the product of the corresponding variables ζ. Then we sort
the multi-indices by their gap. Gj,4 is the set of multi-indices i with gap j. Note that the
gap is less than p.

A4 ≤
∑

i∈{0,...,p−1}d
E(ζ4i ) +

p∑
j=1

∑
i∈Gj,4

Cov (Π(i, 1),Π(i, 2)) + |E(Π(i, 1))E(Π(i, 2))|

≤ pdE(ζ41 ) +

p∑
j=1

∑
i∈Gj,4

|Cov (Π(i, 1),Π(i, 2))|+A2
2

We decompose A2 the same way, the gap being the L1-distance between the grid points

13
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mi1 and mi2 :

A2 =
∑

i∈{0,...,p−1}d
E(ζ2i )+

∑
i1 6=i2∈{0,...,p−1}d

|Cov (ζi1 , ζi2)| ≤ pdE(ζ21 )+

p∑
j=1

∑
i∈Gj,2

|Cov (ζi1 , ζi2)|

Now we evaluate a bound for the second term; for i ∈ Gj,2,

|Cov (ζi1 , ζi2)| ≤ 2C(j − 1)−γ .

The cardinality of Gj,2 is bounded as follows: consider one of the pd grid points mi.
There are at most 2d(2j + 1)d−1 grid points separated from mi by a gap equal to j. So

A2 ≤ pdE(ζ21 ) + 4Cdpd
p∑
j=1

(2j + 1)d−1(j − 1)−γ ,

so that we get A2 = O
(
pd
)
.

Similarly, to build a multi-index i in Gj,4, take the first point among the pd possible and
the second point separated by a gap j (at most 2(2j+1)d possibilities); the third point has
to be chosen at a distance less than j from the two preceding points (at most 2(2j + 1)d

possibilities) and the fourth at a distance less than j from the three preceding points (at
most 3(2j+ 1)d possibilities). So the cardinality of Gj,4 is bounded by 12dpd(2j+ 1)3d−1.
For each of these indices, |Cov (Π(i, 1),Π(i, 2))| ≤ 4C(j − 1)−γ . So

A4 ≤ pdE(ζ41 ) + 48Cdpd
p∑
j=1

(2j + 1)3d−1(j − 1)−γ +A2
2.

If γ < 2d, we get A4 = O
(
p4d−γ

)
so that

ad∑
i=0

E(ui,n − Eui,n)4 = O(n(1−α)dnα(4d−γ)n−2d) = O(n(3α−1)d−γα).

In this case we choose, α < d/(3d− γ). If γ ≥ 2d, we get A4 = O
(
p2d
)

so that

ad∑
i=0

E(ui,n − Eui,n)4 = O(n(1−α)dnα(2d)n−2d) = O(n(α−1)d).

In this case any α < 1 is convenient.
To check condition 2, we show that for w ∈ {0, . . . , a}d, the variance of the uw,n tends

to
∑`

t=1

∑`
s=1 λsλtΣs,t where Σ is defined in Theorem 4.1. Note that

uw,n =
pd/2

nd/2
1

pd/2

∑
mi∈Pw,n

∑̀
t=1

λtζi(rt).

14
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Then

Var (uw,n) =
pd

nd
1

pd

∑̀
t=1

∑̀
s=1

λsλt
∑

mi∈Pw,n

∑
mj∈Pw,n

Cov (ζi(rs), ζj(rt)).

As p tends to infinity,

1

pd

∑
mi∈Pw,n

∑
mj∈Pw,n

Cov (ζi(rs), ζj(rt)) −→ Σs,t,

and pa tends to n so that

∑
w∈{0,...,a}d

Varuw,n −→
∑̀
t=1

∑̀
s=1

λsλtΣs,t.

To check condition 3, we use the weak dependence property. We order the indices w
in {0, . . . , a}d by the lexicographic order from i = 1 to ad

T (n) ≤
ad∑
i=2

ipdη(q − 2r`) ≤ a2dpdη(q) = O(n2d−αd−γβ).

In order to find a convenient β < α, it is necessary that 2d − αd − γα < 0, that is
α > 2d/(d+γ); this is compatible with the condition α < d/(3d−γ) only when γ > 5d/3.
Then we can find a β < α such that 2d− αd− γβ < 0. From Theorem 4.2, we get that∑ad

i=1 ui,n tends in distribution toN (0,ΛtΣΛ). We now prove that vn is negligible because
its variance tends to 0. We split Qn into cubic grids of side q. Assume for simplicity sake
that n is divisible by q, to avoid to have small remainder parts that do not make any
difference in the result. Consider the shape of Qn. The cubic grids are located in n/p
hyperplanes in each of the d dimensions. Each hyperplane contains (n/q)d−1 such grids
so that there are at most Q = d(nd/pqd−1) cubic grids in Qn. For each of these grids,
give an index i ∈ I and denote ζqi (r) the sum of the indicator functions over the grid
points that it contains.

vn =
1

nd/2

∑
i∈I

∑̀
s=1

ζqi (rs).

so that

Var (vn) ≤ 1

nd

∑
(i,j)∈I2

∣∣∣∣∣Cov

(∑̀
s=1

λsζ
q
i (rs),

∑̀
t=1

λtζ
q
j (rt)

)∣∣∣∣∣ .
We define a partition (Gr)r=0,...,[n/q]−1 in I2 by considering the distance rq between the
two corresponding cubes Cqi and Cqj . Because of the geometrical structure of Q(n), there

are at most Qd3d−1 elements in G0 and for each of them we use the Cauchy Schwarz
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inequality and the bound

1

nd
Var

(∑̀
t=1

λtζ
q
i (rt)

)
≈ qd

pd
Var (ui,n) = O

(
qd

nd

)
,

to get

1

nd

∑
(i,j)∈G0

∣∣∣∣∣Cov

(∑̀
s=1

λsζ
q
i (rs),

∑̀
t=1

λtζ
q
j (rt)

)∣∣∣∣∣ = O

(
Q
qd

nd

)
= O

(
q

p

)
.

There are at most Qd(2r + 1)d−1 elements in Gr and for each of them we use the weak
dependence inequality:∣∣∣∣∣Cov

(∑̀
s=1

λsζ
q
i (rs),

∑̀
t=1

λtζ
q
i (rt)

)∣∣∣∣∣ ≤ Cq2d(rq)−γ ,
so that

1

nd

[n/q]−1∑
r=1

∑
(i,j)∈Gr

∣∣∣∣∣Cov

(∑̀
s=1

λsζ
q
i (rs),

∑̀
t=1

λtζ
q
j (rt)

)∣∣∣∣∣ = O

(
Q
q2d−γ

nd

)
= O

(
q1+d−γ

p

)

=O

(
q

p

)
.

Then Var (vn) tends to zero. �

5. Conclusion

In this paper we introduce a new definition of dependence for point processes; we show
that classical point processes are weak dependent in this sense with natural conditions.
Further work is needed in two directions: other processes or other statistics:

• It remains to determine conditions for the third large class of dependent processes -
namely the class of Gibbs processes - to be weakly dependent. That should be true
for the simplest models as the Strauss repulsive processes because of their Markovian
structure.

• Using the same line of proof, but taking into account that the number of terms in the
sum is now random, one can obtain the same CLT for the Ĝ(r) estimator of the nearest
neighbor function. A further work is to prove the Central Limit Theorem under weak
dependence for the Ripley statistic, that is more used than the empirical empty space
function. But the task is more difficult because the Ripley statistic is a U-statistic so
that the direct use of theorems for sums of variables is not allowed.
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[9] Gignoux, J., Duby, C., and Barot, S. (1999). Comparing the performances of Diggle’s tests

of spatial randomness for small samples with and without edge effect correction : application
to ecological data. Biometrics, 55:156–164.

[10] Grabarnik, P. and Chiu, S. (2002). Goodness-of-fit test for complete spatial randomness
against mixtures of regular and clustured spatial point processes. Biometrika, 89(2):411–421.

[11] Heinrich, L. (1991). Goodness-of-fit tests for the second moment function of a stationary
multidimensional Poisson process. Statistics, 22:245–268.

[12] Heinrich, L. (2013). Absolute regularity and Brillinger mixing of stationary point processes.
Preprints Institut für Mathematik der Universität Augsburg.

[13] Illian, J., Pentinnen, A., Stoyan, H., and Stoyan, D. (2008). Statistical analysis and modelling
of spatial point patterns. Wiley-Interscience, Chichester.

[14] Lagache, T., Olivo-Marin, J.-C., and Lang, G. (2013). Analysis of the spatial organization
of proteins with robust statistics. PLoS ONE.

[15] Lang, G. and Marcon, E. (2013). Testing randomness of spatial point patterns with the
Ripley statistic. ESAIM: Probab. Stat., 17:767–788.

[16] Laslett, G. M. (1978). Mixing of cluster point processes. J. Appl. Probab., 15:715–725.
[17] Marcon, E. and Puech, F. (2003). Evaluating the geographic concentration of industries

using distance-based methods. J. Econ. Geogr., 3:409–428.
[18] Møller, J. and Waagepetersen, R. P. (2004). Statistical inference and simulation for spatial

point processes, volume 100 of Monographs on statistics and applied probability. Chapman &
Hall/CRC, Boca Raton.

17


