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Abstract 
Monitoring and understanding the changes in mangrove ecosystems and their 
surroundings are required to determine how mangrove ecosystems are con-
stantly changing while influenced by anthropogenic, and natural drivers. Con-
sistency in high spatial resolution (30 m) satellite and high performance compu-
ting facilities are limiting factors to the process, with storage and analysis re-
quirements. With this, we present the Google Earth Engine (GEE) based ap-
proach for long term mapping of mangrove forests and their surroundings. In 
this study, we used a GEE based approach: 1) to create atmospheric contamina-
tion free data from 1987-2017 from different Landsat satellite imagery; and 2) 
evaluating the random forest classifier and post classification change detection 
method. The obtained overall accuracy for the years 1987 and 2017 was deter-
mined to be 0.87 and 0.96, followed by a Kappa coefficient 0.80 and 0.94. The 
change detection results revealed a significant decrease in the agricultural area, 
while there was an increase in mangrove forest, shrimp/fish farm, and bareland 
area. The results suggest that interconversion of land use and land cover is af-
fecting the landscape dynamics within the study area. 
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1. Introduction 

Mangrove forests are located throughout the tropical and sub-tropical regions of 
the world, and are claimed to be one of the most vulnerable ecosystems to be af-
fected by natural disturbances and human interference [1] [2] [3] [4]. Mangrove 
forests are unique ecosystems that provide important ecological services for 
coastal habitat and coastal protection [5] [6]. These ecosystems, however, are 
under high pressure due to over exploitation, and are declining at an alarming 
rate [2] [6]. Despite this rapid decline, and their importance, mangrove forest 
ecosystems have not received much publicity, particularly in regard to conserva-
tion and rehabilitation [6] [7]. Quantifying and monitoring the spatial and tem-
poral dynamics of the mangrove ecosystem is essential for a better understand-
ing of the many coastal land and sea processes. Traditionally, mapping a man-
grove forest requires intensive field work, which is costly in time and money, as 
mangroves are inaccessible or difficult to field survey [6] [8]. Satellite remote 
sensing has a great potential for mapping and monitoring changes in mangrove 
forests, as the space based technology allows for collecting information from the 
landscape which is otherwise particularly difficult to access [9] [10]. 

[2] [11] have provided a detailed summary with an overview of remote-sensing 
research activities, including critical analysis that has been performed in the last 
few decades. Green et al. (1998) and Kuenzer et al. (2011) highlighted the im-
portance of understanding the local environment when using remote sensing 
based mapping and monitoring. In recent years, several studies have been pub-
lished, illustrating hyperspectral airborne and spaceborne data applications, in-
cluding AISA, CASI, Hymap, AVIRIS, Dedalus, and EO-1 hyperian [6] [11] [12] 
[10]. High resolution imagery applications such as IKONOS, Quickbird, Rapid 
Eye and WorldView-3, have been very effective in discriminating mangrove fo-
rests from other forms of land use [13] [14] [15] [16]. However, limited spectral 
bands, complex data collection, and analysis methods, along with their high cost, 
are major limiting factors in using hyperspectral and high resolution data [2] [9] 
[17]. Few studies reported the use of RADAR data, with the inclusion of ALOS 
PALSAR, ERS-1/2 and Radarsat-1 SAR, as a tool in the mangrove classification 
framework, having found that classification and mapping accuracy requires im-
provement [2] [18] [19] [20]. In previous studies, optical remote sensing im-
agery, like the Landsat Multispectral Scanner (MSS), Landsat Thematic Mapper 
(TM), and Indian Remote Sensing satellites (IRS), SPOT XS, and SPOT-5, have 
been commonly used for mangrove forest mapping as the data is available via 
free access, or at a low cost [10] [21]. The recent developments in the series of 
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Landsat satellites, such as the Operational Land Imager (OLI)-8 and Sentinel-2, 
have added a new dimension to long term data. The availability of multiple 
spectral band records over the long term, means the Landsat series can be used 
for accurate mapping and monitoring of mangrove forests [22]. Additionally, 
the application of the non-parametric or machine learning classifiers are very ef-
ficient for land use and land cover (LULC) mapping, even if still not abundant in 
mangrove mapping studies [23]. 

In recent years, there has been an increase in high-performance cloud compu-
ting platforms, such as the NASA Earth Exchange (NEX), Amazon Web Service 
(AWS) and Google Earth Engine (GEE). These high performance cloud compu-
ting platforms allow free access to the vast and fast growing earth observation 
data for global, as well as regional studies [24] [25]. For example, GEE provides 
preprocessed Landsat data (1982-present), along with the required disk space 
and advanced classification machine learning algorithms [25].  

In Southeast Asia, large areas of the coastal zones have been occupied by 
mangrove forests [26]. According to the Asian Development Bank Regional Re-
view on the Economics of Climate Change in Southeast Asia [27], the reduction 
in the size of mangroves resulted in coastal erosion in Thailand, and in neigh-
boring countries. While the extent of these changes remains limited, means of 
sustainable management and future rehabilitation remains highly uncertain [2] 
[11] [28]. In recent decades, Thailand’s mangrove forest area has substantially 
decreased as a result of human settlements, transport infrastructure, agriculture, 
and aquaculture [26] [29]. According to NESDB, while inconclusive in most re-
gions, 30% of mangrove forest was lost during 1961-1996 due to the conversion 
of mangrove forest to shrimp farms. 

Given the above factors, the main objective of this study is to quantify the 
presence of mangrove forests in Thailand’s Trat Province over the last 30 years 
(1987-2017) using Landsat imagery and GEE cloud computing, as well as devel-
oping an operational wall-to-wall change detection methodology based on long 
time series analysis.  

2. Study Area and Methodology 

2.1. Study Area 

The study area is located in the Trat Province, eastern Thailand, on the border 
with Cambodia and along the Gulf of Thailand (Figure 1). It covers an area of 
approximately 240 km2of witch 106 km2 of mangrove forest. Since ever, local 
communities have benefit from goods and services provided by the forest but in 
recent years, mangroves have been heavily exploited for timber extraction, 
charcoal production and shrimp farms. [30] reported that, after the 1980’s, 
thanks to the effort of the Department of Marine and Coastal Resources, Thail-
and has reaerated this area. Villagers to this day, continue to use mangrove wood 
for various domestic purposes. 
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Figure 1. Location and extent of the study area in the Trat Province of Thailand includ-
ing 850 mt buffer around mangrove forest (source: Google Earth 2017). 

2.2. Landsat Imagery 

Data consists of Landsat TM, ETM+, and OLI Tier 1 top-of-atmosphere (TOA) 
reflectance as obtained from GEE image collections. The red, green, blue, NIR, 
SWIR-1, and SWIR-2 spectral bands of the TM-5, 7 ETM+, and OLI-8 plat-
forms, were considered in the analysis. Jagged pixels at the edges of Landsat 
TM-5 images were removed using the 450 m inward buffer, which ensures the 
best available reflectance values for image analysis [31]. Annual composites were 
created by using the median reflectance values of the collection (all images for a 
target year e.g. 1987, from 01/01/1987 to 31/12/1987) [24], after been cleaned 
from cloudy or no-data pixels following the algorithm proposed by [32], and 
available in GEE. The algorithm is driven by predefined knowledge-based rules 
built upon the spectral signature collected on a global scale, and generates a 
thematic output including a cloud mask. 

The TOA imagery was atmospherically corrected using a Dark Object Sub-
traction (DOS) method [33]. Using a forest normalization method, the median 
value of the mangrove forest pixels was used to apply a linear shift to each spec-
tral band [34] [35]. Prior to classification, the Normalized difference vegetation 
index (NDVI) [11] [36], and Normalized difference infrared index (NDII) [37], 
has be computed to mask the composite from residual clouds or no data. 

The Landsat imagery used in this study from 1987–2017 was from the Landsat 
TM-5 (1987-2001, and 2003-2011), Landsat ETM+7 (2002) and Landsat OLI-8 
(2013-2017) sensors respectively. The year 2012 was excluded from the analysis 
due to missing data. 

2.3. Training and Validation Data 

One of the major issues of classifying historical images by using training and va-
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lidation samples, is often the lack of field data or so called ground-truth [38]. 
The design of a systematic training and validation dataset across a specified area 
is crucial for identifying major changes in mangrove forests over time. The de-
sign must be a good representation of major Land Use Land Cover (LULC) 
classes, with the dataset sufficiently large to provide reliable estimates [35]. The 
unsupervised classification was performed on the Landsat OLI-8 year 2017 im-
ages to establish thematic categories of LULC. The most recent image was cho-
sen for stratification to avoid the effect of the LULC change on training and 
testing design. Later the stratified random sampling approach was used to esti-
mate the total number of samples per class [39] [40]. The stratification and se-
lection of independent sample design focused on each five-year interval to en-
sure a stable change identification [39]. In total, 414 sample locations [Figure 2] 
were selected for LULC classification: class 1, active agriculture; class 2, bare 
land and urban areas (some agricultural land without vegetation was included 
here); class 3, mangrove forest; and class 4, shrimp and fish farms. To establish 
each class, training samples were obtained: 150 for agriculture, 50 for bare land 
and urban areas, 164 for mangrove forest, and 50 for shrimp and fish farms. 
Among these sample locations, 109 were randomly selected to be set aside as va-
lidation samples. In March, 2015 and October 2016, a field mission was con-
ducted in the study area to collect training and validation data for mangrove 
mapping. About 60 mangrove forest samples were collected during these mis-
sions, and were used along with a combination of Google Earth images, 
high-resolution satellite imagery, aerial photographs, and prior knowledge, for 
use as samples of the remaining classes. A distance of 500 meters separated each 
sample to avoid spatial autocorrelation, while training and validation pixels re-
mained independent of each other. In the process of classification, the reference 
training and testing data were first developed for each year and then used in the 
classifier [41]. 

2.4. Pixel Based Random Forest (RF) Classifier 

We performed a supervised pixel-based classification using a Random Forest 
(RF), a tree based classifier that includes K-decision trees [42] [43]). RF over-
come the problem of overfitting by constructing an ensemble of decision trees 
[43] [44]. [44] reported that there are accurate and higher performance RF clas-
sifiers in land cover classification studies. The RF classifier was used to classify 
the extent of mangrove vegetation and other LULC in a study area, as shown in 
Figure 1. We trained the RF classifier (20 trees) in the GEE environment with 
305 training samples to then classify the annual composite Landsat images into 
four LULCs: active agriculture (orchid plants, coconut grows, oil palm and rub-
ber plantation), bare land/urban area/non-active agriculture plots, primary 
mangrove forest, and water bodies (fish and shrimp farms, and other water re-
sources including water canals within mangrove forest). The categories were 
based on a detailed analysis of the study area, and reviewing previous studies 
and field surveys conducted for training and testing data. The RF classifier 
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(a) 

 
(b) 

Figure 2. Locations of training and testing samples in the study area. A total of 414 points 
were created using the stratified random sampling approach, of which 109 were used as 
validation points (a) Training and testing samples for the year 1987; (b) Training and 
testing samples for the year 2017 (The figure contains back ground Google Earth engine 
map background and Landsat image for individual year). 
 
was performed on red, green, blue, NIR, SWIR-1, and SWIR-2 spectral bands of 
each annual composite. 

2.5. Validation 

During the classification process, composite from different years are trained and 
validated individually. About 70% of the sample points are used to train the clas-
sifier, while the remaining 30% of samples were used to test the accuracy and va-
lidate the RF classifier (Figure 2). The RF classifier accuracy and Kappa statistics 
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is assessed by an error matrix. The final maps were compared with high resolu-
tion aerial imagery available in Google Earth for visual refinement. 

2.6. Post Classification Change Detection 

Several methods such as an image overlay, change vector analysis, image ra-
tioning, and principal component analysis have been used in LULC mapping 
studies [44] [45]. In this study, the “From-to” change detection algorithm 
(Post-classification comparison), has been used to provide detailed information 
about the type of LULC change [46] [47]. The main advantage of post classifica-
tion change detection is indicating the nature and magnitude of the LULC 
changes that had taken place over a time. 

3. Results  
3.1. Cloud Free Annual Mosaic of Landsat Series 

Clouds and shadows represent one of the main sources of issue while working 
with optical remote sensed imagery such as Landsat, particularly when working 
in tropical regions. Figure 3(a) illustrates the influence of clouds, haze and 
missing pixels on Landsat series imagery, which could be the main limiting fac-
tor on the spatial and temporal consistency of long term mangrove ecosystem 
changes mapping and monitoring. The cloud cover, shadows, availability of haze 
and missing data, influence many data analysis processes including inaccurate 
atmospheric correction, biased vegetation indexes, mistakes in land cover classi-
fication and false detection of land use and land cover change [48]. The cloud 
free seamless mosaic of Landsat series imagery was created with a predefined 
knowledge-based rule built upon the spectral signature [32]. Annual composites 
were created by taking median reflectance values of the collection. Seamless and 
cloud free image mosaics can be important when mapping mangrove forests, 
because the cloud and seams can affect the visual interpretation of training sam-
ple collection, or leading to erroneous classifications [49]. Cloud free and seam-
less mosaic images would likely improve the results of the forest normalization 
method described in Section 2.2. 

The comparable visual results presented in Figure 3(a) and Figure 3(b), were 
acquired by Landsat TM-5, ETM+ 7, and OLI-8. Their corresponding pseudo 
color composite (SWIR1, NIR, Red) before and after pre-processing for Landsat 
TM-5, ETM+ 7 OLI-8 are shown in Figure 3(a) and Figure 3(b). Several images 
in Figure 1(a) contains cloud, shadows, haze and missing data. The automatic 
rule-based algorithm was used to remove contamination in individual Landsat 
imagery. Figure 3(b) illustrates the cloud, haze and missing data free annual 
composite for the period of 1987-2017. In addition, the obtained composite re-
vealed more vivid tone when compared with the original imagery. The selected 
contaminated pixels were tested using NDVI and NDII to mask the composite 
from residual clouds or no data. Only a selected annual composite image was 
classified, and stratified random samples generated. 
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(a) 

 
(b) 

Figure 3. Pseudo color (SWIR1, NIR, Red) Landsat imagery from 1987 (upper left) to 
2017 (bottom right) (a) best (less cloudy) available Landsat image for each year; (b) 
annual Landsat cloud free composites. 
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3.2. Magnitude of Mangrove and Its Surrounding Change 

In order to test the performance of consistent long term imagery from different 
Landsat sensors for mangrove forests and their surroundings, Landsat imagery 
was used representing two time periods (1987 and 2017). The stratified buffer 
was generated around the mangrove forest. A 850 meter buffer was generated to 
delineate the potential loss or gain of mangrove forest [Figure 1] within the 
surrounding landscape. The buffer was designed and based on the change in 
mangrove pixels within the study area using Normalized Differential Vegetation 
Index (NDVI), Normalized Difference Infrared Index (NDII), Digital Elevation 
Model(DEM), and Automatic Classification [10] [11] [32] [36] [50] [51]. A visu-
al refinement has been carried out for year 1987 and 2017 (Landsat TM-5, 
ETM+ 7, and OLI-8 imagery respectively), to ensure the high quality of the mask 
over the time interval. 

Independent training and validation data was used for the years 1987 and 
2017. The LULC maps for the years 1987 and 2017 were based on Landsat TM-5 
and OLI-8 satellite imagery that were prepared with four LULC types: class 1, 
active agriculture, class 2, bare land and urban area (some agricultural land 
without vegetation was included here), class 3, mangrove forest and class 4, 
shrimp and fish farms. Figure 4 shows the final classification of the RF classifier, 
which consists of classified maps of the study area, for the year 1987 and 2017. 

Table 1 shows the results obtained from the classified map of 1987 and 2017. 
An overall accuracy of 0.87 and 0.96, followed by a Kappa coefficient 0.80 and 
0.94, were obtained. As a result, the performance of the RF classifier for the year 
2017 produced a higher accuracy classification map with an overall accuracy of 
0.96. On the other hand, the classification performance in 1987 was less than  
 
Table 1. Error matrix and accuracy statistics for classification for the years 1987 and 2017 
(class 1, active agriculture; class 2, bare land and urban area (some agricultural land 
without vegetation was included here); class 3, mangrove forest; and class 4, shrimp and 
fish farms). 

LULU in 1987 Class 1 Class 2 Class 3 Class 4 

Class 1 28 5 1 0 

Class 2 4 3 2 0 

Class 3 2 0 50 0 

Class 4 0 0 0 14 

Overall accuracy = 0.87, Kappa statistics = 0.80 

LULC in 2017 Class 1 Class 2 Class 3 Class 4 

Class 1 40 0 2 0 

Class 2 2 17 0 0 

Class 3 1 0 58 0 

Class 4 0 0 0 12 

Overall accuracy = 0.96, Kappa statistics = 0.94 
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(a) 

 
(b) 

Figure 4. LULC map for the years (a) 1987 and (b) 2017. 
 
that when compared with the year 2017. However, the classification confused 
agriculture (class 1), and bareland (class 2), for the year 1987, due to the similar 
spectral response and scarcity of ground truth data. Jia et al., 2014, also reported 
the high performance of Landsat OLI-8 when compared with that of Landsat 
TM-5 and ETM+ 7. 
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Table 2 summarizes the results of the LULC change in the study area of each 
LULC class. The agriculture and mangrove forest was the main LULC in 1987 
with 49.18% and 34.20%, followed by bareland/urban areas and water bo-
dies/shrimp farms with 9.80% and 6.82% respectively. Agricultural area de-
creased from 49.18% (111.36 km2) in 1987 to 41.25% (93.40 km2) in 2017, while, 
mangrove forest area increased from 34.20% (77.43 km2) in 1987 to 36.17% 
(81.90 km2) in 2017. Additionally, some of the disturbed mangrove forest area 
has shown significant recovery (Figures 5(a)-(d)). The bareland/urban areas 
increased from 9.80% (22.17 km2) in 1987 to 11.08% (25.10 km2) in 2017. 
Shrimp/fish farms progressively increased from 6.82% (15.16 km2) in 1987 to 
11.49% (26.02 km2). 

The decline in active agriculture was observed to be 7.93% between 1987 and 
2017. Bareland/urban areas and shrimp/fish farms did experience an expansion 
during the period of 1987 to 2017. Another increased rate of change was ob-
served in the mangrove forest. 
 

 
Figure 5. (a) classification of a distrubed patch; (b) Landsat TM-5 (Swir1, Nir, Red); c) 
classification of a recovered patch; (d) Landsat OLI-8 (Swir1, Nir, Red). 
 
Table 2. Change in LULC area and percentage in study area. 

LULC 
1987 2017 Change (1987-2017) 

km2 % km2 % % 

Class 1 111.36 49.18 93.40 41.25 7.93 

Class 2 22.17 9.80 25.10 11.08 −1.28 

Class 3 77.43 34.20 81.90 36.17 −1.97 

Class 4 15.46 6.82 26.02 11.49 −4.67 

Total area 226.42 100 226.42 100  
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3.3. LULC Change Transition from 1987 to 2017 

The transition matrix was used to analyse the rates of LULC conversion from 
one LULC to another for the years 1987 and 2017. The corresponding probabli-
ties of change are shown in Table 3. There was a major conversion of agriculture 
to bareland (15.15 km2) and from agricuture to mangrove forest (8.40 km2) dur-
ing this period. At the same time, mangrove forest changed to shrimp/fish farm 
(4.72 km2), and bareland was converted to shrimp/fish farms. 
 
Table 3. Land Use Land Cover (LULC) change matrix between 1987 and 2017. 

LULC type Class 1 Class 2 Class 3 Class 4 Total in 1987 

Class 1 68.08 13.57 11.59 7.39 100.64 

Class 2 15.15 6.94 3.32 3.45 28.88 

Class 3 8.40 3.91 63.97 5.24 81.53 

Class 4 0.61 1.59 4.72 8.53 15.46 

Total in 2017 92.25 26.02 83.61 24.62 226.42 

Note: The bold numbers indicate that there is no change in LULC over the study period. 

4. Discussion 
4.1. Overcoming the Limitations with Landsat Series Imagery for  

Mangrove Forest Mapping 

Landsat series imagery are very helpful for detecting long term changes in man-
grove ecosystems. [52] have highlighted several limitations of existing Landsat 
satellites, challenging the wall-to-wall mapping of wetland ecosystems, such as 
Landsat-5, which no longer has global coverage; and a mechanical fault in the 
Scan-Line Corrector (SLC-Off) on the Landsat-7 satellite, with a 22% - 25% data 
loss with each image. Other limitations also factor into the mix, including the 
presence of atmospheric contamination such as cloud, haze and missing data in 
Landsat imagery, which are major limitations in long term mapping and moni-
toring of costal ecosystems [53] [54]. 

In this study, knowledge-based predefined rules were used to remove the 
contaminated pixels from all the available imagery and used the annual median 
reflectance value of the collection for a consistent annual composite. Consistent 
imagery over a long time series will likely support detection of other spectrally 
non-stubble changes such as forest clearing, regrowth and undisturbed ecosys-
tems [55]. Consistent error free and seamless composite images make it possible 
to achieve fast and accurate classification, making it easier to detect LULC 
change (e.g. in this study, the machine learning Random Forest classfier was 
tested). 

The annual composites from 1987-2017 are virtually seamless regardless of the 
presence of atmospheric contamination and sensor artifacts such as the SLC-Off 
(Landsat-7) and missing pixel data. Benefits introduced by implementing this 
methodological framework in GEE are threefold: 
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 easy and user friendly programming environment 
 virtually unlimited processing power with high computationally efficiency 
 raw satellite data are already available on GEE servers hence no need to re-

trieve and download huge amount of data (less local resources) 

4.2. Change in LULC 

The results show that a significant change occurred in land cover, particularly in 
mangrove forests, in the surrounding areas of Trat, between 1987 and 2017. It 
appears that agriculture, bareland and shrimp farmshad undergone major 
changes. However, there is very little research has been conducted study of these 
changes. The mangrove forests made a significant recovery over time. This trend 
is indicative of the local community’s awareness for mangrove forest conserva-
tion and in the detrimental effect that shrimp farming can have on mangrove 
forest conservation. [56] reported on the expansion of shrimp farming 
(1972-1995), and low-salinity shrimp farming (1996-2002). He also reported 
that recently, (2003-2004), the Thai government’s policies restricted the ex-
pansion of low-salinity shrimp farming within the freshwater regions of the 
country. The result of this study suggests that the rapid changes in agriculture, 
bareland, and shrimp farms, and their interconversion, are a major driver of 
the change. 

5. Conclusions 

This paper presents a new strategy in attempting to achieve error free 30 year 
annual composites of Landsat satellites imagery for mapping mangroves and 
their surrounding LULC changes on the GEE cloud computing platform. This 
strategy uses pre-defined knowledge-based rules to remove contaminated pixels 
from all available imagery and uses annual median reflectance values in the col-
lection. A fast, accurate and stable detection of change in agriculture, bare lands, 
mangrove forests, and shrimp/fish farms generated from consistent seamless 
mosaic and the RF classifier, demonstrates these results. The study area expe-
rienced drastic interchange between agriculture, bare land and shrimp/fish 
farms, while mangrove forests had made a recovery over a period of time.  

The study contributes to the application of cloud computing GEE and its po-
tential for costal ecosystem mapping and monitoring. The provided reliable and 
consistent long term satellite data and high performance classification approach 
could be beneficial for finding changes in mangrove ecosystems and their sur-
roundings to fill the gaps necessary for forest management, conservation, as well 
as in understanding their carbon sequestration potential.  
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[38] Gomariz-Castillo, F., Alonso-Sarrí a, F., Montá vez, J.P. and Lorente-Plazas, R. 
(2017) An Open-Source Web Mapping Tool to Estimate Wind Energy in the Ibe-
rian Peninsula. Journal of Spatial Science. 

[39] Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E. and Wulder, 
M.A. (2014) Good Practices for Estimating Area and Assessing Accuracy of Land 
Change. Remote Sensing of Environment, 148, 42-57.  
https://doi.org/10.1016/j.rse.2014.02.015 

https://doi.org/10.4236/jcc.2018.61025
https://doi.org/10.1016/j.ecss.2006.01.011
https://doi.org/10.1016/j.ecolind.2012.04.022
https://doi.org/10.2306/scienceasia1513-1874.2011.37.001
https://doi.org/10.3390/rs9080863
https://doi.org/10.1109/LGRS.2015.2409982
https://doi.org/10.1016/j.isprsjprs.2011.03.003
https://doi.org/10.3390/su9020258
https://doi.org/10.3390/rs6109552
https://doi.org/10.1016/j.rse.2003.10.021
https://doi.org/10.1016/j.rse.2014.02.015


U. Pimple et al. 
 

 

DOI: 10.4236/jcc.2018.61025 263 Journal of Computer and Communications 
 

[40] FAO (2016) Map Accuracy Assessment and Area Estimation Map Accuracy As-
sessment and Area Estimation: A Practical Guide. FAO, Rome. 

[41] Peiman, R. (2011) Pre-classification and Post-Classification Change-Detection 
Techniques to Monitor Land-Cover and Land-Use Change Using Multi-Temporal 
Landsat Imagery: A Case Study on Pisa Province in Italy. International Journal of 
Remote Sensing, 32, 4365-4381. https://doi.org/10.1080/01431161.2010.486806 

[42] Goldblatt, R., You, W., Hanson, G. and Khandelwal, A.K. (2016) Remote Sensing 
Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image 
Classification in Google Earth Engine, 1-28.  

[43] Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. and Skakun, S. (2017) Explor-
ing Google Earth Engine Platform for Big Data Processing: Classification of Mul-
ti-Temporal Satellite Imagery for Crop Mapping. Frontiers in Earth Science, 5, 1-10.  
https://doi.org/10.3389/feart.2017.00017 

[44] Pelletier, C., Valero, S., Inglada, J., Champion, N. and Dedieu, G. (2016) Assessing 
the Robustness of Random Forests to Map Land Cover with High Resolution Satel-
lite Image Time Series Over Large Areas. Remote Sens. Environ, 187, 156-168.  
https://doi.org/10.1016/j.rse.2016.10.010 

[45] Forkuo, E.K. and Frimpong, A. (2012) Analysis of Forest Cover Change Detection, 
International Journal of Remote Sensing Applications, 2, 82-92. 

[46] Singh, A. (1989) Digital Change Detection Techniques Using Remotely-Sensed Da-
ta. Int J Remote Sens, 10, 989-1003. https://doi.org/10.1080/01431168908903939 

[47] Foody, G.M. (2002) Status of Land Cover Classification Accuracy Assessment. Re-
mote Sensing of Environment, 80, 185-201.  
https://doi.org/10.1016/S0034-4257(01)00295-4 

[48] Zhu, Z. and Woodcock, C.E. (2012) Object-Based Cloud and Cloud Shadow Detec-
tion in Landsat Imagery. Remote Sensing of Environment, 118, 83-94  
https://doi.org/10.1016/j.rse.2011.10.028 

[49] Helmer, E.H., Ruzycki, T.S., Wunderle Jr, J.M., Vogesser, S., Ruefenacht, B., Kwit, 
C., Brabdeis, T.J. and Ewert, D.N. (2010) Mapping Tropical Dry Forest Height, Fo-
liage Height Profiles and Disturbance Type and Age with Time Series of 
Cloud-Cleared Landsat and ALI Image Mosaic to Characterize Avian Habitat. Re-
mote sensing of Environment, 144, 2457-2473.  
https://doi.org/10.1016/j.rse.2010.05.021 

[50] Yilmaz, M.T., Hunt, E.R., Goins, L.D., Ustin, S.L., Vanderbilt, V.C. and Jackson, T.J. 
(2008) Vegetation Water Content during SMEX04 from Ground Data and Landsat 
5 Thematic Mapper Imagery. Remote Sensing of Environment, 112, 350-362.  
https://doi.org/10.1016/j.rse.2007.03.029 

[51] Alsaaideh, B., Al-Hanbali, A., Tateishi, R., Kobayashi, T. and Hoan, N.T. (2013) 
Mangrove Forests Mapping in the Southern Part of Japan Using Landsat ETM+ 
with DEM. Journal of Geographic Information System, 5, 369-377.  
https://doi.org/10.4236/jgis.2013.54035 

[52] Wijedasa, L.S., Sloan, S., Michelakis, D.G. and Clements, G.R. (2012) Overcoming 
Limitations with Landsat Imagery for Mapping of Peat Swamp Forests in Sundal-
and. Remote Sensing, 4, 2595-2618. https://doi.org/10.3390/rs4092595 

[53] Mwita, E., Menz, G., Misana, S. and Nienkemper, P. (2012) Detection of Small 
Wetlands with Multi Sensor Data in East Africa. Advances in Remote Sensing, 1, 
64-73. https://doi.org/10.4236/ars.2012.13007 

[54] Cihlar, J. (2000) Land Cover Mapping of Large Areas from Satellites: Status and 
Research. International Journal of Remote Sensing, 21, 1093-1114.  

https://doi.org/10.4236/jcc.2018.61025
https://doi.org/10.1080/01431161.2010.486806
https://doi.org/10.3389/feart.2017.00017
https://doi.org/10.1016/j.rse.2016.10.010
https://doi.org/10.1080/01431168908903939
https://doi.org/10.1016/S0034-4257(01)00295-4
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2010.05.021
https://doi.org/10.1016/j.rse.2007.03.029
https://doi.org/10.4236/jgis.2013.54035
https://doi.org/10.3390/rs4092595
https://doi.org/10.4236/ars.2012.13007


U. Pimple et al. 
 

 

DOI: 10.4236/jcc.2018.61025 264 Journal of Computer and Communications 
 

https://doi.org/10.1080/014311600210092 

[55] Helmer, E.H. and Ruefenacht, B. (2005) Cloud-Free Satellite Image Mosaics with 
Regression Trees and Histogram Matching. Photogrammetric Engineering and 
Remote Sensing, 71, 1079-1089. https://doi.org/10.14358/PERS.71.9.1079 

[56] Szuster, B.W. (2006) A Review of Shrimp Farming in Central Thailand and its En-
vironmental Implications, in Shrimp Culture: Economics, Market, and Trade. 
Leung, P. and Engle, C., Eds. Blackwell Publishing, Ames, Iowa.  
https://doi.org/10.1002/9780470277850.ch11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.4236/jcc.2018.61025
https://doi.org/10.1080/014311600210092
https://doi.org/10.14358/PERS.71.9.1079
https://doi.org/10.1002/9780470277850.ch11

	Google Earth Engine Based Three Decadal Landsat Imagery Analysis for Mapping of Mangrove Forests and Its Surroundings in the Trat Province of Thailand
	Abstract
	Keywords
	1. Introduction
	2. Study Area and Methodology
	2.1. Study Area
	2.2. Landsat Imagery
	2.3. Training and Validation Data
	2.4. Pixel Based Random Forest (RF) Classifier
	2.5. Validation
	2.6. Post Classification Change Detection

	3. Results 
	3.1. Cloud Free Annual Mosaic of Landsat Series
	3.2. Magnitude of Mangrove and Its Surrounding Change
	3.3. LULC Change Transition from 1987 to 2017

	4. Discussion
	4.1. Overcoming the Limitations with Landsat Series Imagery for Mangrove Forest Mapping
	4.2. Change in LULC

	5. Conclusions
	Acknowledgements
	References

