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AN ACTIVE LEARNING APPROACH FOR IMPROVING THE

PERFORMANCE OF EQUILIBRIUM BASED CHEMICAL SIMULATIONS

MARY SAVINO, CÉLINE LÉVY-LEDUC, MARC LECONTE, AND BENOIT COCHEPIN

Abstract. In this paper, we propose a novel sequential data-driven method for dealing with
equilibrium based chemical simulations, which can be seen as a speci�c machine learning
approach called active learning. The underlying idea of our approach is to consider the
function to estimate as a sample of a Gaussian process which allows us to compute the
global uncertainty on the function estimation. Thanks to this estimation and with almost
no parameter to tune, the proposed method sequentially chooses the most relevant input
data at which the function to estimate has to be evaluated to build a surrogate model.
Hence, the number of evaluations of the function to estimate is dramatically limited. Our
active learning method is validated through numerical experiments and applied to a complex
chemical system commonly used in geoscience.

1. Introduction

Computing the concentrations at equilibrium of reactive species is well known to be a
challenging issue when the number of species is high and/or when the reaction involves the
dissolution or the precipitation of minerals [22, 18, 3]. The numerical resolution of these non-
linear problems can quickly become so time consuming that the coupling with other physical
processes has to be simpli�ed. For instance in the case of reactive transport, it means that the
size of the geometric model has to be drastically limited leading typically to a one dimensional
model or that the number of time steps has to be reduced. To overcome this issue, research
e�orts have been dedicated to the improvement of the numerical scheme aiming at speeding
up the computations. A classical approach consists in using a splitting operator technique
to solve separately the transport of the chemical species and the chemical reaction between
those species [12, 19, 4, 2, 17]. With this approach a speci�c optimization for each part of
the resolution can be performed especially by taking advantage of the parallel architecture of
computers [5, 7, 8].

However, despite the signi�cant improvements of the numerical solvers and preconitionners
during the last decades, three dimensional large scale modelling of complex reactive transport
over a long period of time, namely many time steps, remains almost impossible to solve with
standard computers. Consequently, the recent success of machine learning (ML) in various
�elds have quickly drawn attention of geoscientists because ML seems to be able to solve very
complex problems with a reasonable cost in terms of computational ressources.

The main idea behind the ML success is to provide an estimation of the solution of the
full simulation model that can replace it. Two of the most popular approaches are model
order reduction and data-driven models also called surrogate models. The �rst one requires
to understand the underlying chemical processes to create a simpli�ed model while preserving
some physical principles [14]. In the second approach, the underlying chemical processes
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are not assumed to be known or understood and a model is solely built from a limited but
potentially signi�cant set of values of the solution of the full simulation model associated
to some speci�c input values [9]. Since the number of required values is unknown a priori,
choosing the optimal input values and parameters used for building the surrogate model is
crucial and usually challenging.

In this paper, we propose a novel sequential data-driven method for dealing with equilibrium
based chemical simulation, which can thus be seen as an active learning approach inspired by
the ideas contained in [20, 10]. With such an approach, our goal is to minimize the number
of evaluations of the function that has to be estimated to build a surrogate model. Our
approach consists in modeling the function to estimate as a sample of a Gaussian Process
(GP) which allows us to provide an error estimation to sequentially choose the most relevant
input data until a given stopping criterion is ful�lled. The advantage of our approach is that
the number of required evaluations of the function to estimate is very limited and that there
are no parameter to tune.

The paper is organized as follows. In Section 2, our approach is described. Some numerical
experiments are provided in Section 3 to illustrate the statistical and numerical performance
of our method. It is then applied in Section 4 to a multidimensional example coming from
[11] which includes several chemical elements and minerals.

2. Description of our approach

In this section, we describe our active learning approach for estimating a real-valued function
f de�ned on a compact subset A ⊂ Rd by using only a few number of sequentially well-chosen
points at which f is evaluated.

We adopt a Bayesian point of view which consists in considering f as a sample of a zero-mean
Gaussian process (GP) having a covariance function k that we shall denote by GP(0,k(·, ·)) in
the following. The advantage of this approach is that, conditionally on a set of t observations
yt = (y1, . . . , yt)

′ where yi = f(xi), xi belonging to A, the posterior distribution is still a GP
having a mean µt and a covariance function kt given by

µt(u) = kt(u)′K−1t yt , (1)

kt(u, v) = k(u, v)− kt(u)′K−1t kt(v) , (2)

where kt(u) = [k(x1, u) . . . k(xt, u)]′. Here ′ denotes the matrix transposition, u and v are in
A and Kt = [k(xi, xj)]1≤i,j≤t, where the xi's are in A. For further details on GP, we refer the
reader to [15] in which their properties are thoroughly presented.

In our case, f models a physical quantity that is assumed to be smooth, so for our appli-
cations we shall consider two covariance functions that are commonly used in this case. The
�rst one is the squared exponential (SE) covariance function

kSE(u, v) = exp

(
−1

2
(u− v)′M−1(u− v)

)
, u, v ∈ A ⊂ Rd , (3)

M = diag
(
`21, . . . , `

2
d

)
, `1 , `2 , . . . , `d > 0 . (4)

Here the `1 , `2 , . . . , `d hyperparameters are the characteristic length scales. Actually,
these hyperparameters can be understood as how far you need to move along a particular axis
in the input space so that the function values become uncorrelated. For further details, we
refer the reader to Section 5.1 of [15]. Note that De�nition (3) allows us to model anisotropic
response surfaces.
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As explained in [15], since this covariance function is in�nitely di�erentiable, the GP with
this covariance function has mean square derivatives of all orders. As argued by [21] such
strong smoothness assumptions may be unrealistic for modeling many physical processes, so
we shall also consider another covariance function belonging to the Matérn class of covariance
functions de�ned by

kMatérn(r) =
21−ν

Γ(ν)

(√
2νr
)ν
Kν

(√
2νr
)
, ν > 0 , (5)

whereKν is a modi�ed Bessel function with Bessel order ν, see [1, Section 9.6], and r is de�ned
by

r =
√

(u− v)′M−1(u− v) , u, v ∈ A , (6)

M being de�ned in (4). In this situation, as explained in [15], the GP is q-times mean-square
di�erentiable if and only if ν > q. Here, we shall focus on the case where ν = 5/2, for which
kMatérn has a computationally advantageous expression. Indeed, for ν = p + 1

2 , where p is in
N,

kMatérn(r) = exp
(
−
√

2νr
) Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr
)p−i

, (7)

with r de�ned in (6); see [1, Equation 10.2.15] for further details.
In the following, we shall denote by A a �ne grid of A:

A = {x1, . . . , xm} ⊂ A . (8)

This grid is either a regular grid of A ⊂ Rd when d is small (usually 1 or 2) or a Latin
Hypercube Sampling for larger values of d. Note that this grid contains the points at which
the estimation of f is performed and that the points at which f is evaluated are chosen in this
grid.

Inspired by [20] who proposed a sequential approach for maximizing a function by modeling
it using a Gaussian process, we propose a strategy which consists in adding the new point
xt+1 to the set of t observations at which f needs to be evaluated as follows:

xt+1 ∈ Arg max
x∈A

σt(x) , (9)

where
σt(x)2 = kt(x, x), (10)

kt being de�ned in (2) and Arg max
x∈A

σt(x) being the set of x ∈ A where σt(x) reaches its

maximum. Note that the points x1, x2, . . . , xt, xt+1, . . . at which f needs to be evaluated are
chosen in the �ne grid A of A de�ned in (8).

2.1. Estimating the characteristic length scales. Previously, we assumed that the char-
acteristic length scales ` = (`i){1≤i≤d} were known. However, this is obviously not the case in
real-data applications. We propose using the maximum-likelihood strategy described in [15]
to estimate `. This adds a step to the method previously described, as the `i's have to be esti-
mated before evaluating the posterior distribution of the GP using (1) and (2). Hence, for the
observation set {(x1, y1), . . . , (xt, yt)} with yi = f(xi) , 1 ≤ i ≤ t, the posterior log-likelihood
given by:

− 1

2
y′tK

−1
t yt −

1

2
log |Kt| −

t

2
log 2π , (11)

with yt = (y1, . . . , yt)
′ and Kt = [k(xi, xj)]1≤i,j≤t, has to be maximized with respect to `.
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2.2. Summary of our strategy. Our method was implemented by using the GaussianPro-
cessRegressor class of the scikit-learn 0.20.3 module of Python which only provides the
computation of µt and σt de�ned in (1) and (10). Our sequential approach is summarized in
Algorithm 1.

Algorithm 1

Input: x1, . . . , xt1 a small initial set of points of A where f has been evaluated
t = t1; Choose a covariance function k among SE and Matérn.
While the stopping criterion is not ful�lled

• Estimate ` by using (11)
• Evaluate the posterior distribution of the GP using (1) and (2), and the variance
σt(x)2 for all x in A
• Choose xt+1 in A using (9)
• Evaluate f at this point: yt+1 = f(xt+1)
• Add this new observation to the set of points at which f is evaluated which becomes
x1, . . . , xt, xt+1

• t← t+ 1

The function f is estimated by µt de�ned in (1).

Further comments on the stopping criteria appearing in Algorithm 1 are given below.

2.3. Stopping criteria. Di�erent stopping criteria based on the following quantities can be
used.

• Ratio variance. At each iteration t of our method, the following average is computed:

Rn(t) =
1

n− 1

n−1∑
i=1

maxx∈A σ
2
t (x)

maxx∈A σ
2
t−i(x)

, (12)

where σt is de�ned in (10) and n = 2, 5 or 10. This criterion will be then compared
to a threshold to determine if the maximal variance reach a plateau. In some cases,
σ2t−i can be less than σ2t so in order to detect the smallest variations, we also have to
make sure that the ratio does not exceed the inverse of the chosen threshold. Thus,
the associated stopping criterion is: interrupt the algorithm when t is such that

0.9 < Rn(t) <
1

0.9
. (13)

• Mobile average. At each iteration t of our method, the following average is computed:

M`(t) =
1

`

`−1∑
j=0

max
x∈A

σ2t−j(x) (14)

for ` = 5 or 10 where σt is de�ned in (10). The associated stopping criterion is:
interrupt the algorithm when t is such that

M`(t) < 0.01. (15)

• Maximal variance. At each iteration t of our method,

V (t) = max
x∈A

σ2t (x) (16)
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Figure 1. Functions f to estimate when d = 1 (left) and d = 2 (right).

is computed where σt is de�ned in (10). The associated stopping criterion is: interrupt
the algorithm when t is such that

V (t) < s, (17)

where s = 0.01 or 0.001 in the following.

The statistical performance of these di�erent criteria are investigated in Section 3. Note
that the values reported here for each criteria (0.9, 0.01 or 0.001) were chosen based on some
numerical experiments since they appear to be relevant to detect a plateau in the maximal
variance.

3. Numerical experiments

To illustrate our method we consider hereafter the estimation of the amount of a "Salt"
mineral as a function of the concentrations of its constituents Sp+a and Sp−b . For this example,
the thermodynamic constants of the halite salt (NaCl) were considered because there are only
two constitutive elements and because they do not depend on the pH of the solution. From
our point of view, there is no theoretical limitation in the application of our method to more
complex salts or minerals.

Following the law of mass action, the dissolution reaction of this mineral writes:

Salt 
 Sp+
a + Sp−b .

At equilibrium, the activity of these elements aSp+a and aSp−b
obey the solubility product

KSalt = aSp+a aSp−b
= 101.570.

The amount of Salt was �rst calculated with PHREEQC [13] as a function of the concentrations
of Sp+a , which is normalized so that A = [0, 1]. It corresponds to the case d = 1 below. The
corresponding function f is displayed in the left part of Figure 1 where A is a regular grid
of A with m = 1140 points. Then, the amount of Salt was computed with PHREEQC as a
function of the concentrations of Sp+a and Sp−b , which are also normalized so that A = [0, 1]2.
It corresponds to the case d = 2 below. The corresponding function f is displayed in the right
part of Figure 1 where A is a regular grid of A with m = 40000 points.
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3.1. Case d = 1. The di�erent steps of our approach summarized in Algorithm 1 are illus-
trated in Figure 2 where our procedure was arbitrarily stopped after 40 evaluations. Here, we
used the SE covariance function de�ned in (3).

The approach starts with t1 = 3 points randomly chosen in A. Then, a new point in green
is added to the set of points at which an evaluation of f is required. This point corresponds
to the position on the x-axis where the uncertainty σ2t associated to the estimation of f is
maximized. We can see from this �gure which displays the true function f , the estimation
of f and the points at which f has been evaluated that 35 evaluation points are enough to
obtain a very accurate estimation of f .

To further investigate the statistical performance of our approach, we used the following
measures:

Normalized MAE(t) =
1

m

m∑
i=1

|yi − µt(xi)|
ymax − ymin

, (18)

where µt is the estimation of f obtained at iteration t, m is the number of elements in the
grid A and ymin and ymax are the minimum and maximum values, respectively, found for the
evaluation of f on the initial grid ;

Normalized sup norm(t) = max
1≤i≤m

|yi − µt(xi)|
ymax − ymin

. (19)

V (t) = max
x∈A

σ2t (x), (20)

where σt is de�ned in (10).
The average and the standard deviation of these measures obtained from 10 replications of

the initial set of points are displayed in Figure 3 for the covariance functions de�ned in (3)
and (7) and 3 ≤ t ≤ 40. Note that the average and the standard deviation are computed by
using 10 di�erent initial sets of points.

We can see from this �gure that the performance of our approach is slightly better for the
Matérn covariance function than for the squared exponential function. It can indeed reach
a normalized MAE (resp. normalized sup norm) of 10−3 (resp. 10−1.5) by using only 40
evaluations of the function to estimate. This might come from the discontinuity of the �rst
derivative of the function to estimate where the salt starts to precipitate.

In the left part of Figure 4 the statistical performance of our approach including the stop-
ping criteria are further investigated thanks to the computation of the previous performance
measures de�ned in (18), (19) and (20): Normalized MAE(t?), Normalized Sup norm(t?) and
V (t?) where t? is the stopping iteration which may be di�erent for each stopping criterion.

We can see from the left part of Figure 4 that among all of the stopping criteria, �ratio
variance 5� (R5), �ratio variance 10� (R10) and �mobile average 10� (M10) are those providing
the best estimations of the function f . Moreover, we can observe from the right part of this
�gure that our active learning approach only requires between 15 and 40 evaluations of the
function to estimate instead of the 1140 points of the initial grid to provide a very accurate
estimation of the function f . With such an approach, we can thus expect a signi�cant reduction
of the computational time especially in situations where the computational load associated to
the evaluation of f is high. Figure 4 also shows that, in this case, the impact of the covariance
function is not signi�cant even though the �rst derivative of the function to approximate is
not continuous, namely where the salt precipitates.
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Figure 2. Illustration of our active learning approach for estimating the func-
tion displayed in the left part of Figure 1 by starting from t1 = 3 observations
randomly chosen in A with the squared exponential covariance function.

3.2. Case d = 2. In order to further assess the performance of our approach we now consider
the estimation of the amount of Salt as a function of the concentrations of Sp+a and Sp−b .

The di�erent steps of our approach summarized in Algorithm 1 are illustrated in Figure 5.
Here, we used the SE covariance function de�ned in (3).

The approach starts with t1 = 3 points randomly chosen in A ⊂ [0, 1]2 obtained thanks to
a regular grid of 200 × 200 points. Then, new points (orange bullets) are added one by one
to the set of points at which an evaluation of f is required. These points correspond at each
iteration to the position in A ⊂ [0, 1]2 where the uncertainty σ2t associated to the estimation of
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Figure 3. Average and standard deviation of di�erent statistical measures for
the squared exponential covariance function de�ned in (3) (left) and for the
Matern covariance function de�ned in (7) (right) in the case d = 1.

f is maximized. We can see from this �gure which displays the true function f , the estimation
of f and the points at which f has been evaluated that 35 evaluation points are enough to
obtain a very accurate estimation of f .

In the d = 2 case, the average and the standard deviation of the statistical measures de�ned
in (18)�(20) obtained from 10 replications of the initial set of points are displayed in Figure
6 for the squared exponential and the Matérn covariance function de�ned in (3) and (7)) for
3 ≤ t ≤ 100. We can see that for both choices of covariance function the performance of our
approach are similar: it can reach a normalized sup norm (resp. normalized MAE) of 10−1.5

(resp. 10−2.5) by using only 100 evaluations of the function to estimate instead of the 40000
points of the grid A. We also observe a smoother behavior of the maximal variance with the
Matérn covariance function even though the �nal values are close.
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Figure 4. Left: Statistical assessment of the error estimation of f displayed in
the left part of Figure 1 for the stopping criteria de�ned in (13), (15) and (17)
for the squared exponential and the Matérn covariance functions. Top right:
Number of evaluations required for the considered stopping criteria. Bottom
right: Values of V (t?) where V is de�ned in (20) and t? is the stopping iteration
which changes from one stopping criterion to another.

We can see from the left part of Figure 7 that most of the stopping criteria provide an
accurate estimation of the function except �ratio variance 2� (R2). As for the d = 1 case, the
stopping criteria R10 andM10 provide very satisfactory results. Moreover, we can observe from
the right part of this �gure that thanks to our active learning approach, 30-50 evaluations of
the function to estimate are required instead of the 40000 points of the initial grid to provide
a very accurate estimation of the function f . Once again, with our approach, we can thus
expect a signi�cant reduction of the computational burden especially in situations where the
computational load associated to the evaluation of f is high.

In this case, the choice of the covariance function might result from a trade-o� between ac-
curacy and number of evaluation points. However, the accuracy and the number of evaluation
points do not change drastically suggesting that the choice of the covariance function is still
not signi�cant.

4. Application to a multidimensional geochemical system

The chemical problem solved in this section derives from [11]. The chemical setup is based
on the thermodynamic data for aqueous species and minerals available in the Phreeqc.dat
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Salt precipitation - 3 observations Salt precipitation - 4 observations

Salt precipitation - 5 observations Salt precipitation - 15 observations

Salt precipitation - 30 observations Salt precipitation - 35 observations

  

Figure 5. Illustration of our active learning approach for estimating the func-
tion displayed in the right part of Figure 1 by starting from t1 = 3 observations
randomly chosen in A ⊂ [0, 1]2 for the squared exponential covariance function.
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Figure 6. Average and standard deviation of di�erent statistical measures for
the squared exponential covariance function de�ned in (3) (left) and for the
Matern covariance function de�ned in (7) (right) in the case d = 2.

database distributed with PHREEQC [13]. The compositional system actually solved con-
sists of 14 species in solution, 2 mineral components, 8 geochemical reactions and 2 mineral
dissolution-precipitation reactions:

H2O 
 H+ + OH−, logK1 = −13.987

HCO−3 
 CO2−
3 + H+, logK2 = −10.329

CO2 + H2O 
 CO2−
3 + 2H+, logK3 = −16.681

CaHCO+
3 
 Ca2+ + CO2−

3 + H+, logK4 = −11.435

MgHCO+
3 
 Mg2+ + H+ + CO2−

3 , logK5 = −11.399

CaCO3(aq) 
 Ca2+ + CO2−
3 , logK6 = −3.224
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Figure 7. Left: Statistical assessment of the error estimation of f displayed
in the right part of Figure 1 for the stopping criteria de�ned in (13), (15) and
(17) for the squared exponential and the Matérn covariance functions. Top
right: Number of evaluations required for the di�erent considered stopping
criteria. Bottom right: Values of V (t?) where V is de�ned in (20) and t? is the
stopping iteration which changes from one stopping criterion to another.

MgCO3 
 Mg2+ + CO2−
3 , logK7 = −2.98

MgOH+ + H+ 
 Mg2+ + H2O, logK8 = 11.44

Calcite 
 CO2−
3 + Ca2+, logK9 = −8.48

Dolomite 
 Ca2+ + Mg2+ + 2CO2−
3 , logK10 = −17.09

Then, each amount of mineral (calcite or dolomite, respectively) is computed with PHREEQC
[13] as a function of the total elemental concentrations (C, Ca, Cl, Mg), the pH (as −log(H+))
and the mineral amount (dolomite or calcite, respectively), which are normalized so that
A = [0, 1]6. Here, our goal is to estimate the functions f1 and f2 de�ned as follows:

calcite = f1(C, Ca, Cl, Mg, pH, dolomite) and dolomite = f2(C, Ca, Cl, Mg, pH, calcite),
(21)

by using the minimal number of evaluations of these functions. For this, we shall use a grid
A built thanks to a Latin Hypercube Sampling (LHS) of A with m = 100000 points.

In the left part of Figure 8 the amount of calcite is displayed as a function of C and Ca
for Cl=2×10−3 mol/kgw, Mg=10−5 mol/kgw, pH=10, dolomite=0 mol which corresponds to
f1(C,Ca, 2×10−3, 10−5, 10, 0). In the right part of Figure 8 the amount of dolomite is displayed
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 Amount of Calcite  Amount of Dolomite

Figure 8. Left : Amount of calcite as a function of C and Ca for Cl=2 ×
10−3 mol/kgw, Mg=10−5 mol/kgw, pH=10, dolomite=0 mol: f1(C,Ca, 2 ×
10−3, 10−5, 10, 0) where f1 is de�ned in (21). Right : Amount of dolomite as
a function of Ca and Mg for C=5 × 10−4 mol/kgw, Cl=2 × 10−3 mol/kgw,
pH=10, calcite=0 mol: f2(5×10−4,Ca, 2×10−3,Mg, 10, 0) where f2 is de�ned
in (21).

as a function of Ca and Mg for C=5×10−4 mol/kgw, Cl=2×10−3 mol/kgw, pH=10, calcite=0
mol which corresponds to f2(5× 10−4,Ca, 2× 10−3,Mg, 10, 0).

Illustrations of our active learning approach for estimating these functions are shown in
Figures 13 and 14 of the Appendix.

4.1. Calcite precipitation. The average and the standard deviation of the di�erent statis-
tical measures obtained from 10 replications of the initial set of points are shown in Figure
9 for the squared exponential and the Matérn covariance functions de�ned in (3) and (7) for
3 ≤ t ≤ 500. We can see that for both choices of covariance functions, the maximal variance
and the statistical precision measures keep decreasing as the number of evaluations increases.
For instance, our method allows us to have a normalized sup norm (resp. normalized MAE)
of 10−0.5 (resp. 10−1.4) with only 500 evaluations instead of the 100 000 points of the grid A
for both covariance functions. However, the maximal variance is around 10−3.5 (resp. 10−1.5)
for the squared exponential (resp. Matérn) covariance function.

Moreover, we can see from Figure 10 that when the mobile average M` criteria and the
squared exponential covariance function are used the �nal estimation of f1 is obtained with
around 100 evaluations of f1 instead of 105. To obtain similar statistical performance with
the Matérn covariance more than 750 observations are required. The di�erence between the
two covariance functions probably comes from the behavior of the maximal variance. It is still
strongly decreasing after 500 observations for the squared exponential covariance function
which is not the case for the Matérn covariance function.

4.2. Dolomite precipitation. Similarly to the previous case, the average and the standard
deviation of the di�erent statistical measures obtained from 10 replications of the initial set
of points are shown in Figure 11 for the squared exponential and the Matérn covariance
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Figure 9. Average and standard deviation of di�erent statistical measures
for the squared exponential and the Matérn covariance functions de�ned in (3)
and (7) for the calcite precipitation problem with d = 6.

functions de�ned in (3) and (7) for 3 ≤ t ≤ 500. We obtained similar conclusions as for the
calcite precipitation case, see Figure 12.

5. Conclusion

We have shown that our method has two main features which make it very attractive.
Firstly, it is very e�cient from a practical point of view thanks to the Gaussian Process
modeling which enables us to sequentially build the surrogate model with a low number of
points and almost no parameters to tune. Secondly, its very low computational burden makes
its use possible on complex chemical reactions involving singular behaviors like precipitation
and dissolution of minerals. Our method could also be applied to more complex geochemical
systems like surface complexation or ion exchange that can be described with laws of mass
action. E�ectively, these two features have further potential applications on much larger sets
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Figure 10. Left: Statistical assessment of the error estimation of f1 de�ned
in (21) for the stopping criteria de�ned in (13), (15) and (17) for the squared
exponential and the Matérn covariance function de�ned in (3) and (7). Top
right: Number of evaluations required for the di�erent considered stopping
criteria. Bottom right: Values of V (t?) where V is de�ned in (20) and t? is the
stopping iteration which changes from one stopping criterion to another.

of reactive species or with coupled physical processes namely in reactive transport modeling.
This will be the subject of a future work.

References

[1] M. Abramovitz and I. Stegun. Handbook of Mathematical Functions with Formulas, Graphs and Mathe-
matical Tables. Dover books on mathematics. Dover Publications, 1965.

[2] J. Carrayrou, R. Mosé, and P. Behra. Operator-splitting procedures for reactive transport and comparison
of mass balance errors. Journal of Contaminant Hydrology, 68(3-4):239�268, 2004.

[3] C. de Capitani and T. H. Brown. The computation of chemical equilibrium in complex systems containing
non-ideal solutions. Geochimica et Cosmochimica Acta, 51(10):2639�2652, 1987.

[4] S. Descombes. Convergence of a splitting method of high order for reaction-di�usion systems.Mathematics
of Computation, 70(236):1481�1501, 2001.

[5] I. Faragó and J. Geiser. Iterative operator-splitting methods for linear problems. International Journal of
Computational Science and Engineering, 3(4):255�263, 2007.

[6] A. Forrester, A. Sobester, and A. Keane. Engineering design via surrogate modelling: a practical guide.
Wiley, 2008.

[7] J. Geiser. Iterative splitting methods for di�erential equations. Taylor & Francis Group: Boca Raton, FL,
USA; London, UK; New York, NY, USA, 2011.

[8] J. Geiser, J. L. Hueso, and E. Martínez. Parallel iterative splitting methods: Algorithms and applications.
In AIP Conference Proceedings, volume 2293, page 420081. AIP Publishing LLC, 2020.



16 MARY SAVINO, CÉLINE LÉVY-LEDUC, MARC LECONTE, AND BENOIT COCHEPIN

0 100 200 300 400 500
0.8

0.6

0.4

0.2

0.0

No
rm

al
ize

d 
su

p 
no

rm
 (l

og
10

)
Squared exponential

0 100 200 300 400 500
0.8

0.6

0.4

0.2

0.0
Matern 5/2

0 100 200 300 400 500
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8

No
rm

al
ize

d 
M

AE
 (l

og
10

)

0 100 200 300 400 500
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8

0 100 200 300 400 500
Number of observations

3.5
3.0
2.5
2.0
1.5
1.0
0.5

M
ax

im
al

 v
ar

ia
nc

e
 (l

og
10

)

0 100 200 300 400 500
Number of observations

3.5
3.0
2.5
2.0
1.5
1.0
0.5

Dolomite 6 dimension(s) 
average +/- std/average

Figure 11. Average and standard deviation of di�erent statistical measures
for the squared exponential and the Matérn covariance functions de�ned in (3)
and (7) for the dolomite precipitation problem with d = 6.

[9] D. Guérillot and J. Bruyelle. Geochemical equilibrium determination using an arti�cial neural network in
compositional reservoir �ow simulation. Computational Geosciences, 24(2):697�707, 2020.

[10] M. Jala, C. Levy-Leduc, Éric Moulines, E. Conil, and J. Wiart. Sequential design of computer experiments
for the assessment of fetus exposure to electromagnetic �elds. Technometrics, 58(1):30�42, 2016.

[11] O. Kolditz, U.-J. Görke, H. Shao, and W. Wang. Thermo-hydro-mechanical-chemical processes in porous
media: benchmarks and examples, volume 86. Springer Science & Business Media, 2012.

[12] G. Marchuk. Splitting and alternating direction methods. volume 1 of Handbook of Numerical Analysis,
pages 197�462. Elsevier, 1990.

[13] D. L. Parkhurst and C. Appelo. Description of input and examples for phreeqc version 3: a computer
program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations.
U.S.G.S. Techniques and Methods, book 6, chap. A43, 497p., 2013.

[14] S. Rao, A. van der Schaft, K. van Eunen, B. M. Bakker, and B. Jayawardhana. Model-order reduction
of biochemical reaction networks. In 2013 European Control Conference (ECC), pages 4502�4507. IEEE,
2013.



AN ACTIVE LEARNING APPROACH FOR EQUILIBRIUM BASED CHEMICAL SIMULATIONS 17

−0.75

−0.50

−0.25

0.00
ra

tio
 v

ar
ia

nc
e 

2
ra

tio
 v

ar
ia

nc
e 

5
ra

tio
 v

ar
ia

nc
e 

10
m

ob
ile

 a
ve

ra
ge

 2
m

ob
ile

 a
ve

ra
ge

 5
m

ob
ile

 a
ve

ra
ge

 1
0

th
re

sh
ol

d 
va

ria
nc

e 
0.

01
th

re
sh

ol
d 

va
ria

nc
e 

0.
00

1

N
or

m
al

iz
ed

 s
up

 n
or

m
 (

lo
g1

0)
Matern 5/2 Squared exponential

0

250

500

750

N
um

be
r 

of
 o

bs
er

va
tio

ns

Matern 5/2 Squared exponential

−3

−2

−1

0

ra
tio

 v
ar

ia
nc

e 
2

ra
tio

 v
ar

ia
nc

e 
5

ra
tio

 v
ar

ia
nc

e 
10

m
ob

ile
 a

ve
ra

ge
 2

m
ob

ile
 a

ve
ra

ge
 5

m
ob

ile
 a

ve
ra

ge
 1

0
th

re
sh

ol
d 

va
ria

nc
e 

0.
01

th
re

sh
ol

d 
va

ria
nc

e 
0.

00
1

M
ax

im
al

 v
ar

ia
nc

e
 (

lo
g1

0)

Figure 12. Left: Statistical assessment of the error estimation of f2 de�ned
in (21) for the stopping criteria de�ned in (13), (15) and (17) for the squared
exponential and the Matérn covariance functions de�ned in (3) and (7). Top
right: Number of evaluations required for the di�erent considered stopping
criteria. Bottom right: Values of V (t?) where V is de�ned in (20) and t? is the
stopping iteration which changes from one stopping criterion to another.

[15] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press, 2006.

[16] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer experiments.
Statistical Science, 4(4):409�423, 1989.

[17] M. J. Simpson and K. A. Landman. Analysis of split operator methods applied to reactive transport with
monod kinetics. Advances in Water Resources, 30(9):2026�2033, 2007.

[18] W. R. Smith. The computation of chemical equilibria in complex systems. Industrial & Engineering
Chemistry Fundamentals, 19(1):1�10, 1980.

[19] B. Sportisse. An analysis of operator splitting techniques in the sti� case. Journal of computational physics,
161(1):140�168, 2000.

[20] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Information-theoretic regret bounds for Gaussian
process optimization in the bandit setting. IEEE Information Theory, 58:3258�3265, 2012.

[21] M. L. Stein. Interpolation of spatial data. Springer Series in Statistics. Springer-Verlag, 1999.
[22] W. B. White, S. M. Johnson, and G. B. Dantzig. Chemical equilibrium in complex mixtures. The Journal

of Chemical Physics, 28(5):751�755, 1958.



18 MARY SAVINO, CÉLINE LÉVY-LEDUC, MARC LECONTE, AND BENOIT COCHEPIN

6. Appendix: Additional plots

Andra, 1/7 Rue Jean Monnet, 92290 Châtenay-Malabry, France and Université Paris-Saclay,
AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France

Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
Email address, Corresponding author: celine.levy-leduc@agroparistech.fr

Andra, 1/7 Rue Jean Monnet, 92290 Châtenay-Malabry, France

Andra, 1/7 Rue Jean Monnet, 92290 Châtenay-Malabry, France



AN ACTIVE LEARNING APPROACH FOR EQUILIBRIUM BASED CHEMICAL SIMULATIONS 19

Calcite precipitation - 3 observations Calcite precipitation - 4 observations

Calcite precipitation - 5 observations Calcite precipitation - 15 observations

Calcite precipitation - 30 observations Calcite precipitation - 35 observations

  

Figure 13. Illustration of our active learning approach for estimating the
function f1(C,Ca, 2 × 10−3, 10−5, 10, 0) displayed in the left part of Figure 8
by starting from t1 = 3 observations randomly chosen in A ⊂ [0, 1]2. Here, the
squared exponential covariance function was used.



20 MARY SAVINO, CÉLINE LÉVY-LEDUC, MARC LECONTE, AND BENOIT COCHEPIN

Dolomite precipitation - 3 observations Dolomite precipitation - 4 observations

Dolomite precipitation - 15 observations Dolomite precipitation - 30 observations

Dolomite precipitation - 35 observations Dolomite precipitation - 40 observations

  

Figure 14. Illustration of our active learning approach for estimating the
function f2(5 × 10−4,Ca, 2 × 10−3,Mg, 10, 0) displayed in the right part of
Figure 8 by starting from t1 = 3 observations randomly chosen in A ⊂ [0, 1]2.
Here, the squared exponential covariance function was used.
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