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In this paper, we propose a novel sequential data-driven method for dealing with equilibrium based chemical simulations, which can be seen as a specic machine learning approach called active learning. The underlying idea of our approach is to consider the function to estimate as a sample of a Gaussian process which allows us to compute the global uncertainty on the function estimation. Thanks to this estimation and with almost no parameter to tune, the proposed method sequentially chooses the most relevant input data at which the function to estimate has to be evaluated to build a surrogate model. Hence, the number of evaluations of the function to estimate is dramatically limited. Our active learning method is validated through numerical experiments and applied to a complex chemical system commonly used in geoscience.

Introduction

Computing the concentrations at equilibrium of reactive species is well known to be a challenging issue when the number of species is high and/or when the reaction involves the dissolution or the precipitation of minerals [START_REF] White | Chemical equilibrium in complex mixtures[END_REF][START_REF] Smith | The computation of chemical equilibria in complex systems[END_REF][START_REF] De Capitani | The computation of chemical equilibrium in complex systems containing non-ideal solutions[END_REF]. The numerical resolution of these nonlinear problems can quickly become so time consuming that the coupling with other physical processes has to be simplied. For instance in the case of reactive transport, it means that the size of the geometric model has to be drastically limited leading typically to a one dimensional model or that the number of time steps has to be reduced. To overcome this issue, research eorts have been dedicated to the improvement of the numerical scheme aiming at speeding up the computations. A classical approach consists in using a splitting operator technique to solve separately the transport of the chemical species and the chemical reaction between those species [START_REF] Marchuk | Splitting and alternating direction methods[END_REF][START_REF] Sportisse | An analysis of operator splitting techniques in the sti case[END_REF][START_REF] Descombes | Convergence of a splitting method of high order for reaction-diusion systems[END_REF]2,[START_REF] Simpson | Analysis of split operator methods applied to reactive transport with monod kinetics[END_REF]. With this approach a specic optimization for each part of the resolution can be performed especially by taking advantage of the parallel architecture of computers [START_REF] Faragó | Iterative operator-splitting methods for linear problems[END_REF][START_REF] Geiser | Iterative splitting methods for dierential equations[END_REF][START_REF] Geiser | Parallel iterative splitting methods: Algorithms and applications[END_REF].

However, despite the signicant improvements of the numerical solvers and preconitionners during the last decades, three dimensional large scale modelling of complex reactive transport over a long period of time, namely many time steps, remains almost impossible to solve with standard computers. Consequently, the recent success of machine learning (ML) in various elds have quickly drawn attention of geoscientists because ML seems to be able to solve very complex problems with a reasonable cost in terms of computational ressources.

The main idea behind the ML success is to provide an estimation of the solution of the full simulation model that can replace it. Two of the most popular approaches are model order reduction and data-driven models also called surrogate models. The rst one requires to understand the underlying chemical processes to create a simplied model while preserving some physical principles [START_REF] Rao | Model-order reduction of biochemical reaction networks[END_REF]. In the second approach, the underlying chemical processes are not assumed to be known or understood and a model is solely built from a limited but potentially signicant set of values of the solution of the full simulation model associated to some specic input values [START_REF] Guérillot | Geochemical equilibrium determination using an articial neural network in compositional reservoir ow simulation[END_REF]. Since the number of required values is unknown a priori, choosing the optimal input values and parameters used for building the surrogate model is crucial and usually challenging.

In this paper, we propose a novel sequential data-driven method for dealing with equilibrium based chemical simulation, which can thus be seen as an active learning approach inspired by the ideas contained in [START_REF] Srinivas | Information-theoretic regret bounds for Gaussian process optimization in the bandit setting[END_REF][START_REF] Jala | Sequential design of computer experiments for the assessment of fetus exposure to electromagnetic elds[END_REF]. With such an approach, our goal is to minimize the number of evaluations of the function that has to be estimated to build a surrogate model. Our approach consists in modeling the function to estimate as a sample of a Gaussian Process (GP) which allows us to provide an error estimation to sequentially choose the most relevant input data until a given stopping criterion is fullled. The advantage of our approach is that the number of required evaluations of the function to estimate is very limited and that there are no parameter to tune.

The paper is organized as follows. In Section 2, our approach is described. Some numerical experiments are provided in Section 3 to illustrate the statistical and numerical performance of our method. It is then applied in Section 4 to a multidimensional example coming from [START_REF] Kolditz | Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples[END_REF] which includes several chemical elements and minerals.

Description of our approach

In this section, we describe our active learning approach for estimating a real-valued function f dened on a compact subset A ⊂ R d by using only a few number of sequentially well-chosen points at which f is evaluated.

We adopt a Bayesian point of view which consists in considering f as a sample of a zero-mean Gaussian process (GP) having a covariance function k that we shall denote by GP(0,k(•, •)) in the following. The advantage of this approach is that, conditionally on a set of t observations y t = (y 1 , . . . , y t ) where y i = f (x i ), x i belonging to A, the posterior distribution is still a GP having a mean µ t and a covariance function k t given by µ

t (u) = k t (u) K -1 t y t , (1) 
k t (u, v) = k(u, v) -k t (u) K -1 t k t (v) , (2) 
where k t (u) = [k(x 1 , u) . . . k(x t , u)] . Here denotes the matrix transposition, u and v are in A and K t = [k(x i , x j )] 1≤i,j≤t , where the x i 's are in A. For further details on GP, we refer the reader to [START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF] in which their properties are thoroughly presented.

In our case, f models a physical quantity that is assumed to be smooth, so for our applications we shall consider two covariance functions that are commonly used in this case. The rst one is the squared exponential (SE) covariance function

k SE (u, v) = exp - 1 2 (u -v) M -1 (u -v) , u, v ∈ A ⊂ R d , (3) 
M = diag 2 1 , . . . , 2 d , 1 , 2 , . . . , d > 0 . (4) 
Here the 1 , 2 , . . . , d hyperparameters are the characteristic length scales. Actually, these hyperparameters can be understood as how far you need to move along a particular axis in the input space so that the function values become uncorrelated. For further details, we refer the reader to Section 5.1 of [START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF]. Note that Denition (3) allows us to model anisotropic response surfaces.

As explained in [START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF], since this covariance function is innitely dierentiable, the GP with this covariance function has mean square derivatives of all orders. As argued by [START_REF] Stein | Interpolation of spatial data[END_REF] such strong smoothness assumptions may be unrealistic for modeling many physical processes, so we shall also consider another covariance function belonging to the Matérn class of covariance functions dened by

k Matérn (r) = 2 1-ν Γ(ν) √ 2νr ν K ν √ 2νr , ν > 0 , (5) 
where K ν is a modied Bessel function with Bessel order ν, see [1, Section 9.6], and r is dened by

r = (u -v) M -1 (u -v) , u, v ∈ A , (6) 
M being dened in [START_REF] Descombes | Convergence of a splitting method of high order for reaction-diusion systems[END_REF]. In this situation, as explained in [START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF], the GP is q-times mean-square dierentiable if and only if ν > q.

Here, we shall focus on the case where ν = 5/2, for which k Matérn has a computationally advantageous expression. Indeed, for ν = p + 1 2 , where p is in N,

k Matérn (r) = exp - √ 2νr Γ(p + 1) Γ(2p + 1) p i=0 (p + i)! i!(p -i)! √ 8νr p-i , (7) 
with r dened in [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF]; see [1, Equation 10.2.15] for further details.

In the following, we shall denote by A a ne grid of A:

A = {x 1 , . . . , x m } ⊂ A . ( 8 
)
This grid is either a regular grid of A ⊂ R d when d is small (usually 1 or 2) or a Latin Hypercube Sampling for larger values of d. Note that this grid contains the points at which the estimation of f is performed and that the points at which f is evaluated are chosen in this grid.

Inspired by [START_REF] Srinivas | Information-theoretic regret bounds for Gaussian process optimization in the bandit setting[END_REF] who proposed a sequential approach for maximizing a function by modeling it using a Gaussian process, we propose a strategy which consists in adding the new point

x t+1 to the set of t observations at which f needs to be evaluated as follows:

x t+1 ∈ Arg max

x∈A σ t (x) , (9) 
where

σ t (x) 2 = k t (x, x), (10) 
k t being dened in (2) and Arg max x∈A σ t (x) being the set of x ∈ A where σ t (x) reaches its maximum. Note that the points x 1 , x 2 , . . . , x t , x t+1 , . . . at which f needs to be evaluated are chosen in the ne grid A of A dened in (8).

2.1. Estimating the characteristic length scales. Previously, we assumed that the characteristic length scales = ( i ) {1≤i≤d} were known. However, this is obviously not the case in real-data applications. We propose using the maximum-likelihood strategy described in [START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF] to estimate . This adds a step to the method previously described, as the i 's have to be esti- mated before evaluating the posterior distribution of the GP using (1) and (2). Hence, for the observation set {(x 1 , y 1 ), . . . , (x t , y t )} with y i = f (x i ) , 1 ≤ i ≤ t, the posterior log-likelihood given by:

-

1 2 y t K -1 t y t - 1 2 log |K t | - t 2 log 2π , (11) 
with y t = (y 1 , . . . , y t ) and K t = [k(x i , x j )] 1≤i,j≤t , has to be maximized with respect to .

2.2. Summary of our strategy. Our method was implemented by using the GaussianPro-cessRegressor class of the scikit-learn 0.20.3 module of Python which only provides the computation of µ t and σ t dened in ( 1) and [START_REF] Jala | Sequential design of computer experiments for the assessment of fetus exposure to electromagnetic elds[END_REF]. Our sequential approach is summarized in Algorithm 1.

Algorithm 1

Input: x 1 , . . . , x t 1 a small initial set of points of A where f has been evaluated t = t 1 ; Choose a covariance function k among SE and Matérn.

While the stopping criterion is not fullled

• Estimate by using [START_REF] Kolditz | Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples[END_REF] • Evaluate the posterior distribution of the GP using ( 1) and ( 2), and the variance σ t (x) 2 for all x in A • Choose x t+1 in A using [START_REF] Guérillot | Geochemical equilibrium determination using an articial neural network in compositional reservoir ow simulation[END_REF] • Evaluate f at this point: y t+1 = f (x t+1 )

• Add this new observation to the set of points at which f is evaluated which becomes

x 1 , . . . , x t , x t+1 • t ← t + 1
The function f is estimated by µ t dened in [START_REF] Abramovitz | Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables[END_REF].

Further comments on the stopping criteria appearing in Algorithm 1 are given below. • Ratio variance. At each iteration t of our method, the following average is computed:

R n (t) = 1 n -1 n-1 i=1 max x∈A σ 2 t (x) max x∈A σ 2 t-i (x) , ( 12 
)
where σ t is dened in [START_REF] Jala | Sequential design of computer experiments for the assessment of fetus exposure to electromagnetic elds[END_REF] and n = 2, 5 or 10. This criterion will be then compared to a threshold to determine if the maximal variance reach a plateau. In some cases, σ 2 t-i can be less than σ 2 t so in order to detect the smallest variations, we also have to make sure that the ratio does not exceed the inverse of the chosen threshold. Thus, the associated stopping criterion is: interrupt the algorithm when t is such that 0.9 < R n (t) < 1 0.9 .

• Mobile average. At each iteration t of our method, the following average is computed:

M (t) = 1 -1 j=0 max x∈A σ 2 t-j (x) (14) 
for = 5 or 10 where σ t is dened in [START_REF] Jala | Sequential design of computer experiments for the assessment of fetus exposure to electromagnetic elds[END_REF]. The associated stopping criterion is: interrupt the algorithm when t is such that M (t) < 0.01. [START_REF] Rasmussen | Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)[END_REF] • Maximal variance. At each iteration t of our method, is computed where σ t is dened in [START_REF] Jala | Sequential design of computer experiments for the assessment of fetus exposure to electromagnetic elds[END_REF]. The associated stopping criterion is: interrupt the algorithm when t is such that

V (t) = max x∈A σ 2 t (x) (16 
V (t) < s, (17) 
where s = 0.01 or 0.001 in the following.

The statistical performance of these dierent criteria are investigated in Section 3. Note that the values reported here for each criteria (0.9, 0.01 or 0.001) were chosen based on some numerical experiments since they appear to be relevant to detect a plateau in the maximal variance.

Numerical experiments

To illustrate our method we consider hereafter the estimation of the amount of a "Salt" mineral as a function of the concentrations of its constituents Sp + a and Sp b . For this example, the thermodynamic constants of the halite salt (NaCl) were considered because there are only two constitutive elements and because they do not depend on the pH of the solution. From our point of view, there is no theoretical limitation in the application of our method to more complex salts or minerals.

Following the law of mass action, the dissolution reaction of this mineral writes:

Salt Sp + a + Sp - b .
At equilibrium, the activity of these elements a Sp + a and a

Sp - b obey the solubility product

K Salt = a Sp + a a Sp - b = 10 1.570 .
The amount of Salt was rst calculated with PHREEQC [START_REF] Parkhurst | Description of input and examples for phreeqc version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[END_REF] as a function of the concentrations of Sp + a , which is normalized so that A = [0, 1]. It corresponds to the case d = 1 below. The corresponding function f is displayed in the left part of Figure 1 where A is a regular grid of A with m = 1140 points. Then, the amount of Salt was computed with PHREEQC as a function of the concentrations of Sp + a and Sp b , which are also normalized so that A = [0, 1] 2 . It corresponds to the case d = 2 below. The corresponding function f is displayed in the right part of Figure 1 where A is a regular grid of A with m = 40000 points.

3.1. Case d = 1. The dierent steps of our approach summarized in Algorithm 1 are illustrated in Figure 2 where our procedure was arbitrarily stopped after 40 evaluations. Here, we used the SE covariance function dened in [START_REF] De Capitani | The computation of chemical equilibrium in complex systems containing non-ideal solutions[END_REF].

The approach starts with t 1 = 3 points randomly chosen in A. Then, a new point in green is added to the set of points at which an evaluation of f is required. This point corresponds to the position on the x-axis where the uncertainty σ 2 t associated to the estimation of f is maximized. We can see from this gure which displays the true function f , the estimation of f and the points at which f has been evaluated that 35 evaluation points are enough to obtain a very accurate estimation of f . To further investigate the statistical performance of our approach, we used the following measures:

Normalized MAE(t) = 1 m m i=1 |y i -µ t (x i )| y max -y min , (18) 
where µ t is the estimation of f obtained at iteration t, m is the number of elements in the grid A and y min and y max are the minimum and maximum values, respectively, found for the evaluation of f on the initial grid ;

Normalized sup norm(t) = max 1≤i≤m |y i -µ t (x i )| y max -y min . ( 19 
) V (t) = max x∈A σ 2 t (x), (20) 
where σ t is dened in [START_REF] Jala | Sequential design of computer experiments for the assessment of fetus exposure to electromagnetic elds[END_REF].

The average and the standard deviation of these measures obtained from 10 replications of the initial set of points are displayed in Figure 3 for the covariance functions dened in [START_REF] De Capitani | The computation of chemical equilibrium in complex systems containing non-ideal solutions[END_REF] and ( 7) and 3 ≤ t ≤ 40. Note that the average and the standard deviation are computed by using 10 dierent initial sets of points.

We can see from this gure that the performance of our approach is slightly better for the Matérn covariance function than for the squared exponential function. It can indeed reach a normalized MAE (resp. normalized sup norm) of 10 -3 (resp. 10 -1.5 ) by using only 40 evaluations of the function to estimate. This might come from the discontinuity of the rst derivative of the function to estimate where the salt starts to precipitate.

In the left part of Figure 4 the statistical performance of our approach including the stopping criteria are further investigated thanks to the computation of the previous performance measures dened in ( 18), ( 19) and ( 20): Normalized MAE(t ), Normalized Sup norm(t ) and V (t ) where t is the stopping iteration which may be dierent for each stopping criterion.

We can see from the left part of Figure 4 that among all of the stopping criteria, ratio variance 5 (R 5 ), ratio variance 10 (R 10 ) and mobile average 10 (M 10 ) are those providing the best estimations of the function f . Moreover, we can observe from the right part of this gure that our active learning approach only requires between 15 and 40 evaluations of the function to estimate instead of the 1140 points of the initial grid to provide a very accurate estimation of the function f . With such an approach, we can thus expect a signicant reduction of the computational time especially in situations where the computational load associated to the evaluation of f is high. Figure 4 also shows that, in this case, the impact of the covariance function is not signicant even though the rst derivative of the function to approximate is not continuous, namely where the salt precipitates. The dierent steps of our approach summarized in Algorithm 1 are illustrated in Figure 5.

Here, we used the SE covariance function dened in (3).

The approach starts with t 1 = 3 points randomly chosen in A ⊂ [0, 1] 2 obtained thanks to a regular grid of 200 × 200 points. Then, new points (orange bullets) are added one by one to the set of points at which an evaluation of f is required. These points correspond at each iteration to the position in A ⊂ [0, 1] 2 where the uncertainty σ 2 t associated to the estimation of f is maximized. We can see from this gure which displays the true function f , the estimation of f and the points at which f has been evaluated that 35 evaluation points are enough to obtain a very accurate estimation of f . In the d = 2 case, the average and the standard deviation of the statistical measures dened in (18)(20) obtained from 10 replications of the initial set of points are displayed in Figure 6 for the squared exponential and the Matérn covariance function dened in (3) and ( 7)) for 3 ≤ t ≤ 100. We can see that for both choices of covariance function the performance of our approach are similar: it can reach a normalized sup norm (resp. normalized MAE) of 10 -1.5 (resp. 10 -2.5 ) by using only 100 evaluations of the function to estimate instead of the 40000 points of the grid A. We also observe a smoother behavior of the maximal variance with the Matérn covariance function even though the nal values are close. 13), ( 15) and ( 17)

for the squared exponential and the Matérn covariance functions. Top right:

Number of evaluations required for the considered stopping criteria. Bottom right: Values of V (t ) where V is dened in [START_REF] Srinivas | Information-theoretic regret bounds for Gaussian process optimization in the bandit setting[END_REF] and t is the stopping iteration which changes from one stopping criterion to another.

We can see from the left part of Figure 7 that most of the stopping criteria provide an accurate estimation of the function except ratio variance 2 (R 2 ). As for the d = 1 case, the stopping criteria R 10 and M 10 provide very satisfactory results. Moreover, we can observe from the right part of this gure that thanks to our active learning approach, 30-50 evaluations of the function to estimate are required instead of the 40000 points of the initial grid to provide a very accurate estimation of the function f . Once again, with our approach, we can thus expect a signicant reduction of the computational burden especially in situations where the computational load associated to the evaluation of f is high.

In this case, the choice of the covariance function might result from a trade-o between accuracy and number of evaluation points. However, the accuracy and the number of evaluation points do not change drastically suggesting that the choice of the covariance function is still not signicant.

Application to a multidimensional geochemical system

The chemical problem solved in this section derives from [START_REF] Kolditz | Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples[END_REF]. The chemical setup is based on the thermodynamic data for aqueous species and minerals available in the Phreeqc.dat database distributed with PHREEQC [START_REF] Parkhurst | Description of input and examples for phreeqc version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[END_REF]. The compositional system actually solved consists of 14 species in solution, 2 mineral components, 8 geochemical reactions and 2 mineral dissolution-precipitation reactions: Then, each amount of mineral (calcite or dolomite, respectively) is computed with PHREEQC [START_REF] Parkhurst | Description of input and examples for phreeqc version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[END_REF] as a function of the total elemental concentrations (C, Ca, Cl, Mg), the pH (as -log(H + ))

Salt precipitation -3 observations Salt precipitation -4 observations

Salt precipitation -5 observations Salt precipitation -15 observations

Salt precipitation -30 observations Salt precipitation -35 observations

H 2 O H + + OH -, logK 1 = -13.987 HCO - 3 CO 2- 3 + H + , logK 2 = -10.329 CO 2 + H 2 O CO 2- 3 + 2H + , logK 3 = -16.681 CaHCO + 3 Ca 2+ + CO 2- 3 + H + , logK 4 = -11.435 MgHCO + 3 Mg 2+ + H + + CO 2- 3 , logK 5 = -11.399 CaCO 3(aq) Ca 2+ + CO 2- 3 , logK 6 = -3.224
and the mineral amount (dolomite or calcite, respectively), which are normalized so that A = [0, 1] 6 . Here, our goal is to estimate the functions f 1 and f 2 dened as follows: calcite = f 1 (C, Ca, Cl, Mg, pH, dolomite) and dolomite = f 2 (C, Ca, Cl, Mg, pH, calcite), [START_REF] Stein | Interpolation of spatial data[END_REF] by using the minimal number of evaluations of these functions. For this, we shall use a grid

A built thanks to a Latin Hypercube Sampling (LHS) of A with m = 100000 points.

In the left part of Figure 8 the amount of calcite is displayed as a function of C and Ca for Cl=2 × 10 -3 mol/kgw, Mg=10 -5 mol/kgw, pH=10, dolomite=0 mol which corresponds to f 1 (C, Ca, 2×10 -3 , 10 -5 , 10, 0). In the right part of Figure 8 the amount of dolomite is displayed 3 ≤ t ≤ 500. We can see that for both choices of covariance functions, the maximal variance and the statistical precision measures keep decreasing as the number of evaluations increases.

Amount of Calcite Amount of Dolomite

For instance, our method allows us to have a normalized sup norm (resp. normalized MAE) of 10 -0.5 (resp. 10 -1.4 ) with only 500 evaluations instead of the 100 000 points of the grid A for both covariance functions. However, the maximal variance is around 10 -3.5 (resp. 10 -1.5 ) for the squared exponential (resp. Matérn) covariance function.

Moreover, we can see from Figure 10 that when the mobile average M criteria and the squared exponential covariance function are used the nal estimation of f 1 is obtained with around 100 evaluations of f 1 instead of 10 5 . To obtain similar statistical performance with the Matérn covariance more than 750 observations are required. The dierence between the two covariance functions probably comes from the behavior of the maximal variance. It is still strongly decreasing after 500 observations for the squared exponential covariance function which is not the case for the Matérn covariance function. functions dened in (3) and ( 7) for 3 ≤ t ≤ 500. We obtained similar conclusions as for the calcite precipitation case, see Figure 12.

Conclusion

We have shown that our method has two main features which make it very attractive.

Firstly, it is very ecient from a practical point of view thanks to the Gaussian Process modeling which enables us to sequentially build the surrogate model with a low number of points and almost no parameters to tune. Secondly, its very low computational burden makes its use possible on complex chemical reactions involving singular behaviors like precipitation and dissolution of minerals. Our method could also be applied to more complex geochemical systems like surface complexation or ion exchange that can be described with laws of mass action. Eectively, these two features have further potential applications on much larger sets 
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 1 Figure 1. Functions f to estimate when d = 1 (left) and d = 2 (right).
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 2 Figure 2. Illustration of our active learning approach for estimating the function displayed in the left part of Figure 1 by starting from t 1 = 3 observations randomly chosen in A with the squared exponential covariance function.
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 3 Figure 3. Average and standard deviation of dierent statistical measures for the squared exponential covariance function dened in (3) (left) and for the Matern covariance function dened in (7) (right) in the case d = 1.
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 4 Figure 4. Left: Statistical assessment of the error estimation of f displayed in the left part of Figure1for the stopping criteria dened in (13), (15) and[START_REF] Simpson | Analysis of split operator methods applied to reactive transport with monod kinetics[END_REF] 
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 56 Figure 5. Illustration of our active learning approach for estimating the function displayed in the right part of Figure 1 by starting from t 1 = 3 observations randomly chosen in A ⊂ [0, 1] 2 for the squared exponential covariance function.
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 7 Figure 7. Left: Statistical assessment of the error estimation of f displayed in the right part of Figure1for the stopping criteria dened in (13), (15) and[START_REF] Simpson | Analysis of split operator methods applied to reactive transport with monod kinetics[END_REF] for the squared exponential and the Matérn covariance functions. Top right: Number of evaluations required for the dierent considered stopping criteria. Bottom right: Values of V (t ) where V is dened in[START_REF] Srinivas | Information-theoretic regret bounds for Gaussian process optimization in the bandit setting[END_REF] and t is the stopping iteration which changes from one stopping criterion to another.

Figure 8 .

 8 Figure 8. Left : Amount of calcite as a function of C and Ca for Cl=2 × 10 -3 mol/kgw, Mg=10 -5 mol/kgw, pH=10, dolomite=0 mol: f 1 (C, Ca, 2 × 10 -3 , 10 -5 , 10, 0) where f 1 is dened in[START_REF] Stein | Interpolation of spatial data[END_REF]. Right : Amount of dolomite as a function of Ca and Mg for C=5 × 10 -4 mol/kgw, Cl=2 × 10 -3 mol/kgw, pH=10, calcite=0 mol: f 2 (5 × 10 -4 , Ca, 2 × 10 -3 , Mg, 10, 0) where f 2 is dened in[START_REF] Stein | Interpolation of spatial data[END_REF].
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 29 Figure 9. Average and standard deviation of dierent statistical measures for the squared exponential and the Matérn covariance functions dened in (3) and (7) for the calcite precipitation problem with d = 6.
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 101112 Figure 10. Left: Statistical assessment of the error estimation of f 1 dened in[START_REF] Stein | Interpolation of spatial data[END_REF] for the stopping criteria dened in (13), (15) and (17) for the squared exponential and the Matérn covariance function dened in (3) and[START_REF] Geiser | Iterative splitting methods for dierential equations[END_REF]. Top right: Number of evaluations required for the dierent considered stopping criteria. Bottom right: Values of V (t ) where V is dened in[START_REF] Srinivas | Information-theoretic regret bounds for Gaussian process optimization in the bandit setting[END_REF] and t is the stopping iteration which changes from one stopping criterion to another.

Here, the squared exponential covariance function was used.