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18 Abstract

19 • Modelling wildfire activity is crucial for informing science-based risk management and 

20 understanding the spatio-temporal dynamics of fire-prone ecosystems worldwide. Models help 

21 disentangle the relative influences of different factors, understand wildfire predictability and 

22 provide insights into specific events.

23 • Here, we develop Firelihood, a two-component Bayesian hierarchically-structured 

24 probabilistic model of daily fire activity, which is modelled as the outcome of a marked point 

25 process: individual fires are the points (occurrence component), and fire sizes are the marks 

26 (size component). The space-time Poisson model for occurrence is adjusted to gridded fire 

27 counts using the integrated nested Laplace approximation (INLA) combined with the Stochastic 

28 Partial Differential Equation (SPDE) approach. The size model is based on piecewise-estimated 

29 Pareto and Generalized-Pareto distributions, adjusted with INLA. The Fire Weather Index 

30 (FWI) and Forest Area are the main explanatory variables. Temporal and spatial residuals are 

31 included to improve the consistency of the relationship between weather and fire occurrence. 

32  • The posterior distribution of the Bayesian model provided 1000 replications of fire activity 

33 that were compared with observations at various temporal and spatial scales in Mediterranean 

34 France. The number of fires larger than 1ha across the region was coarsely reproduced at the 

35 daily scale, and was more accurately predicted on a weekly basis or longer. The regional weekly 

36 total number of larger fires (10 to 100 ha) was predicted as well, but the accuracy degraded with 

37 size, as the model uncertainty increased with event rareness. Local predictions of fire numbers 

38 or burnt areas also required a longer aggregation period to maintain model accuracy. 

39 • The estimation of fires larger than 1ha was also consistent with observations during the 

40 extreme fire season of the 2003 unprecedented heat wave, but the model systematically 

41 underrepresented large fires and burnt areas, which suggests that the FWI does not consistently 

42 rate the actual danger of large fire occurrence during heat waves.
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43 • Firelihood enabled a novel analysis of the stochasticity underlying fire hazard, and offers a 

44 variety of applications, including fire hazard predictions for management and projections in the 

45 context of climate change.

46

47

48

49 Keywords: Bayesian; fire; Firelihood; INLA; Mediterranean; spatiotemporal; Fire Weather

50

51
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52 1. INTRODUCTION

53 Wildfires contribute to shape ecosystems across large parts of the world and threaten human 

54 lives and properties. Mapping features of fire regimes such as frequency, size, intensity, severity 

55 or pattern of fires across time and space is useful for planning fire and natural resource 

56 management, assessing risk and evaluating ecological conditions (Morgan et al. 2001). Indeed, 

57 fire regimes vary substantially over time and space at multiple scales, in response to weather, 

58 climate, vegetation, orography, as well as local and regional human influences (e.g. Bradstock 

59 2010, Bowman et al. 2011, Parks et al. 2012). Understanding fire regimes and their economic, 

60 social and ecological consequences is a major challenge for scientists, especially in the context 

61 of climate change, which is expected to increase fire activity in many regions of the world (e.g. 

62 Flannigan et al. 2009, Barbero et al. 2015a, Turco et al. 2018, Dupuy et al. 2020).

63 Fire regimes are strongly influenced by contemporary fire management, which often aims at 

64 reducing fire activity. In some locations (US), burnt areas increased substantially despite large 

65 suppression expenditures that led to increased fire hazard through fuel accumulation, which 

66 suggests the need to reexamine policies (Stephens and Ruth 2005, Calkin et al. 2015). By 

67 contrast, fire suppression policies have likely been effective for reducing burnt areas in many 

68 regions of the Mediterranean basin (Turco et al. 2016), but the long-term adequacy of such 

69 policies in the context of climate warming and fuel build-up is currently debated (Moreira et al. 

70 2020). In this context, the design and application of new policies require reinforced land 

71 management and planning, while fire suppression must continue to play a key role in the 

72 protection of human lives and assets. For planning purposes, managers and policy makers need 

73 to anticipate future scenario-based fire regimes, while for preparedness and response actions, 

74 fire managers need to be informed on daily, weekly and seasonal bases of the expected number, 

75 size, duration and spread rate of fires (Taylor et al. 2013; Xi et al. 2019).
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76 While wildfire regimes depend on multiscale interactions between climate, vegetation and 

77 humans (Moritz et al. 2005), weather has long been recognized as the main factor driving 

78 regional fire activity from daily to seasonal scale (Abatzoglou and Kolden 2013, Barbero et al. 

79 2015b, Turco et al. 2017). Much effort has been dedicated to developing and evaluating 

80 weather-based fire danger rating systems, including the widely used Canadian Fire Weather 

81 Index (FWI, Van Wagner 1987), the Australian McArthur index (FFDI, Noble et al. 1980) or 

82 the American National Fire Danger Ratings System (NFDRS, Deeming et al. 1978). These 

83 indices operate at the daily time scale and can be computed in real time from local weather 

84 variables to inform managers, or they can be projected under future climatic scenarios to 

85 anticipate the effect of climate change (Dupuy et al. 2020). However, the link between fire 

86 danger rating systems and observed fire activity is not straightforward. Indeed, fire events are 

87 fairly rare at local and daily scales, and hence, highly random in nature. To handle this 

88 stochasticity, observations are often aggregated over time and space prior to examining 

89 empirical relationships between fire activity and average indices, typically using weekly to 

90 monthly bases (e.g. Krawchuck et al. 2009, Barbero et al. 2014, Turco et al. 2018). 

91 Unfortunately, these correlative approaches cannot appropriately account for a number of 

92 operational and research applications that require daily predictions on fine scales. Indeed, 

93 climate, land cover and human variables can vary substantially over short distances in some 

94 regions (Fréjaville and Curt 2015). Likewise, weather processes, such as wind or hot 

95 temperature events, can influence fire activity on daily or even sub-daily timescales. This is 

96 typically the case in the Mediterranean region, where most fires spread during less than a day 

97 and the final fire size is less than 1000 ha, contrary to other regions where fires can spread over 

98 several weeks, for which daily variations would be less relevant.

99 The rareness and the stochastic nature of individual fire events can be addressed in a formalized 

100 probabilistic framework (Brillinger et al. 2003, Preisler et al. 2004, Preisler and Westerling 
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101 2007, Turner 2009, Vilar et al. 2010, Woolford et al. 2014, Serra et al. 2014a&b). In this 

102 approach, observed patterns of fire occurrence are viewed as realizations of a spatio-temporal 

103 point process, where points correspond to locations and times of ignition of a fire, and the burnt 

104 area is used as a mark for the points. The latent (i.e., unobserved) spatio-temporal intensity 

105 function that has generated the observed point pattern is then estimated. In practice, this point 

106 process is often approximated by a Bernoulli probability of fire presence in discrete and fairly 

107 small space-time cells (called voxels, typically some km2 X days) in which at most one fire has 

108 generally been observed. The notion of intensity (i.e., expected counts) is crucial since it 

109 provides more information than only susceptibility (i.e., presence-absence); in particular, 

110 intensities can be additively aggregated within any spatio-temporal unit. Such fire occurrence 

111 modelling can be combined with fire size distribution models, typically expressed as the 

112 probability for a fire to exceed a given size, to simulate fire hazard (Preisler et al. 2004, 2011). 

113 These probabilistic models have most commonly been adjusted within the framework of 

114 generalized linear modeling (GLM), or of related extensions such as generalized additive 

115 modeling (GAMs, Wood et al. 2006), where the latter have been shown to perform better 

116 (Woolford et al. 2011), since they allow replacing linear effects of explanatory variables (such 

117 as fire danger and/or human activity metrics) by more flexible shapes in nonlinear effects. 

118 Besides accounting for non-linear effects of explanatory variables – as many other techniques-, 

119 GAM can include model components to account for spatial residuals (Preisler et al. 2004) ), 

120 i.e., spatial coordinates are used as explanatory variables with smooth nonlinear effects.

121 More recently, Bayesian methods have also been used as an alternative to these frequentist 

122 methods (Serra et al. 2014a&b, Joseph et al. 2019). They allow including and accurately 

123 estimating random components in the predictor to capture variation in components of fire 

124 activity that cannot be explained by a deterministic influence of other available explanatory 

125 variables. Moreover, expert knowledge can guide the choice of prior distributions of predictor 
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126 components and smoothing parameters (e.g., variances and dependence ranges). In particular, 

127 the complexity of sophisticated model components can be controlled by shrinking them towards 

128 simpler baselines when no strong signal in the data exists. Therefore, Bayesian analysis 

129 provides a convenient and flexible setting for inference in hierarchically structured models. In 

130 particular, spatially correlated data can be handled, for example with the Stochastic Partial 

131 Differential Equations approach that allows for highly resolved spatial random effects (SPDE, 

132 Lindgren et al. 2011). Moreover, posterior distributions of parameters allow for interpretation 

133 of uncertainties and provide decision support thanks to credible intervals. Finally, predictive 

134 distributions for unavailable observations (e.g., future observations) -not only point predictions-  

135 can be naturally generated from the posterior distributions and new explanatory variables.  

136 Probabilistic models in general -but mostly in a frequentist setting- have been used for a variety 

137 of applications, including forecasts of large fires (Preisler et al. 2008), the projection of future 

138 fire activity (Ager et al. 2018), the estimation of suppression costs (Preisler et al. 2011), or the 

139 estimation of extreme fire size (Joseph et al. 2019). 

140

141 Despite their potential for wildfire predictions, probabilistic approaches still present some 

142 challenges and limitations, and some of which have not been fully addressed. First, the 

143 evaluation of the underlying model performance in a probabilistic framework is not 

144 straightforward. Indeed, it requires checking the goodness-of-fit and model parsimony in the 

145 model-building framework through various approaches including information criteria, 

146 comparisons of predictions and uncertainty bounds with observations aggregated on various 

147 temporal and spatial scales, and external validation using hold-out data (Xi et al. 2019). Second, 

148 even if early probabilistic approaches combined models of occurrence and exceedance of fire 

149 size above high fixed thresholds, they did not simulate the size of fire events. Notable 

150 exceptions are Westerling et al. 2011 and Ager et al. (2014, 2018), who fitted generalized Pareto 
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151 distributions with parameters depending on explanatory variables to simulate the size of 

152 individual fires. Third, probabilistic approaches have seldom been used to evaluate the potential 

153 predictability of fire activity (i.e. the degree to which observations can be deterministically 

154 predicted) across a range of spatial and temporal scales. Indeed, it is expected that fire activity 

155 is less predictable at short temporal and/or fine spatial scales and for rare events (large fires), 

156 than more frequent events (small fires) over longer and/or broader scales. Probabilistic 

157 approaches provide a suitable framework to quantify this predictability, which should help 

158 managers to understand observed activity patterns. Moreover, probabilistic models help 

159 understand the extent to which catastrophic events are (un)expected, and can therefore provide 

160 useful information regarding their likelihood of occurrence, such as return periods and levels.

161

162 The objective of the present study is to assess the predictability of fire activity at various 

163 temporal and spatial scales in the French Mediterranean region, through a Bayesian 

164 probabilistic approach. To this aim, we present and use a full framework of fire activity 

165 modelling, called Firelihood, which simulates potential scenarios of daily fires occurring in 

166 small pixels (8 x 8 km). We then assess the overall model performance, the relative importance 

167 of selected explanatory variables, and the predictability at scales ranging from the pixel to the 

168 region, and from days to periods of multiple years. The assessment of model performance 

169 includes a specific focus on the catastrophic 2003 year characterized by a severe synoptic-scale 

170 heat wave in summer following a prolonged drought (Trigo et al. 2005). We finally discuss the 

171 strength and weaknesses of the current model and its potential applications for wildfire-related 

172 research avenues and the improvement of operational fire suppression and management.

173
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174 2. METHODS

175 2.1. Data and site description

176 Study site and fire activity. The study area consists of 15 NUTS3-level French administrative 

177 units located in southeastern France (Fig. 1a, 75,560 km2), which concentrate the vast majority 

178 of burnt area during the summer season in France. The climate of this area is mostly 

179 Mediterranean, characterized by cool and moist winters and hot and dry summers, but exhibits 

180 strong variations with orography, from the high mountains in the Alps to coastal plains. The 

181 population is mostly concentrated near the Mediterranean coast and the Rhône river valley. 

182 These climatic and socio-economic contrasts strongly shape variations in fire activity over time 

183 and space. Fire activity is the highest near the coast and in the Corsican island, where human 

184 activities, drought and wind bursts come together (Fig. 1c). Burnt area shows a bimodal 

185 seasonal pattern, with a first peak in spring associated with agricultural, pastoral and forestry 

186 practices, during which fires are generally not a major threat, and a more important second peak 

187 during the summer dry season, during which most large fires occur (Fig. 1b). At the interannual 

188 scale, fire activity is highly variable (Fig. 1d) and mostly dictated by annual drought conditions 

189 (Ruffault et al. 2016, Barbero et al. 2019). The outstanding burnt area of the 2003 summer was 

190 due to several extreme fires that occurred during an unprecedented heatwave (Trigo et al. 2005, 

191 Ruffault et al. 2018a). Following these 2003 extreme fires, fire prevention and fighting was 

192 enhanced with a modernization of the fire management law in 2004. This might explain the 

193 decrease in the number of fires larger than 1 ha and in burnt areas after 2003 (Fig. 1d, Curt et 

194 al. 2018). In France, fires larger than 1 ha are of special interest, as limiting fire size to 1 ha is 

195 a goal of fire suppression services during the dry season. Fires larger than 1ha will therefore be 

196 referred to as “escaped fires” in the remainder of the article. 

197 Fire records were extracted from the Prométhée fire database (http://www.promethee.com/) for 

198 the period from 1995 to 2018. This period was selected so that the dataset was large enough to 
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199 allow the fitting of robust models. We discarded, however, the pre-1995 period, because of the 

200 lack of consistency of the weather data prior to 1995 (monitoring station number had evolved 

201 until 1995, Vidal et al. 2010) and of reliability and completeness issues in earlier fire records. 

202 Similarly, to limit the uncertainties associated with small fires in fire databases (Turco et al. 

203 2013, Ruffault and Mouillot 2015), only fires larger (or equal) than 1 ha (or escaped fires) were 

204 retained. One should note, however, that the increasing precision of size records over time has 

205 led to a temporal decline of the proportion of fires exactly equal to 1ha among small fires.

206 We focused our analysis on the summer season (weeks 22-44, 25th may to 31th October, Fig. 

207 1b), as most burnt areas occur during summer, and because the causes and the factors behind 

208 spring fires are quite different and would have blurred the fire-climate relationships we sought 

209 to explore. 

210 Explanatory variables. The main explanatory variable was the daily Fire Weather Index (FWI), 

211 which represents temporal and spatial variations in meteorological fire danger. FWI was 

212 computed onto an 8 km-resolution grid from 12:00 LST meteorological variables (24h-

213 cumulated precipitation, mean wind speed, mean temperature and minimum relative humidity, 

214 calculated using specific humidity and maximum temperature) following Bedia et al. (2014), 

215 using the ‘cffdrs’ R package (Wang et al. 2017). These variables were extracted from the 

216 SAFRAN reanalysis (Vidal et al. 2010).

217 The second explanatory variable was the forest area in each 8-km pixel, which is expected to 

218 affect both the number and size of fires. It shows significant spatial variability (Appendix S1: 

219 Fig. S1). Forest area was obtained from the CORINE land-cover database (CLC, 

220 https://land.copernicus.eu/pan-european/corine-land-cover), by merging the patch areas 

221 covered by sublevels “Forests” and “Scrub and/or herbaceous vegetation association” in each 

222 pixel. This forest area (FA, in ha or in % cover of the pixel) was estimated on a yearly basis by 

223 linear interpolation of CLC inventories available in 1990, 2000, 2006, 2012 and 2018.
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224

225 2.2. Probabilistic model of fire activity

226 Model overview. Firelihood consisted of two hierarchically structured components: one 

227 describing the occurrence of escaped fires, and another describing the size of each fire event 

228 conditional to its occurrence (Fig. 2). For the occurrence component, the response variable was 

229 the daily number of escaped fires (i.e. fires larger than 1 ha), for each pixel of the FWI grid. For 

230 the size component, the response was a continuous positive quantity (size of each escaped fire 

231 event) modelled with a piecewise distribution, for flexibility.

232 Both the occurrence and size components included FWI and forest area as explanatory 

233 variables. The occurrence model also included two temporal factors and a spatial model. 

234 Models were fitted in a Bayesian framework, using the integrated nested Laplace approximation 

235 (INLA) implemented in R software (www.r-inla.org) and described in (Rue et al. 2009, 

236 Lindgren and Rue 2015). INLA can be applied to large datasets using sophisticated hierarchical 

237 structure and provides accurate and (relatively) fast inference by means of analytical 

238 approximations of the posterior model, in contrast to standard, simulation-based Bayesian 

239 approaches (Markov-Chain Monte-Carlo). It allows non-linear responses to explanatory 

240 variables to be estimated through flexible Gaussian prior distributions for spline functions in 

241 combination with spatial models.

242 Model components were trained with data from 1995-2014 (training sample), the years 2015-

243 2018 being withheld for the evaluation of the predictive performance (validation sample). The 

244 dataset for fire occurrence contained fire counts ( 1 ha) for approximately 4.44 million pixels-≥

245 days, whereas the dataset of observed fire sizes contained 7193 fires ( 1 ha).≥

246 In the next two subsections, we describe the “full” model that includes all explanatory variables 

247 (Table 1). To verify the added value of the “full” model and to avoid overfitting (i.e. the 

248 situation where prediction performance on validation data decreases) (Xi et al. 2019), 
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249 intermediate models for fire occurrence and size with less explanatory variables were also 

250 estimated, and their corresponding information criteria were compared with those of the “full” 

251 model.

252 Combining both components of the models enable simulation, according to the estimated 

253 posterior model, of an unlimited number of replications (here: 1000) of the potential daily fire 

254 activity in each pixel, in the form of escaped fire lists whose number and sizes were simulated 

255 with each model component. These simulations can then be aggregated at different spatial and 

256 temporal scales for corresponding predictions and evaluations against observations.

257

258 Fire occurrence component. We built the fire occurrence model for escaped fire ( 1 ha) ≥

259 counts in 8 km X 8 km daily voxels, as a Poisson random variable (Fig. 2). Following the 

260 approach of Brillinger et al. (2003), we incorporated residual spatial and temporal random 

261 effects (at the pixel size and weekly, respectively), to account for unknown sources of variations 

262 in escaped fire probability. They can be viewed as spatial and temporal scaling factors between 

263 FWI and the observed number of escaped fires.

264 The voxel size was considered as a good approximation for the “true” Poisson distribution 

265 resulting from grouping intra pixel variations, since pixel-day probabilities remained small 

266 (Brillinger et al. 2003). Contrary to large voxels in which multiple fires can occur more often 

267 (e.g. Joseph et al. 2019), our Poisson-based method was applied to an almost binary dataset, 

268 and spatial correlations were accounted for with a spatial model, so that over-dispersion was 

269 less of a concern (Taylor et al. 2013). For the same reasons, the use of a zero-inflated Poisson 

270 model was not required. Moreover, this resolution was fine enough to explicitly link the fire 

271 occurrence probability to locally observed fire conditions (weather data and forest area), rather 

272 than some average value at a coarser scale (Taylor et al. 2013). To identify the range of variation 

273 of spatial biases unexplained by the available predictor variables (FWI, FA, season), the pixel 
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274 size should be much smaller than the distance at which the correlation in the spatial model drops 

275 to near zero. This avoids issues related to within-pixel overdispersion and overestimation of the 

276 smoothness of occurrence intensity maps. Model fit showed that this range was approximately 

277 30 km, which is indeed substantially larger than pixel size. Finally, the pixel size was consistent 

278 with the computational and memory costs of INLA, which strongly increase with the size of the 

279 dataset and the resolution of spatial and temporal random effects. 

280 The partial effects of the models were assumed to be multiplicative, based on an additive 

281 decomposition of the log of expected fire counts, which has been shown to be adequate for time 

282 and space in Woolford et al. (2011). The form of the “full” model, including all explanatory 

283 variables (“FWI+2003+FA+WEEK+SPATIAL”, see Table 2) was:

284       log 𝑁𝑖 ~ log (𝐹𝐴) +𝛽(𝑌𝐸𝐴𝑅𝑖 > 2003) + 𝑓𝐹𝑊𝐼(𝐹𝑊𝐼𝑖) + 𝑓𝐹𝐴(𝐹𝐴𝑖) + 𝑓𝑋,𝑌(𝑋𝑖,𝑌𝑖) + 𝑓𝑊𝐸𝐸𝐾
285 (1)(𝑊𝐸𝐸𝐾𝑖)

286 where   was a deterministic offset,  the fixed effect (with a different value before and 𝑙𝑜𝑔(𝐹𝐴) 𝛽

287 after 2003), and the f-terms captured nonlinear influences of the covariates FWI and FA, as 

288 well as spatial and temporal effects.

289 Because escaped fires cannot occur in non-forested area (urban areas, crops, etc.), the area of 

290 each pixel in which fire “points” could happen was not spatially constant. This variability was 

291 incorporated in the Poisson model with an offset equal to forest area (FA). The model allowed 

292 non-linear effects of FWI, but also of FA – in addition to the offset – as a land use factor. 

293 Indeed, it is expected that the probability to get a fire per area of forest decreased for high forest 

294 area, since interface, road and urban densities decreased. Spatial effects were represented using 

295 the Stochastic Partial Differential Equation approach (SPDE, Lindgren et al. 2011), which 

296 estimates the spatial model for residuals, through continuous spatial random effects at high 

297 resolution. Temporal effects were incorporated as a non-linear weekly seasonal factor and a 

298 fixed effect “post 2003”. This “post 2003” effect should not be interpreted as an actual shift in 

299 the relationship that occurred exactly in 2003, but more as a convenient and simple manner to 
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300 incorporate in the model the temporal evolution of the fire-weather relationship. In this study, 

301 we decided to ignore other annual effects in order to develop a model applicable to predictions 

302 and projections. Contrary to other studies (e.g. Opitz et al. 2020), we did not seek to model time 

303 variation in spatial patterns.

304 The prior distributions of the different predictors were Gaussian processes. The nonlinear f- 

305 functions in (1) were modelled with piecewise constant first-order random walks, with 30, 18 

306 and 23 segments, for FWI, FA and the seasonal effect, respectively. For each of them, one 

307 hyperparameter (called precision) governed curve smoothness (i.e., the size of the small steps 

308 between consecutive segments), as a Bayesian variant of smoothers used in GAM models (e.g. 

309 Preisler et al. 2004). For the spatial component, the SPDE approach consists in implementing a 

310 numerically convenient approximation to the Matérn covariance function for the Gaussian 

311 random field prior of  in the 1143 pixels (meshing the study site). Two hyperparameters 𝑓𝑋,𝑌

312 were estimated for this random field: precision (to control the spatial variability of field values) 

313 and range (to control spatial dependence, i.e. the smoothness of the spatial surface). For 

314 hyperparameters, we specified Penalized Complexity priors (Bakka et al. 2018), which 

315 penalized the distance of a model component towards a basic baseline (i.e., absence of effect), 

316 and we fixed penalty parameters that ensured fairly smooth estimated posterior effects. In order 

317 to limit computational and memory costs, we took advantage of the additivity of the Poisson 

318 process to aggregate data in segment classes to reduce dataset size, which initially contained 

319 4.44 million voxels. The numerical design described above enabled keeping the number of 

320 observed classes below 500,000, which avoids numerical instabilities when running R-INLA, 

321 and models are estimated within several minutes to several hours in case of the full model. Such 

322 an aggregation is an appealing alternative to approximations often implemented for large 

323 datasets (e.g. subsampling of non-fire voxels, in Brillinger et al. 2003), which have shown to 

324 decrease model robustness (Woolford et al. 2011).
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325

326 Fire size component. We built a probabilistic model for sizes of escaped fires (conditional on 

327 a fire being larger than 1 ha), which corresponded to the marks of the “fire” point-process 

328 (Fig. 2). The fire size distribution is usually not well reproduced by any of the commonly used 

329 probability distributions over the whole range of observations -in particular for small and large 

330 fires- (Cui and Perera 2008). Consequently, we used a piecewise specification of the distribution 

331 based on Pareto and Generalized Pareto Distributions (GPD) in the different size segments, as 

332 justified by the asymptotic theory of threshold exceedances (Davison and Huser 2015). In each 

333 segment, size distributions depended on both FWI and FA of the voxel (8 km X 8 km by daily 

334 cell) in which the fire initially spread. In principle, we could have estimated the probability of 

335 a given fire to exceed the upper threshold of each segment by using the exceedance probability 

336 derived from the fire size distribution within this segment. However, because of the small 

337 fraction of fire sizes in the higher parts of each segment (i.e., most fires have size closer to the 

338 lower than the upper bound of each segment), we obtained more accurate estimates of 

339 exceedance probabilities with specific logistic regressions for each threshold (Bernouilli 

340 process, see Fig. 2). In summary, the size model was generative and had hierarchical structure 

341 using a piece-wise specification over intervals of burnt area (Fig. 2). First, a logistic-regression-

342 based model determined the segment into which each individual fire should fall (1-10 ha, 10-

343 100 ha, 100-1000 ha or larger than 1000 ha). Then, the exact size was simulated according to 

344 the distribution of the corresponding segment.

345 Contrary to other regions of the world where fires can spread over tens of km2 during several 

346 days (e.g. Joseph et al. 2019), most fires in the study area spread for less than a day and were 

347 smaller than 1000 ha (which was much smaller than the pixel area of 6400 ha). Therefore, it is 

348 appropriate to stick to the voxel scale for fire size modeling, even if a few fires spread over 

349 more than one voxel. The rationale for including FA (in addition to the FWI) was that a small 
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350 forest area is thought to limit fire spread. Contrary to the fire occurrence model, we did not 

351 include any other spatio-temporal factors in the size model, as the dataset size was too small to 

352 develop robust models. The form of the size component of this “full” model was hence 

353 “FWI+FA” (Table 1), except for the GPD (Table 3). 

354

355 The piecewise model of fire size distribution was developed using standard modeling 

356 techniques suggested by extreme-value theory, based on threshold exceedances. We carried out 

357 preliminary analyses of the response of fire size distributions in different FWI classes based on 

358 mean excess plots (Hall and Wellner 1981) of the log-transformed escaped fire sizes. The 

359 number of exceedances over increasingly high thresholds suggested a slow power-law-like tail 

360 decay for most of the thresholds except the highest ones, for which exceedance numbers seem 

361 to decrease much faster as in the power-law setting, similar to the findings in Cui and Perera 

362 (2008). For our data, the behavior of mean excess curves of log fire sizes, and of related curves 

363 (cumulative distributions in log-log scale), tended to change around fire sizes of 10 ha, 100 ha 

364 and 1000 ha. Therefore, we assumed that the distribution of fire sizes could be modelled through 

365 piecewise Pareto distributions between thresholds , ,  and 𝑢1 = 1 𝑢2 = 10 𝑢3 = 100 𝑢4

366  ha, which depended on both FWI and FA (equivalently, through piecewise exponential = 1000

367 distributions for log fire sizes). More precisely, given a threshold , we estimated exponential 𝑢𝑘

368 regression models for , where  corresponds to an observed fire size larger than , for 𝑙𝑜𝑔(𝑆𝑖

𝑢𝑘) 𝑆𝑖 𝑢𝑘

369 segments k=1, 2, 3; moreover, we censored observations , so that the model provides 𝑆𝑖 > 𝑢𝑘 + 1

370 a good fit for  by construction. The estimation was conducted with INLA using 𝑢𝑘 ≤ 𝑆𝑖 < 𝑢𝑘 + 1

371 its survival model framework for handling censoring, and FWI and FA were used as covariates 

372 with potentially nonlinear influence: 

373 (2)𝑙𝑜𝑔
𝑆𝑖

𝑢𝑘
~𝑒𝜂𝑖,𝜂𝑖 = 𝛽𝑒𝑥𝑐,𝑢

0 + 𝑓𝑒𝑥𝑐,𝑢
𝐹𝑊𝐼(𝐹𝑊𝐼𝑖) + 𝑓𝑒𝑥𝑐,𝑢

𝐹𝐴(𝐹𝐴𝑖) 𝑆𝑖 > 𝑢
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374 where the f-terms captured nonlinear influences of the covariates FWI and FA, with piecewise 

375 constant first-order random walks, with 20 and 10 segments, respectively.

376 Finally, for the category with largest fire sizes (exceeding 1000 ha and containing 33 and 7 fires 

377 for the periods 1995-2014 and 2015-2018, respectively), we selected a generalized Pareto 

378 distribution (GPD), which allows for a finite upper endpoint if its shape parameter is negative, 

379 since an upper bound – even a very large one – must necessarily exist for physical 

380 considerations. The GPD has shown to perform generally well for large fire sizes (Schoenberg 

381 et al. 2003; Westerling et al. 2011). Therefore, we estimated the shape  and scale  parameters 𝜉 𝜎

382 of the GPD, by fitting it to  for observations . Since this model was not 𝑙𝑜𝑔( 𝑆𝑖

1000) 𝑆𝑖 > 1000

383 available within INLA with a negative shape parameter (due to some peculiarities of its density, 

384 e.g., de Haan and Ferreira 2007), we estimated the GPD parameters using frequentist maximum 

385 likelihood, followed by a careful inspection of the estimated model. Owing to the small sample 

386 size, we chose a more parsimonious parametrization of covariate influence using only linear 

387 coefficients:

388 (3){𝑙𝑜𝑔( 𝑆𝑖

1000 | 𝑆𝑖 > 1000 ) ~ 𝐺𝑃𝐷{𝜉(𝐹𝑊𝐼𝑖,𝐹𝐴𝑖), 𝜎(𝐹𝑊𝐼𝑖,𝐹𝐴𝑖)}
𝜉(𝐹𝑊𝐼𝑖,𝐹𝐴𝑖) = 𝜉0 + 𝜉1 ∗ 𝐹𝑊𝐼𝑖 + 𝜉2 ∗ 𝐹𝐴𝑖

𝑙𝑜𝑔𝜎(𝐹𝑊𝐼𝑖,𝐹𝐴𝑖) = 𝜎0 + 𝜎1 ∗ 𝐹𝑊𝐼𝑖 + 𝜎2 ∗ 𝐹𝐴𝑖

389 However, because the sample size was small, uncertainty on the FA coefficient was high and 

390 confidence intervals and information criteria advised against including FA in this model (see 

391 Appendix S2 for details). We hence selected for the “Full” model a GPD with parameters 

392 function of FWI only.

393 As mentioned above, we cannot expect a good estimation of exceedance probabilities derived 

394 from the three Pareto distribution due to the relatively small sample fraction of fire sizes in the 

395 higher segments. For example, a moderate number of fires were greater than 10 ha (1348 fires 
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396 among 7193), and only few of them (280, approx. 4 % of fires larger than 1 ha) were also larger 

397 than 100 ha. Between 1995 and 2018, only 40 fires reached more than 1000 ha (0.6% of fires 

398 larger than 1 ha). Therefore, we separately modeled and estimated these exceedance 

399 probabilities , for a threshold u and a voxel i, with INLA, based on logistic regressions for 𝑝𝑢
𝑖

400 the indicator variables of threshold exceedances (i.e., 1 if fire size exceeds  and 0 otherwise), 𝑢𝑘

401 given FWI and FA:

402 for (4)𝑙𝑜𝑔
𝑝𝑢

𝑖

1 ― 𝑝𝑢
𝑖

= 𝛽𝑝,𝑢
0 + 𝑓𝑝,𝑢

𝐹𝑊𝐼 𝑢 = 10,100,1000

403 where the f-terms captured nonlinear influences of the covariates FWI and FA, with piecewise 

404 constant first-order random walks, with 20 and 10 segments, respectively.

405 These three probabilities and the four estimated fire size distributions were hence combined to 

406 predict the size of each fire larger than 1 ha, given FWI and FA, through a sequential approach 

407 consisting in simulating i) in which segment the size of the fire is, and, conditional to the 

408 segment, ii) the exact size (in this segment).

409

410 Variable selection and model evaluation. The final “full” model was developed by including 

411 the different explanatory variables and non-linear functions step by step, checking information 

412 criteria of the intermediate probabilistic models. A selection of intermediate models is presented 

413 in Tables 1,2,3, ranging from the simple “FWI-linear” to the “full” model. Information criteria 

414 aimed to assess goodness-of-fit of models while safeguarding against overly complex models 

415 that overfit data (Vehtari et al 2017), and were an appropriate means to check if the structure of 

416 each response to an explanatory variable, as implemented in the “full” model, was significant 

417 and parsimonious. We used the DIC (Deviance Information Criterion) and the WAIC (Widely-

418 Applicable Information Criterion) for variable selection in submodels, which are 

419 generalizations of the well-known Akaike Information Criterion (AIC) for Bayesian models. 
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420 The WAIC is known to better reflect posterior uncertainty in the models’ prediction than DIC, 

421 which can sometimes select over-fitted models (Vehtari et al 2017). For the Generalized Pareto 

422 Distribution of largest fires, we simply used the AIC of the model fit. The robustness of the 

423 occurrence model was checked in a preliminary development, thanks to a 7-fold cross validation 

424 procedure, holding out 3 randomly selected years in each fold, which demonstrated little 

425 sensitivity to data sample (Fargeon 2019).

426 We evaluated the performance of the model by two different means. First, we evaluated the 

427 subcomponents of the model with Area-under-the-Curve measures (AUC, Fawcett 2006). 

428 AUCs rate the model ability to diagnose the realization in voxels of different events, here “at 

429 least one escaped fire” and a selection of “size exceedances”, by verifying that their occurrence 

430 probabilities were better predicted when including more explanatory variables and/or non-

431 linear responses. AUC values range between 0 and 1, with 1 indicating perfect prediction of the 

432 binary presence/absence information, whereas 0.5 indicates a random prediction. AUCs were 

433 computed for both the 1995-2014 (training) and 2015-2018 (validation) periods. Second, we 

434 evaluated model performance by comparing simulations with historical observations 

435 aggregated on various temporal and spatial scales (Xi et al. 2019). These evaluations were 

436 carried out from 1000 replications of fire occurrence per voxel, which were sampled as a 

437 Poisson process according to draws from the posterior predictive distributions of the occurrence 

438 intensity. Note that INLA (in contrast to Markov Chain MonteCarlo, MCMC) does not provide 

439 simulations of the posterior model’s component during the estimation process, but sampling 

440 from the fitted model is nevertheless straightforward (e.g. Fuglstad and Beguin 2018). A fire 

441 size was then randomly assigned to each simulated escaped fire based on the size submodels 

442 (Fig. 2) parametrized with posterior mean parameters. This approach allowed considering the 

443 inherent variability of the stochastic processes at stake. This variability was used to draw 

444 pointwise envelopes showing the spread between 5th and 95th percentiles of fire activity, and to 
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445 compute central tendencies for the different spatio-temporal aggregations of simulated fire 

446 activity.

447 The overall goodness-of-fit between central tendencies and observations were measured with 

448 mean absolute error (MAE, in %). These errors were examined with respect to model 

449 uncertainty (MU, in %), which quantified the stochasticity of the corresponding trend, 

450 expressed as the variability of simulated quantities over the 1000 simulations. MU was 

451 computed as the mean absolute deviation of the simulated activities to rate the model spread, 

452 expressed in % of the observed value. The last metric used to evaluate the model was the 

453 coverage probability (CP) of the 95% confidence interval, which measured how often 

454 observations fall within the estimated confidence interval. The CP of a perfect model is exactly 

455 equal to 95 %. A coverage significantly different from 95% means that the model is either 

456 biased or exhibits an incorrect variability.

457

458 2.3. Model applications

459 Once the model has been evaluated, it can be used to analyze the stochasticity in fire activity, 

460 given that 1000 replicates of the models can provide more insight than the single realization of 

461 observations. Two example applications were developed in the present paper.

462 Detailed analysis of year 2003. For the first application, we provided detailed comparisons of 

463 seasonal predictions and observations and fire size distribution in 2003, during which the total 

464 burnt area was extremely high for study area.

465 Predictability analysis. In order to better understand the predictability of fire activity, we 

466 compared simulated fire activity for years 2015-2018 to observations (validation sample) within 

467 a crossover plan of spatio-temporal aggregations, and for a selection of fire sizes. We used six 

468 classes for spatial aggregation (ranging from the single 8-km pixel to the whole studied area) 

469 that were crossed with seven classes for time aggregation (ranging from a single day to the four 
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470 2015-2018 years). MAE and MU, as defined in the previous section, were computed based on 

471 the 1000 simulations for the corresponding 42 aggregation classes, for fire numbers ranging 

472 between 1 and 500 ha and for total burnt area. The predictability was analyzed by comparing 

473 the model uncertainty and prediction errors (i.e., expected minus observed value). When both 

474 were of the same order of magnitude, the model correctly represented the stochasticity at play. 

475 Hence, low uncertainty and error indicated a high predictability, whereas high uncertainty and 

476 error revealed low predictability. Uncertainty lower than error meant that a bias was present in 

477 the model predictions, making predictability assessment tricky if the bias was not constant, even 

478 if a high model uncertainty likely indicated low predictability. This approach allowed to 

479 diagnose the fire sizes and aggregation scales for which simulations were in agreement with 

480 observations.

481
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482 3. RESULTS

483 3.1. Presentation of the “Full” model

484 Partial effects of the “Full” model. The partial effects of both components (occurrence, size) 

485 of the “full” fire activity model for the different explanatory variables on escaped fire numbers 

486 and on a selection of exceedance probabilities are shown in Fig. 3. The 95th credible intervals 

487 were obtained from the posterior predictive distributions. As expected, the FWI had a strong 

488 effect on the expected number of escaped fires, which was about 60 times higher for a FWI of 

489 60 than one of 5 (Fig. 3a). This effect was however marginal for FWI above 60, with wider 

490 credible intervals, due to smaller sample size for the most extreme values. We observed a 

491 positive effect of forest area (FA, including both  and the offset, see Eq. 1) on the expected 𝑓𝐹𝐴

492 number of escaped fires with a maximum around 30%. The slight decrease starting at around 

493 40 % reflected a strong decrease in escaped fire density (number of fires per unit of forest area) 

494 observed in pixels with the highest FA.

495 The partial effect of the season showed a constant increase between mid-June and the end of 

496 August, and then decreased during autumn. Even if the magnitude of this effect was moderate, 

497 it indicated that the FWI was not fully consistent to rate escaped fire occurrence over the course 

498 of the fire season. For instance, for a same fire danger level, escaped fires were 1.6 times more 

499 numerous in late August than in mid-June. The spatial effect was much stronger in magnitude, 

500 indicating that very different fire activities were associated with the same FWI level at different 

501 locations. The last effect was the “post-2003” effect (Eq. 1), which was equal to 0.46 in 

502 posterior mean, meaning that the number of fires was roughly reduced by half after 2003, with 

503 a high statistical significance. The transition between the two periods will be further analyzed 

504 and discussed below. Among these different effects, the FWI and -in a lesser extent- the spatial 

505 model exhibited the strongest magnitudes.

506
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507 The effects of FWI and FA on the size of escaped fires showed that the probability to exceed a 

508 given size generally increased with both explanatory variables. Moreover, these exceedance 

509 probabilities decreased when larger fire size were considered, as expected (Fig. 3b). For 

510 example, the probability to exceed 10 ha in a pixel with FA=30 % increased from 0.069 for a 

511 FWI of 7.3 to 0.325 for a FWI of 64. Also, the probability to exceed 500 ha could be larger than 

512 to exceed 100 ha, depending on the value of FWI, which illustrates that fire size is strongly 

513 impacted by this index. It should be noted, however, that the magnitude of these effects was 

514 generally much smaller in the size than in the occurrence model.

515 Surprisingly, the exceedance probability decreased for fires larger than 2000 ha at higher FWI, 

516 with however little significance because of small sample issues. We further point out (see last 

517 subsection of 3.2) that highest FWI values were not equally distributed in space but were most 

518 often observed in areas less prone to large fires (e.g. coastal populated areas where suppression 

519 is high). The surprising decrease could hence be explained by a confounding spatial effect. The 

520 use of a spatial model -as in the occurrence model, see Fig. 9 for details- in the size model could 

521 have dampened the impact of missing spatial factors, but the dataset was too small to afford it 

522 for the size model. More surprising was the moderate decrease observed for FWI lower than 

523 10. In the dataset, a non-negligible number of medium and large fires was recorded for very 

524 low FWI (<5), with 60 fires larger than 10 ha occurring with FWI lower than 5. For example, 

525 three large fires (936, 2369 and 4378 ha) occurred in 2003 when FWI was lower than 1, 2 and 

526 4, respectively. A range of factors might explain this, including the development of burnt area 

527 of these fires on the days following ignition (for which the FWI at ignition day is a not relevant 

528 fire danger metric for size), by sub-daily scale events (e.g. afternoon thunderstorms following 

529 fire events inducing rapid change in FWI during the ignition day), by uncertainties in the 

530 weather reanalysis (SAFRAN), or simply, poor rating of actual fire danger conditions by the 

531 FWI.
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532

533 Example simulated scenarios of fire activity with the “Full” fire activity model. As an 

534 illustration of the model practical utility, fire activity simulations aggregated for the whole zone 

535 were compared to historical observations (black dots) at daily (for escaped fires only) or weekly 

536 scales (escaped fires, fire number larger than 10, 50 and 100 ha, as well as burnt areas). Results 

537 are shown in Fig. 4 for the example year 2001, but similar figures for other years of the study 

538 period are available in Appendix S5. As expected, the uncertainty due to stochasticity (MU, in 

539 %) was larger for daily than for weekly escaped fires, and tended to increase with the fire size 

540 of interest, partly because the numbers to predict were smaller. Although not exactly equal to 

541 95%, coverage probabilities (CP) were of the right order of magnitude, even when the width of 

542 the confidence intervals was fairly narrow (e.g. weekly escaped fire number, CP=70%). MAE 

543 were most often slightly larger than MU, but on the same order, which illustrated model skills, 

544 despite high stochasticity in the data.

545 Next, to study in detail the ability of our modeling framework to reproduce observed patterns 

546 of fire size distribution, simulated cumulative distributions of fire size were compared to 

547 observations for the same example year in Fig. 5. Although observations may deviate from 

548 expectations for the largest fires, most exceedance probabilities fell into the simulation-based 

549 95th confidence interval. Note that in this example, the simulated trend for 2001 was close to 

550 the mean simulation (orange dotted line, for year 1995-2018), but this was not the case in 

551 general (e.g. years 1997 or 2002, see Appendix S6 for details). 

552

553 3.2. Model evaluation and importance of each explanatory variable

554 Variable selection and model fits. Model information criteria (DIC, WAIC), and AUCs for 

555 years 1995-2014 (training sample) and 2015-2018 (validation sample), are systematically 

556 reported in Tables of Appendix S2. A selection of these AUCs is presented in Fig. 6. The 

Page 24 of 83Ecological Applications



25

557 performance of the “full” occurrence component was high (>0.8) on both training and 

558 validation subsets, and better than the simple FWI-linear model. Regarding the size component 

559 model, the predictability of medium fire sizes (50 to 500 ha) was highest, with AUC > 0.75. 

560 AUCs were in general on the same order for the validation (2015-2018) and the training sample 

561 (1995-2014), showing the encouraging performance of the model beyond the training sample.

562 Evaluation of central tendencies and spatial patterns. In order to more comprehensively 

563 evaluate the model, fire activity simulations were compared to the historical observations for 

564 spatially aggregated annual and seasonal data as well as temporally aggregated data at the pixel 

565 level in Fig. 7 (escaped fire numbers) and Fig. 8 (burnt areas). Orange lines and left maps 

566 (“Full” model) compared generally well to observations, contrary to blue lines and right maps, 

567 which correspond to different intermediate models, with less explanatory variables. This 

568 demonstrates the absence of major bias of the “Full” model (metrics in orange), as well as the 

569 limitations of intermediate models (metrics in blue).

570 In particular, annual trends in escaped fire number (Fig. 7a) were poorly predicted without the 

571 “Post-2003” effect, with a CP of only 4.2 % and a MAE of 40 %. The systematic overestimation 

572 of fire activity after 2003 with this model clearly indicates that the fire-weather relationship 

573 changed over time. The “Full” model performed much better than the intermediate one but 

574 remained still slightly biased and did not fully accounted for the evolution of the fire-climate 

575 relationship over years, or underestimated confidence intervals (CP of 58%, lower than 95%). 

576 In particular, we note that the “Full” model underestimated escaped fire numbers in years 2004-

577 2007, suggesting that the transition was probably less abrupt in observations than assumed with 

578 a single fixed “Post-2003” effect. Several factors could explain this strong evolution near 2003. 

579 This includes the evolutions in fire management after 2003 (modernization of the fire 

580 management law, increase in airborne armed-guard funding), as well as the increase in the 

581 precision of fire size recordings that has decreased the proportion of fire sizes above 1 ha in 
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582 records, which was marked near 2003. In the end, we considered the “Full” model satisfactory, 

583 because tendencies for recent years -and especially those simulated after 2015 (validation 

584 sample)- were in good agreement with historical observations.

585 Although moderate, the seasonal correction at the weekly scale enabled to match observations 

586 closely, with a CP of 87% (Fig. 7b), which was fairly close to 95 %. The trends observed with 

587 the “No seasonal” model showed that FWI explained a large part of the seasonal dynamics, but 

588 that the escaped fire number was overestimated until the end of July and underestimated in late 

589 August, which was consistent with the partial effect of the Week of Year shown in Fig. 3. When 

590 the spatial model component was not included (“No spatial”), the occurrence component did 

591 not simulate the spatial patterns of escaped fires well (Fig. 7c, right). In particular, hot spots 

592 were missed, whereas the model predicted too many fires in the Alps and in the Camargue 

593 region (coastal plain in the Rhône valley). 

594 In general, burnt areas exhibited similar results (Fig. 8), albeit with notable differences. First, 

595 the observed burnt area in 2003 was strongly underestimated, and was way above the upper 

596 bounds of confidence intervals (Fig. 8a). This important point will be further analyzed in section 

597 3.4. Second, the confidence interval widths, which expressed the amount of stochasticity, were 

598 much larger for burnt areas than for escaped fire numbers, with model uncertainties on the order 

599 of 35 % for both annual and seasonal predictions. Although such a high stochasticity was 

600 expected due to the flat tail of the fire size distribution, one could argue that the randomness 

601 was overestimated by the model. Two main clues indicated that it was not the case. Although 

602 no obvious bias was evident in temporal and spatial trends, CP were on the order of 75-80 %, 

603 which was not too far from the target (95 %), suggesting that stochasticity was on the right 

604 order of magnitude. Moreover, observed mean weekly burnt areas (averaged over 1995-2018) 

605 exhibited large fluctuations between consecutive weeks (between weeks 28 and 36, especially 

606 between the last week of July and the first week of August: 13.6 km2 for week 30; 4.0 km2 for 
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607 week 31), whereas no obvious mechanisms except randomness could explain such a behavior 

608 (Fig. 8b). The magnitude of these fluctuations seems to be consistent with the confident 

609 intervals predicted by the model. 

610 Expected temporal trends and spatial patterns in simulations looked like a smoothed expression 

611 of observations, in which stochasticity would have been removed. However, one should notice 

612 a few spurious differences. Simulations seemed to slightly overestimate burnt areas at the 

613 beginning and the end of the season, and to exhibit less burnt areas than observed in the Corsica 

614 and Var NUTS3 units, where most of the very large fires of the 2003 season occurred. 

615 Interestingly, simulated burnt areas were only slightly better predicted when they were 

616 simulated from escaped fire observations (using the fire size component only, see Appendix 

617 S4: Fig. S1). This revealed that the limitation in burnt area simulations mostly arose from the 

618 fire size model and that the full occurrence model performed well.

619 Sensitivity of response functions to explanatory variable selection. Beyond their limited 

620 ability to reproduce observations, intermediate models also revealed that the accuracy and shape 

621 of response functions could also be greatly impacted by modeling choices and the non-inclusion 

622 of some key effects. The response function of FWI to escaped fire number for the intermediate 

623 models were both limited in magnitude and exhibited spurious decreases, when compared to 

624 the “Full” model (Fig. 9). In particular, the “Linear-FWI” model (for which the log number of 

625 escaped fires has a linear response to FWI) was penalized by both low and high FWI, for which 

626 the actual response to FWI was respectively stronger and lower than exponential. For other 

627 intermediate models, the decrease observed above the FWI level of 65 could be explained by 

628 confounding effects between FWI and space. Indeed, highest FWI values mostly occurred in 

629 coastal populated areas where fire density was lower (at constant FWI). For the “Full” model, 

630 a small decrease was also observed at 65, but its magnitude was much smaller and was followed 

631 by slight increase above 70, thanks to the spatial model that considerably limited the impact of 
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632 the confounding effect. Hence, the inclusion of the cofactor (FA) and spatio-temporal 

633 components in the occurrence model enabled to extract valuable information from FWI relative 

634 variations, than what is available in absolute values in this fire danger index.

635  

636 3.3. Insights on an extreme year: the example of 2003

637 Here, we examine in detail why the model underestimated burnt area for the year 2003. Because 

638 most of the burnt area was caused by a small number of large fires, one might hypothesize that 

639 i) observed burnt area for 2003 was unlikely considering fire weather, but possible with a low 

640 probability (“bad luck”); ii) most fire observations were expected (i.e. consistent with the usual 

641 fire-weather relationship), but the occurrence of a few very large fires that disproportionately 

642 contributed to the total burnt area, leading to an underprediction of the total burnt area with the 

643 model. In this context, arson is sometimes mentioned (and an arsonist was indeed involved in 

644 a limited number of large fires in Var NUTS 3 division).

645 According to Fig. 8, the central tendency and the upper bound of the 95th CI (0.975 quantile) 

646 for burnt areas predicted by the model were respectively of 213 and 357 km2, which was well 

647 below observations (610 km2). Similarly, the quantile 0.999, corresponding to a millennial 

648 event according to the model was 469 km2, still below observations. We can then conclude that 

649 the model failed to simulate the likelihood of observed burnt area in 2003. We then analyzed 

650 time series corresponding to 2003 seasonal fire activities in Fig. 10 (similar to Fig. 4, but with 

651 99.9th confidence intervals added to show unlikely events). The predictions of escaped fires 

652 were consistent with observations at both the daily and weekly scales, which shows that fires 

653 did not escape more frequently than expected all along the season (without any exceptional 

654 week or day). However, more than six weeks were largely above the central tendency in 

655 numbers of fires larger than 100 ha and in burnt areas. Four weeks were above the 0.975 

656 quantile and one was even above the 0.9995 quantile (week 35). This shows that 2003 was 
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657 atypical during several weeks, with an early start. The analysis of the distribution of fire size 

658 (Fig. 11), showed that all fires larger than 10 ha occurred much more often than expected. 

659 Hence, even if the presence of a few very large fire constituted most of the burnt area, most 

660 fires (larger than 10 ha and during most of the season) were exceptionally large with respect to 

661 observed FWI, which invalidates the “bad luck” or arson assumptions. The decrease in fire 

662 suppression efficiency with increasing escaped fire number can be invoked to explain the 2003 

663 observations as well. However, it is important to acknowledge that it had apparently not affected 

664 the number of escaped fires, weakening this assumption, as their number was consistent with 

665 expectations.

666

667 3.4. Predictability of fire activity

668 We proposed a detailed analysis of the predictability of fire activities at various temporal and 

669 spatial aggregation scales to better understand the role of stochasticity in fire activity patterns. 

670 In general, stochasticity in observations (fire counts and sizes) typically decreases when 

671 aggregating them to larger scales, such that the nature of both observations and model 

672 predictions becomes more deterministic. Slight biases of models arising at the voxel scale may 

673 then lead to stronger biases at aggregated scales. 

674 Predictability and confidence intervals at weekly scale. As shown in Fig. 4, aggregating fire 

675 activity over the whole area at the weekly scale led to reasonable confidence intervals and MAE 

676 for year 2001. More generally, the overall predictability of escaped fires at the weekly scale 

677 was satisfactory for the whole period (1995-2018), with a MAE of 32% and a CP of 84% 

678 (Appendix S3: Fig. S1A). However, the number of escaped fires out of confidence interval 

679 (16%) was slightly larger than expected (5%). The majority of these weeks consisted in false 

680 “high” fire numbers for small observed numbers, and false “low” fire numbers for high 

681 observed numbers. They were explained by stochasticity (fortunate and unfortunate events), 
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682 Bayesian model smoothness, and over-dispersion of observations with respect to aggregated 

683 Poisson laws (caused by the decrease in fire suppression efficiency with fire activity for 

684 example). More explanations can be found in Appendix S3. Regarding weekly burnt areas, the 

685 central tendencies (Appendix S3: Fig. S1B) were positively correlated with observed burnt area 

686 for 1995-2018, but the MAE was high (76 %), mostly because of the width of the confidence 

687 intervals (MU=91 %). This illustrates the huge role of stochasticity in observed burnt areas at 

688 this scale. Most false “high” burnt areas occurred when observed occurrences were lower than 

689 expected, whereas false “low” burnt areas mostly occurred in 2003. More details are available 

690 in Appendix S3.

691

692 Predictability at other scales. The MAE and MU are presented in Fig. 12 for 42 spatio-temporal 

693 levels of aggregation, ranging from one pixel-day to the whole area during the four years of the 

694 validation sample. As expected, the MAE increased for smaller aggregations, and large fire 

695 numbers and burnt areas were more uncertain than escaped fire number (higher MU). Beyond 

696 this general trend, Fig. 12 allows us to identify which scales led to reasonable predictions 

697 (typically, those with MAE -and MU- lower than 30 %) and which were, on the contrary, 

698 subject to too much stochasticity for valuable predictions (typically, MAE and MU both above 

699 60-70 %). In particular, the spatial aggregation drastically reduced the MAE, while sub-regional 

700 predictions remained quite poor, even for escaped fire number, when predictions were made at 

701 a shorter scale than the full season. This could be partly explained by the fact that spatial 

702 patterns of ignitions have slightly evolved over the 24 years of the study period, resulting in a 

703 small spatial bias of the model during recent years. This was suggested by the pattern followed 

704 by MU, which was slightly smoother regarding the effect of spatial aggregation and by the 

705 lower AUC of the occurrence model in recent years (Appendix S2: Table S1). In particular, less 

706 fire activity than expected was observed in North Corsica and more escaped fires in the western 
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707 part of the basin during the recent years (Not shown). It should also be noted that the fire activity 

708 was fairly limited during the validation period, which increased the magnitude of relative errors, 

709 as model uncertainty becomes larger when central tendency decreases. It is hence expected that 

710 the predictability of a larger number of fire events would be more accurate (even if the model 

711 failed to predict 2003). 

712

713 4. DISCUSSION

714 Predictability of fire activity. The wildfire phenomenon results from multiple interactions 

715 between biophysical and human factors acting at various spatial and temporal scales, which 

716 spawn individual events with a high degree of stochasticity. Firelihood is a probabilistic model 

717 of regional fire activity that simulates replications of individual fires with their size (on a daily 

718 basis and at 8km-pixel resolution) with a reasonable accuracy (for example see coverage 

719 probabilities and AUC values in Fig. 4 and 5, respectively), thereby offering the opportunity to 

720 study the predictability of fire activity, i.e. to determine to what extent observed patterns can 

721 be deterministically predicted. This analysis was carried out by comparing the model 

722 uncertainty and prediction errors (i.e., expected minus observed value) on data held out during 

723 the estimation of the model. 

724 Our results showed that the stochasticity of fire activity was quite high, especially for large fire 

725 sizes, which exhibited large model uncertainties and equally large errors, unless aggregating 

726 fire data at larger temporal and/or spatial scales (Fig. 12). The number of fires larger than small 

727 thresholds (1 to 10 ha) were fairly deterministic for the whole study area on a weekly basis and 

728 could be well predicted for years following the training period with limited uncertainties and 

729 errors. However, the predictability of sub-regional fire activity decreased rapidly at finer spatial 

730 scales, with model errors increasing faster than model uncertainties (Fig. 12). Refined analyses 

731 are required to better understand the differences between spatial and temporal aggregations in 
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732 terms of predictability, but this suggests that there are prospects for improving the model spatial 

733 predictions. Preliminary analysis suggested that time-variations in spatial effects would explain 

734 this decrease in model performance.

735 Overall, our results highlighted that stochasticity was a major component of observed fire 

736 activity, so that individual events, pixels, years or fire size class, etc. are often far from 

737 deterministic. Hence, even long-term (>20 years) fire datasets that are used either for ecological 

738 or operational purposes should be used with caution since they do not allow capturing the full 

739 variability in fire disturbance. This major point is illustrated for instance by the high degree of 

740 stochasticity observed in weekly burnt areas in Fig. 8b. Moreover, observed monthly and annual 

741 burnt areas, which are often used as benchmarks in a number of studies, namely for damage 

742 assessment exercises or for comparing efficiency of fire suppression strategies, were also shown 

743 to be highly random. We recommend to use more robust metrics such as number of escaped 

744 fires or fires larger than a given size threshold, instead (e.g.  100 ha in Southeastern France).≥

745 Factors controlling fire activity. The FWI and the forest area were included as explanatory 

746 variables in the model to represent where and when weather conditions are conducive to fires, 

747 and how much area is available for fire spread, respectively. Weather conditions are major 

748 drivers of fire activity in Southeastern France and our results showed that FWI is an effective 

749 metric to rate fire danger (e.g. Fig. 3a and 3b), as suggested by earlier studies based on FWI 

750 subcomponents in the same region (Ruffault et al. 2016, Fréjaville and Curt 2017, Barbero et 

751 al. 2019), and in accordance with studies using the FWI in other southern Mediterranean 

752 countries (e.g. Padilla and Vega-Garcia 2011, Fernandes 2018, Dupuy et al. 2020). However, 

753 our study also highlighted several limitations of the FWI. First and foremost, our results suggest 

754 an inconsistent rating of actual fire danger by the FWI for different fire weather types (Ruffault 

755 et al. 2020). Specifically, the relative sensitivity of the index to ranges of wind speed on the one 

756 hand, and of temperature and drought on the other hand, might not be properly scaled in 
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757 southeastern France. Indeed, the FWI has an exponential response to wind, which might not be 

758 the case of fire activity for high wind values, as suggested by the saturation of the FWI effect 

759 in the fire occurrence (FWI > 60) and fire size (FWI > 40) models (Fig. 3), even if the saturation 

760 was partly explained by spatial bias (Fig. 9). The FWI could overestimate actual fire danger 

761 during these high wind days. By contrast, our results showed a systematic underestimation of 

762 the numbers of fires with size larger than 10 ha during the whole fire season during the 2003 

763 heatwave (Fig. 10 and 11), suggesting that the explanatory variable for fire danger (FWI) could 

764 underestimate the actual fire danger during hot drought conditions. Another weakness of the 

765 FWI could be its time lag with respect to seasonal fire observations. Indeed, with the version of 

766 the probabilistic model without week correction (model “No seasonal” in Table 1), the fire 

767 season predicted by the model starts and ends two to three weeks earlier than the observations 

768 (Fig. 5b and 6b, blue line). Such a lag has already been reported for the KBDI in the 

769 Mediterranean (Ganatsas et al. 2011), but never for the FWI to our knowledge. This could be 

770 explained by the desiccation processes empirically modelled in the Drought Code (a 

771 subcomponent of the FWI reflecting monthly variations in fuel moisture content), which only 

772 poorly explains Live Fuel Moisture Content (Ruffault et al. 2018b), the latter being increasingly 

773 recognized as an important factor of fire behavior (e.g. Pimont et al. 2019). The seasonality -

774 and potentially spatial patterns- of fire danger rating could be improved by the use of more 

775 mechanistic models for fuel moisture assessment. Live fuel moisture content dynamics depends 

776 on the processes of the water (soil water uptake, plant water storage and transpiration) and the 

777 carbon (photosynthesis, respiration, carbon allocation and canopy phenology) cycles (Jolly and 

778 Johnson 2018). Key water processes during an extreme drought and heat wave can be modeled 

779 according to plant hydraulics, depending on plant traits (e.g. Martin-StPaul et al. 2020). As far 

780 as the carbon cycle is concerned, the evolution of fuel moisture linked to the production of new 

781 shoots could be taken into account thanks to tree phenological models (e.g. Vitasse et al. 2011).
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782

783 Our results also confirmed that forest area is an important factor of spatial variations of fire 

784 activity in southeastern France (Ruffault and Mouillot 2017, Ganteaume and Barbero 2019), 

785 with less escaped fires in pixels with low forest area (typically below 20 %) than those with 

786 moderate to high forest areas (typically higher than 40 %) (Fig. 3). A saturation effect or a slight 

787 decrease was however observed above 40 %. This pattern is the result of two opposite 

788 mechanisms explicitly accounted for in our model. First, fire numbers in each pixel are limited 

789 by the area in which ignition “points” can occur (“offset” effect). Second, fire density (i.e. 

790 number of fires per unit of forest area, ) decreased with increasing forest area because human 𝑓𝐹𝐴

791 activities, which are responsible for most fire ignitions in human-dominated landscapes 

792 (Syphard et al. 2007, Hawbaker et al. 2013, Costafreda-Aumedes et al. 2018), are more limited 

793 in these gridcells. This confirms that fire activity can be ignition-limited when forest area is 

794 high but fuel-area-limited when forest area is low; the resulting effect of these two opposites 

795 being likely due to some specificities of the studied area and scale-dependent (Parisien et al. 

796 2011).

797 Methodological insights to fire activity modelling. One of the critical aspects of this work was 

798 the determination of the appropriate voxel size. Typically, smaller voxels lead to issues related 

799 to both data reliability, as well as computational and memory costs, but larger voxels result in 

800 information loss, leading to a challenging trade-off. For example, we aimed at accounting for 

801 fine spatio-temporal variations in fire weather, but had to ignore hourly variations in FWI and 

802 spatial variations smaller than 8 km. Depending on the objective of a study and the specificity 

803 of each region, an appropriate voxel size should be adapted, but the approach of the present 

804 study is applicable with a sophisticated Bayesian method to fine scales at a reasonable cost. To 

805 bypass prohibitively high computation costs, one critical device in our study was the 

806 aggregation of escaped fire counts in classes of same predictor configurations. This aggregation 
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807 led to a reduction of the dataset’s effective size by a factor close to 10, allowing to avoid the 

808 resampling of non-fire observations, which can affect the accuracy of partial effect estimates 

809 (Woolford et al. 2011).

810 Our study also confirmed the importance of accounting for non-linearities in FWI and co-

811 factors for fire activity modeling, in accordance with Woolford et al. (2011). We found the FWI 

812 effect was either underestimated or inconsistent when non-linearities/co-factors were ignored 

813 (Fig. 9). In particular, the use of the spatial model was critical to properly address fine scale 

814 data in which spatial autocorrelation is present. This spatial model was only involved in the fire 

815 occurrence component -not in the fire size, which simply included FWI and FA as explanatory 

816 variables-, which was sufficient to obtain a general agreement with burnt area observations. 

817 Although 1 ha fires (escaped fires) only represent a minor part of cumulated burnt areas, this 

818 finding highlights their importance in explaining patterns of burnt areas. Regarding the fire size 

819 component, an innovative aspect of the present work was the piecewise modelling framework 

820 for fire size distribution, which allowed to model its dependency to explanatory variables with 

821 flexible nonlinear response functions.

822 The ensemble approach allowed us to compute central tendencies, but also confidence intervals 

823 and return intervals of specific events. This approach is hence purely probabilistic; in particular, 

824 probabilistic statements about the uncertainty of specific components of the model (e.g., the 

825 response functions) are possible, and the goodness-of-fit of models can be formally compared 

826 through probabilistic information criteria. These ensemble simulations can be evaluated against 

827 observations thanks to coverage probabilities of the confidence intervals (Joseph et al. 2019). 

828 Model limitations. A first limitation of the present approach was the limited number of Land 

829 Use and Land Cover (LULC) predictors included in both models (Forest Area only). LULC 

830 predictors are increasingly used in statistical models of fire activity, especially when intended 

831 for long-term predictions (Costafreda-Aumedes et al. 2017). They usually relate to the presence 
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832 of human settlements through variables such as the presence of roads, urban land-uses and 

833 housing or population densities, or to that of human activities with variables encompassing the 

834 number of farms or that of touristic infrastructure. Other models also include variables related 

835 to landscape composition, such as the amount of shrubland (compared to high forest) or the 

836 proportion of coniferous trees, or to landscape structure, such as wildland-urban interfaces, 

837 wildland-agriculture interfaces or landscape fragmentation metrics. The influence of such 

838 variables on fire activity has been documented in France (Ager et al. 2014; Opitz et al. 2020; 

839 Curt et al. 2016; Ruffault and Mouillot 2017; Ganteaume and Jappiot 2013) and other 

840 Mediterranean countries (Moreira et al. 2011; Oliveira et al. 2012; Gallardo et al. 2016; Nunes 

841 et al. 2016; Vilar et al. 2016; Papakosta and Straub 2017; Costafreda-Aumedes et al. 2017). 

842 Other, less frequently encountered variables with similar effects include levels of preparedness 

843 (Podschwit and Cullen 2020) or of unemployment and economic welfare metrics (Mancini et 

844 al. 2018; González-Olabarria et al. 2015).

845  In the present study, we did not explicitly account for those factors, but relied on the SPDE 

846 approach to model spatial variations in escaped fire density. We do not expect large 

847 improvement from the inclusion of LULC variables (which are almost static over a decade) in 

848 the occurrence model performance, but it would increase the genericity of the model, for a 

849 better understanding of effective factors, or for extrapolated predictions to other areas of 

850 Southern France where reliable calibration data are not available, for example. Larger benefits 

851 could be expected from the inclusion of LULC variables into our fire size model in which no 

852 spatial effect was included because of the small amount of data available. For example, large 

853 fires are expected to happen more often in shrubland-dominated areas and further away from 

854 cities and communication axes (Moreira et al. 2011; Ager et al. 2014; Ganteaume and Jappiot 

855 2013). This perspective is all the more important as our results suggested that the main 

856 limitations of the “Full” model were rooted in this fire size component. Hence, going this 
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857 direction appears promising and the inclusion of both LULC and socio-economic predictors is 

858 part of our future research agenda. Based on high-resolution rasterized datasets of standard 

859 LULC variables, we propose to construct derived predictor variables (e.g., proportions of 

860 LULC categories around the location of interest for different sizes of spatial buffers, or 

861 proportions of co-occurrence of several categories such as forest cover and buildings in such 

862 buffers to represent interfaces), which may have higher predictive power. Since this may lead 

863 to a relatively large number of potentially useful but also strongly correlated variables, 

864 preliminary analyses (prior to constructing the full stochastic model) may consist of variable 

865 selection algorithms, or of dimension reduction steps in the spirit of principal component 

866 analysis. The resulting set of variables, identified as possessing relevant predictive potential, is 

867 then included into the occurrence and size model components, either in a linear or nonlinear 

868 way as for predictor variables in the current model. This approach is expected to allow for 

869 attribution of wildfire occurrences to risk factors enclosed in LULC and socio-economic 

870 variables. Moreover, it presents a promising lead for improving predictions since LULC 

871 variables are available at higher spatial and temporal resolution than the random spatial effect 

872 accounting for bias terms in our current model.

873 One challenging aspect of fire activity modelling is related to the changes in the nature and 

874 strength of the fire-weather relationship not only over space but also over time, which can be 

875 due to various co-factors, including variations in LU-LC factors, in suppression means, 

876 detection efficiency (Higuera et al. 2015, Ruffault and Mouillot 2015, Xi et al. 2019). In the 

877 present study, we used a sophisticated approach for spatial but static effects, and a crude 

878 approach to account for annual evolution of the relationship by simply modelling the abrupt 

879 shift in the relationship occurring between 2003 and 2005 (using a single global, not spatially 

880 resolved regression coefficient). We noticed that spatial patterns have slightly evolved over 

881 time resulting in a slight decrease in AUC after 2015. These elements might call for a reduction 
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882 of the temporal period used in fire activity studies to increase fire-weather relationship 

883 consistency, and hence prediction performance. However, our study also highlights the need 

884 for long time series to include exceptional events such as 2003. The best approach would hence 

885 be to allow for temporal variation of response functions and spatial bias components in the 

886 models. In that regard, the use of a spatio-temporal log-Gaussian Cox process model for fire 

887 occurrence is particularly promising to account for time-varying spatial effects (Serra et al. 

888 2014b; Opitz et al. 2020); but its implementation on a daily basis still poses considerable 

889 methodological challenges due to prohibitively high computational and numerical 

890 requirements.

891 Some studies proposed that fire numbers could be better represented with a negative binomial 

892 model than with a Poisson model (Marchal et al. 2017; Joseph et al. 2019) as it accounts for the 

893 overdispersion of the data, i.e., the situation where variance in observed count values can be 

894 higher than the intrinsic variance of the estimated model. This situation can arise due to a too 

895 low space-time resolution of the model and explanatory variables (such that important 

896 variability within a pixel-time step unit is not properly taken into account), of missing 

897 explanatory variables, and of spatio-temporal effects unaccounted for in the model (e.g., time-

898 varying spatial effect). In particular, we identified in section 3.4 that the decrease in suppression 

899 efficiency when escaped fire numbers increase could be involved. In this context, preliminary 

900 investigations (where we replaced the Poisson distribution with a negative binomial one) 

901 confirmed the presence of overdispersion with respect to the Poisson model, but simulations 

902 from a model fitted with a negative binomial response showed unrealistically high values for 

903 the number of escaped fires per voxels, with simulated counts being up to 10 times larger than 

904 the maximum of observed numbers. This implies that the model performance would deteriorate 

905 by capturing overdispersion at the pixel-day scale. Therefore, we used the Poisson-based model 

906 as the more realistic model for all our analyses, but confidence intervals based on the aggregated 
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907 simulations can be too narrow in some cases (with CP lower than 95) due to an excess of “false” 

908 extremely high and low fire activity. A more robust, but highly challenging approach would be 

909 to identify the spatial and temporal scales where overdispersion arises, and to include some 

910 corresponding components in the model. 

911 Model applications and perspectives. Beyond the developments and example cases covered in 

912 the present study, the Firelihood modeling framework offers a variety of promising research 

913 applications. Our modeling framework can be used to further investigate the effects of 

914 biophysical and human factors on fire dynamics and the variations of these effects over time 

915 and space. The model is also able to compute and map the return intervals of fire disturbance, 

916 which can cover longer time spans than observations, and be used to increase our understanding 

917 of the interactions between wildfire disturbance and vegetation dynamics (Keeley et al. 2012). 

918 Another research avenue for Firelihood is to run the model for retrospective evaluation (e.g. 

919 attribution studies, Barbero et al. 2020) or the anticipation (e.g. Wotton et al. 2003; Fargeon et 

920 al. 2019) of the effects of climate change on wildfire activity. Statistical models of fire activity 

921 may also help gain insight into the socio-economic impacts of changing fire regimes and drive 

922 insurance company strategic prospects. At local scales, they can be used to estimate and forecast 

923 suppression costs (Preisler et al. 2011). At larger scales, economic activity and climate 

924 mitigation in the forest sector may be affected by disturbances (Lindner et al. 2010; Seidl et al. 

925 2014), as well as smoke production (McKenzie et al. 2014). Long-term forecasts often rely on 

926 deterministic simulators where the inclusion of risk is a methodological challenge (Chudy et al. 

927 2016, Riviere et al. 2020): Firelihood may provide a way to consider fire activity in such 

928 assessments, provided that they include relevant LULC factors for management.

929 Operational outcomes include short-term forecasts of fire activity across the landscape 

930 (Woolford et al. 2011). Because weather forecasts are now quite accurate for periods up to 

931 seven days, the present modelling approach could be used to anticipate the number of escaped 
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932 fires and large fires (50-100ha) and to organize suppression means, since the predictability of 

933 fire activity was encouraging at weekly regional scales. It should however be acknowledged 

934 that uncertainties arising from weather predictions were not included in our study and might 

935 degrade the prediction performance, so that additional testing is required. Although this weekly 

936 regional scale is relevant for many operational purposes, finer resolutions are also of interest 

937 for managers. Our modeling framework offers opportunity for managers to select the temporal 

938 and spatial aggregation scales of interest. In the present study, we used the NUTS3 spatial scale, 

939 but other can be used, such as the forest massif, which is often used for detailed preparedness. 

940 Our predictability study showed that the predictive performance remained high at finer 

941 temporal scales, so that daily predictions can be envisioned as a reasonable lead time. Regarding 

942 spatial predictions however, we found that the predictive performance of the model tended to 

943 decrease faster than expected when the aggregation level was finer than the region (on the 

944 evaluation dataset, period 2015-2018, Fig. 12). Since mapping daily expected burnt areas (e.g. 

945 at a 8km-resolution) or predicting fire numbers inside forest massifs are of major interest for 

946 operational services, we think incorporating temporal trends in spatial effects (i.e. time-varying 

947 effects) would be the most promising option to improve operational applications of our model.

948 Another promising application of such probabilistic approaches is to help identify changes in 

949 fire-weather relationship over time, related to operational aspects. This includes detection 

950 efficiency variation, changes of local regulations and public awareness strategies for risk 

951 mitigation, as well as the evolution in strategies, tools and techniques for fire suppression (Xi 

952 et al 2019).

953 Finally, the probabilistic approach of Firelihood can be applied to many other areas, provided 

954 that i) fire data are available; ii) the factors controlling fire activity are identified and 

955 measurable; iii) voxel sizes are adjusted following guidelines mentioned above. In particular, 

956 this methodology can be used to model occurrence in mixed models, which combine a 
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957 probabilistic approach for occurrence with a mechanistic approach for fire size (Parisien et al. 

958 2013; Finney et al. 2011). The mechanistic approach for fire size is based on the spread of fire 

959 contours on a landscape and may better account for fuel load and continuity, topography and 

960 land use and cover. However, such mixed approaches could be refined by building on the 

961 strengths of the occurrence model presented here (e.g. SPDE approach for spatial variations) 

962 and on their mechanistic model for fire spread.

963

964 Conclusion

965 This study proposed a comprehensive probabilistic framework, Firelihood, for modeling fire 

966 activity in Southeastern France. The hierarchically-structured Bayesian model used a space-

967 time Poisson model for fire occurrence and a piecewise-estimated distribution for fire size, 

968 which enables the simulation of likely spatial-temporal explicit fire activities. The Bayesian 

969 approach allows an accurate estimation of random components in these sophisticated 

970 hierarchical models, which can be parametrized in a convenient and interpretable setting thanks 

971 to INLA. This ensemble-based methodology is innovative and applicable to spatially-correlated 

972 fire observations in other regions or landscapes. In Southeastern France, the model performance 

973 was very encouraging, especially for escaped fire numbers, and allowed to better understand 

974 the role of stochasticity in fire activity. Further effort is needed to elucidate the fire outbreak 

975 that occurred during the 2003 heat wave as well as the limitations of the FWI in fire size 

976 estimates during such conditions. We identified and discussed a few methodological challenges, 

977 including the time variations in spatial effects or the proper integration of overdispersion in 

978 data. We also suggest a variety of ecological, operational and economic applications of 

979 Firelihood.
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1285 Tables
1286 Table 1. List of probabilistic fire activity models (occurrence+size)

Probabilistic model name Occurrence model Size model
“Linear FWI” Linear FWI Linear FWI
“FWI only” FWI FWI
“No Seasonal” FWI+2003+FA FWI+FA
“No Spatial” FWI+2003+FA+WEEK FWI+FA
“Full” FWI+2003+FA+WEEK+SPATIAL FWI+FA

1287

1288
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1289 Table 2. Fire occurrence component (number of escaped fires, larger than 1 ha) 

Occurrence model component Effects
Null No explanatory variable
Linear FWI The predictor of fire counts in the Poisson model is 

a linear function of FWI
FWI The predictor of fire counts in the Poisson model is 

a non-linear function of FWI
FWI+2003 As above + include also a fixed effect to account for 

post-2003 difference
FWI+2003+FA As above + include the offset associated with FA and 

the non-linear effect of FA
FWI+2003+FA+WEEK As above + include a weekly-based seasonal 

correction for occurrence
FWI+2003+FA+WEEK+SPATIAL Full occurrence model described in section 2.1. As 

above + spatial model
1290

1291
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1292 Table 3. Fire size component (size of escaped fires) 

Size model component Effects
Null No explanatory variable
Linear FWI The predictor of fire-size-distribution parameters is a linear 

function of FWI
FWI The predictor of fire-size-distribution parameters is a non-

linear function of FWI
FWI+FA As above + include a non-linear effect of FA1

1293 1 Except for the GPD which is a linear function of FWI only

1294
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1295 Figure legends

1296 FIG. 1. Data site and description: a) Orography (elevation in m) of the study region; Fire activity 

1297 (1995-2018): b) Monthly distribution of burnt areas; c) Spatial distribution of fires larger or 

1298 equal to 1 ha; d) Yearly burnt areas. Data were extracted from the Prométhée fire database 

1299 (http://www.promethee.com/).

1300 FIG. 2. Framework of the “full” probabilistic model of fire activity

1301 FIG. 3. Partial effects of the “Full” fire activity model: a) Occurrence component (number of 

1302 escaped fires, i.e. larger than 1 ha): effects of FWI, Forest Area (including offset), Week of 

1303 Year, and location; b) Size component (exceedance probabilities of escaped fires for a selection 

1304 of thresholds ranging between 1 and 2000 ha): effects of FWI and FA, for a Forest Area of 30 % 

1305 (top) and a FWI of 20 (bottom), respectively.

1306 FIG. 4. Simulated fire activity (in orange) and observations (black dots) for year 2001: daily 

1307 and weekly escaped fire numbers, as well as weekly number of fires larger than 10, 50, 100 ha 

1308 and weekly burnt areas added up over the whole study area. Central tendency (red line) was 

1309 surrounded by the 95th confidence interval in orange and was based on averages computed over 

1310 1000 simulations of fire activities for all voxels of year 2001. 

1311 FIG. 5. Simulated fire size cumulative distribution and observations for year 2001: Central 

1312 tendency (orange line) was surrounded by the 95th confidence interval in orange and the 99.9th 

1313 confidence interval (light orange), computed from 1000 simulations of fire sizes for year 2001. 

1314 The dotted line corresponds to the fire size distribution from 1995-2018.

1315 FIG. 6. “Areas Under the Curve” (AUCs) corresponding to the realization of events diagnosed 

1316 according to the two components of the fire activity model. The different series correspond to 

1317 the “full” model (on the subset used to fit data, 1995-2014; and for the subset used to test the 

1318 model, 2015-2018) and to a more basic “Linear FWI” model (before 2014), which only 

1319 implemented the linear effect of the FWI as explanatory variable.
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1320 FIG. 7. Evaluation of the occurrence model component (escaped fire number) for a selection of 

1321 aggregation scales. In each subplot, the “Full” model is compared to an intermediate model 

1322 where one critical effect required for consistent simulations at this aggregation scale was not 

1323 included: a) Yearly trends for the whole studied area (the dashed vertical line shows the 

1324 separation between training and validation sample); b) Seasonal trends at the weekly scale; c) 

1325 Spatial patterns in number of escaped fires. 

1326 FIG. 8. Same as Fig. 7 for burnt area.

1327 FIG. 9. Partial effect of the FWI for the different occurrence models

1328 FIG. 10. Same as FIG. 4, for year 2003. Comparison of simulated fire activity (in red) with 

1329 observation (black dots): daily and weekly escaped fire numbers, as well as weekly number of 

1330 fire larger than 10, 50, 100 ha and weekly burnt areas were summed for the whole study area. 

1331 Central tendency (red line) was surrounded by the 95th and 99.9th confidence intervals in orange 

1332 and light orange (computed from 1000 simulations of fire activities).

1333 FIG. 11. Same as FIG. 5 for year 2003. Comparison of simulated fire size distribution with 

1334 observation: Central tendency (red line) was surrounded by the 95th confidence interval in 

1335 orange and the 99.9th confidence interval (light orange), computed from 1000 simulations of 

1336 fire sizes for year 2003.

1337 FIG. 12. Mean Absolute Error (top) and Model Uncertainty (bottom) of the model at various 

1338 spatial (1, 4, 16, 36 pixels, NUTS 3, all region, with size in km2 in brackets) and temporal (1 

1339 day, 1 week, two weeks, …, one year, four years) aggregations for fire numbers of 1, 10, 100 ha 

1340 and burnt area for the period 2015-2018.

1341

1342
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1343 FIG. 1. Data site and description: a) Orography (elevation in m) of the study region; Fire activity 

1344 (1995-2018): b) Monthly distribution of burnt areas; c) Spatial distribution of fires larger or 

1345 equal to 1 ha; d) Yearly burnt areas. Data were extracted from the Prométhée fire database 

1346 (http://www.promethee.com/).

1347

1348

1349

1350
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1351 FIG. 2. Framework of the “full” probabilistic model of fire activity. The occurrence and size 

1352 components of the model are presented in dashed boxes on the left in yellow and red, 

1353 respectively. Random effects are listed in green, whereas statistical processes involved are in 

1354 labelled in blue. The occurrence model (in yellow) used a space-time Poisson process to 

1355 simulate the daily number of escaped fires (i.e. larger than 1ha) in each pixel. The size of each 

1356 escaped fire is individually simulated from the 4-piece distribution estimated from the size 

1357 model (in red). The distribution model includes three exceedance thresholds (Bernouilli 

1358 process) and the 4 pieces corresponding to either Pareto or Generalized Pareto Distributions 

1359 (because fire size cannot be infinite). The blue box on the right illustrates ensemble simulations 

1360 that can be done with the model. For each pixel day, the models are used to simulate realizations 

1361 (here 1000) of the number of fires (which is most often 0) and their sizes (if any). The likely 

1362 fire activities can then be aggregated at larger scale to provide metrics and to compute 

1363 confidence intervals.

1364  

1365
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1366 FIG. 3. Partial effects of the “Full” fire activity model: a) Occurrence component (number of 

1367 escaped fires, i.e. larger than 1 ha): effects of FWI, Forest Area (including offset), Week of 

1368 Year, and location; Because the different effects are multiplicative, the partial effects represent 

1369 the multiplicative effect of each factor on the escape fire number, with respect to an arbitrary 

1370 reference. We respectively used FWI=5 (low danger value), week=24 (15th of June is the 

1371 beginning of the summer fire season), FA=30% (mean value in Mediterranean France), and 

1372 mean spatial effect for the spatial model. b) Size component (exceedance probabilities of 

1373 escaped fires for a selection of thresholds ranging between 1 and 2000 ha): effects of FWI and 

1374 FA, for a Forest Area of 30 % (top) and a FWI of 20 (bottom), respectively. 

1375

1376

1377

1378

1379

1380
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1381 FIG. 4. Simulated fire activity (in orange) and observations (black dots) for year 2001: daily 

1382 and weekly escaped fire numbers, as well as weekly number of fires larger than 10, 50, 100 ha 

1383 and weekly burnt areas added up over the whole study area. Central tendency (red line) was 

1384 surrounded by the 95th confidence interval in orange and was based on averages computed over 

1385 1000 simulations of fire activities for all voxels of year 2001.
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1390 FIG. 5. Simulated fire size cumulative distribution and observations for year 2001: Central 

1391 tendency (orange line) was surrounded by the 95th confidence interval in orange and the 99.9th 

1392 confidence interval (light orange), computed from 1000 simulations of fire sizes for year 2001. 

1393 The dotted line corresponds to the fire size distribution from 1995-2018.
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1396 FIG. 6. “Areas Under the Curve” (AUCs) corresponding to the realization of events diagnosed 

1397 according to the two components of the fire activity model. The different series correspond to 

1398 the “full” model (on the subset used to fit data, 1995-2014; and for the subset used to test the 

1399 model, 2015-2018) and to a more basic “Linear FWI” model (before 2014), which only 

1400 implemented the linear effect of the FWI as explanatory variable.
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1403 FIG. 7. Evaluation of the occurrence model component (escaped fire number) for a selection of 

1404 aggregation scales. In each subplot, the “Full” model is compared to an intermediate model 

1405 where one critical effect required for consistent simulations at this aggregation scale was not 

1406 included. a) Yearly trends for the whole studied area (the dashed vertical line shows the 

1407 separation between training and validation sample); b) Seasonal trends at the weekly scale; c) 

1408 Spatial patterns in number of escaped fires. 
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1410 FIG. 8. Same as Fig. 7 for burnt area.
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1413 FIG. 9. Partial effect of the FWI for the different occurrence models
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1417 FIG. 10. Same as FIG. 4, for year 2003. Comparison of simulated fire activity (in red) with 

1418 observation (black dots): daily and weekly escaped fire numbers, as well as weekly number of 

1419 fire larger than 10, 50, 100 ha and weekly burnt areas were summed for the whole study area. 

1420 Central tendency (red line) was surrounded by the 95th and 99.9th confidence intervals in orange 

1421 and light orange (computed from 1000 simulations of fire activities).
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1425 FIG. 11. Same as FIG. 5 for year 2003. Comparison of simulated fire size distribution with 

1426 observation: Central tendency (red line) was surrounded by the 95th confidence interval in 

1427 orange and the 99.9th confidence interval (light orange), computed from 1000 simulations of 

1428 fire sizes for year 2003.
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1432 FIG. 12. Mean Absolute Error (top) and Model Uncertainty (bottom) of the model at various 

1433 spatial (1, 4, 16, 36 pixels, NUTS 3, all region, with size in km2 in brackets) and temporal (1 

1434 day, 1 week, two weeks, …, one year, four years) aggregations for fire numbers of 1, 10, 

1435 100 ha and burnt area for the period 2015-2018.
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FIG. 1. Data site and description: a) Orography (elevation in m) of the study region; Fire activity (1995-
2018): b) Monthly distribution of burnt areas; c) Spatial distribution of fires larger or equal to 1 ha; d) 

Yearly burnt areas. Data were extracted from the Prométhée fire database (http://www.promethee.com/). 

846x634mm (72 x 72 DPI) 

Page 72 of 83Ecological Applications



Daily Escaped Fire 
Number (⩾ 1 ha) in each 

pixel: 0, 1, …

FWI,
forest 
area

Post 2003,
spatial and 

seasonal 
scalings

Fire size Si for each fire 
> 1ha

FWI, forest area

Fire occurrence model

Poisson process

Fire size model (for each fire >1ha)

Be
rn

ou
ill

i p
ro

c.Pareto

Be
rn

ou
ill

i p
ro

c.

Be
rn

ou
ill

i p
ro

c.

Pareto
Pareto GPD

Pixel Date Simulation 1 Simulation 2

1 15/06/1995 {S1; S2} {}

1 16/06/1995 {} {}

1 17/06/1995 {} {S1; S2; S3}

1 18/06/1995 {} {}

1 19/06/1995 {} {}

Simulation 1000

{S1}

{}

{S1}

{}

{}

Escaped fire number and size simulations

255 26/08/2003 {S1; S2; S3; S4} {S1; S2; S3}

255 27/08/2003 {} {}

255 28/08/2003 {} {}

{S1; S2; S3}

{}

{}

4 fires larger than 1ha in 
Simulation 1, the 26/08/2003 in 

pixel 255

Size S1 S2 S3 and S4 in simulation 1, the 26/08/2003 in pixel 255

No fire in simulation 1000, the 
19/06/1995 in pixel 1

…

…

…

1336 28/09/2018 {} {S1}

1336 29/09/2018 {} {}

1336 30/09/2018 {} {}

{S1}

{}

{}
…

1000 simulations

… … …

… … …
Page 73 of 83 Ecological Applications



 

FIG. 3. Partial effects of the “Full” fire activity model: a) Occurrence component (number of escaped fires, 
i.e. larger than 1 ha): effects of FWI, Forest Area (including offset), Week of Year, and location; Because the 
different effects are multiplicative, the partial effects represent the multiplicative effect of each factor on the 
escape fire number, with respect to an arbitrary reference. We respectively used FWI=5 (low danger value), 
week=24 (15th of June is the beginning of the summer fire season), FA=30% (mean value in Mediterranean 

France), and mean spatial effect for the spatial model. b) Size component (exceedance probabilities of 
escaped fires for a selection of thresholds ranging between 1 and 2000 ha): effects of FWI and FA, for a 

Forest Area of 30 % (top) and a FWI of 20 (bottom), respectively. 
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FIG. 4. Simulated fire activity (in orange) and observations (black dots) for year 2001: daily and weekly 
escaped fire numbers, as well as weekly number of fires larger than 10, 50, 100 ha and weekly burnt areas 

added up over the whole study area. Central tendency (red line) was surrounded by the 95th confidence 
interval in orange and was based on averages computed over 1000 simulations of fire activities for all voxels 

of year 2001. 
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FIG. 5. Simulated fire size cumulative distribution and observations for year 2001: Central tendency (orange 
line) was surrounded by the 95th confidence interval in orange and the 99.9th confidence interval (light 

orange), computed from 1000 simulations of fire sizes for year 2001. The dotted line corresponds to the fire 
size distribution from 1995-2018. 
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FIG. 6. “Areas Under the Curve” (AUCs) corresponding to the realization of events diagnosed according to 
the two components of the fire activity model. The different series correspond to the “full” model (on the 
subset used to fit data, 1995-2014; and for the subset used to test the model, 2015-2018) and to a more 

basic “Linear FWI” model (before 2014), which only implemented the linear effect of the FWI as explanatory 
variable. 
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FIG. 7. Evaluation of the occurrence model component (escaped fire number) for a selection of aggregation 
scales. In each subplot, the “Full” model is compared to an intermediate model where one critical effect 

required for consistent simulations at this aggregation scale was not included. a) Yearly trends for the whole 
studied area (the dashed vertical line shows the separation between training and validation sample); b) 

Seasonal trends at the weekly scale; c) Spatial patterns in number of escaped fires. 
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FIG. 9. Partial effect of the FWI for the different occurrence models 
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FIG. 10. Same as FIG. 4, for year 2003. Comparison of simulated fire activity (in red) with observation 
(black dots): daily and weekly escaped fire numbers, as well as weekly number of fire larger than 10, 50, 
100 ha and weekly burnt areas were summed for the whole study area. Central tendency (red line) was 

surrounded by the 95th and 99.9th confidence intervals in orange and light orange (computed from 1000 
simulations of fire activities). 
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FIG. 11. Same as FIG. 5 for year 2003. Comparison of simulated fire size distribution with observation: 
Central tendency (red line) was surrounded by the 95th confidence interval in orange and the 99.9th 

confidence interval (light orange), computed from 1000 simulations of fire sizes for year 2003. 
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FIG. 12. Mean Absolute Error (top) and Model Uncertainty (bottom) of the model at various spatial (1, 4, 16, 
36 pixels, NUTS 3, all region, with size in km2 in brackets) and temporal (1 day, 1 week, two weeks, …, one 
year, four years) aggregations for fire numbers of 1, 10, 100 ha and burnt area for the period 2015-2018. 
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