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Modelling wildfire activity is crucial for informing science-based risk management and understanding the spatio-temporal dynamics of fire-prone ecosystems worldwide. Models help disentangle the relative influences of different factors, understand wildfire predictability and provide insights into specific events. • Here, we develop Firelihood, a two-component Bayesian hierarchically-structured probabilistic model of daily fire activity, which is modelled as the outcome of a marked point process: individual fires are the points (occurrence component), and fire sizes are the marks (size component). The space-time Poisson model for occurrence is adjusted to gridded fire counts using the integrated nested Laplace approximation (INLA) combined with the Stochastic Partial Differential Equation (SPDE) approach. The size model is based on piecewise-estimated Pareto and Generalized-Pareto distributions, adjusted with INLA. The Fire Weather Index (FWI) and Forest Area are the main explanatory variables. Temporal and spatial residuals are included to improve the consistency of the relationship between weather and fire occurrence. • The posterior distribution of the Bayesian model provided 1000 replications of fire activity that were compared with observations at various temporal and spatial scales in Mediterranean

France. The number of fires larger than 1ha across the region was coarsely reproduced at the daily scale, and was more accurately predicted on a weekly basis or longer. The regional weekly total number of larger fires (10 to 100 ha) was predicted as well, but the accuracy degraded with size, as the model uncertainty increased with event rareness. Local predictions of fire numbers or burnt areas also required a longer aggregation period to maintain model accuracy.

• The estimation of fires larger than 1ha was also consistent with observations during the extreme fire season of the 2003 unprecedented heat wave, but the model systematically underrepresented large fires and burnt areas, which suggests that the FWI does not consistently rate the actual danger of large fire occurrence during heat waves.

• Firelihood enabled a novel analysis of the stochasticity underlying fire hazard, and offers a variety of applications, including fire hazard predictions for management and projections in the context of climate change.

INTRODUCTION

Wildfires contribute to shape ecosystems across large parts of the world and threaten human lives and properties. Mapping features of fire regimes such as frequency, size, intensity, severity or pattern of fires across time and space is useful for planning fire and natural resource management, assessing risk and evaluating ecological conditions [START_REF] Morgan | Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns[END_REF]. Indeed, fire regimes vary substantially over time and space at multiple scales, in response to weather, climate, vegetation, orography, as well as local and regional human influences (e.g. [START_REF] Bradstock | A biogeographic model of fire regimes in Australia: current and future implications: A biogeographic model of fire in Australia[END_REF], Bowman et al. 2011[START_REF] Parks | Spatial bottom-up controls on fire likelihood vary across western North America[END_REF]. Understanding fire regimes and their economic, social and ecological consequences is a major challenge for scientists, especially in the context of climate change, which is expected to increase fire activity in many regions of the world (e.g. [START_REF] Flannigan | Implications of changing climate for global wildland fire[END_REF], Barbero et al. 2015a[START_REF] Turco | Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models[END_REF], Dupuy et al. 2020).

Fire regimes are strongly influenced by contemporary fire management, which often aims at reducing fire activity. In some locations (US), burnt areas increased substantially despite large suppression expenditures that led to increased fire hazard through fuel accumulation, which suggests the need to reexamine policies (Stephens andRuth 2005, Calkin et al. 2015). By contrast, fire suppression policies have likely been effective for reducing burnt areas in many regions of the Mediterranean basin [START_REF] Turco | Decreasing Fires in Mediterranean Europe[END_REF]), but the long-term adequacy of such policies in the context of climate warming and fuel build-up is currently debated [START_REF] Moreira | Wildfire management in Mediterranean-type regions: paradigm change needed[END_REF]. In this context, the design and application of new policies require reinforced land management and planning, while fire suppression must continue to play a key role in the protection of human lives and assets. For planning purposes, managers and policy makers need to anticipate future scenario-based fire regimes, while for preparedness and response actions, fire managers need to be informed on daily, weekly and seasonal bases of the expected number, size, duration and spread rate of fires [START_REF] Taylor | Wildfire Prediction to Inform Fire Management: Statistical Science Challenges[END_REF][START_REF] Xi | Statistical Models of Key Components of Wildfire Risk[END_REF].

While wildfire regimes depend on multiscale interactions between climate, vegetation and humans [START_REF] Moritz | Wildfires, complexity, and highly optimized tolerance[END_REF], weather has long been recognized as the main factor driving regional fire activity from daily to seasonal scale [START_REF] Abatzoglou | Relationships between climate and macroscale area burned in the western United States[END_REF], Barbero et al. 2015b[START_REF] Turco | On the key role of droughts in the dynamics of summer fires in Mediterranean Europe[END_REF]. Much effort has been dedicated to developing and evaluating weather-based fire danger rating systems, including the widely used Canadian Fire Weather Index (FWI, Van Wagner 1987), the Australian McArthur index (FFDI, [START_REF] Noble | McArthur's fire-danger meters expressed as equations[END_REF] or the American National Fire Danger Ratings System (NFDRS, Deeming et al. 1978). These indices operate at the daily time scale and can be computed in real time from local weather variables to inform managers, or they can be projected under future climatic scenarios to anticipate the effect of climate change [START_REF] Dupuy | Climate change impact on future wildfire danger and activity in southern Europe: a review[END_REF]. However, the link between fire danger rating systems and observed fire activity is not straightforward. Indeed, fire events are fairly rare at local and daily scales, and hence, highly random in nature. To handle this stochasticity, observations are often aggregated over time and space prior to examining empirical relationships between fire activity and average indices, typically using weekly to monthly bases (e.g. Krawchuck et al. 2009[START_REF] Barbero | Modeling very large-fire occurrences over the continental United States from weather and climate forcing[END_REF][START_REF] Turco | Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models[END_REF].

Unfortunately, these correlative approaches cannot appropriately account for a number of operational and research applications that require daily predictions on fine scales. Indeed, climate, land cover and human variables can vary substantially over short distances in some regions [START_REF] Fréjaville | Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin)[END_REF]. Likewise, weather processes, such as wind or hot temperature events, can influence fire activity on daily or even sub-daily timescales. This is typically the case in the Mediterranean region, where most fires spread during less than a day and the final fire size is less than 1000 ha, contrary to other regions where fires can spread over several weeks, for which daily variations would be less relevant.

The rareness and the stochastic nature of individual fire events can be addressed in a formalized probabilistic framework [START_REF] Brillinger | Risk assessment: a forest fire example[END_REF][START_REF] Preisler | Probability based models for estimation of wildfire risk[END_REF][START_REF] Preisler | Statistical Model for Forecasting Monthly Large Wildfire Events in Western United States[END_REF][START_REF] Turner | Point patterns of forest fire locations[END_REF][START_REF] Vilar | A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain[END_REF], Woolford et al. 2014, Serra et al. 2014a&b). In this approach, observed patterns of fire occurrence are viewed as realizations of a spatio-temporal point process, where points correspond to locations and times of ignition of a fire, and the burnt area is used as a mark for the points. The latent (i.e., unobserved) spatio-temporal intensity function that has generated the observed point pattern is then estimated. In practice, this point process is often approximated by a Bernoulli probability of fire presence in discrete and fairly small space-time cells (called voxels, typically some km 2 X days) in which at most one fire has generally been observed. The notion of intensity (i.e., expected counts) is crucial since it provides more information than only susceptibility (i.e., presence-absence); in particular, intensities can be additively aggregated within any spatio-temporal unit. Such fire occurrence modelling can be combined with fire size distribution models, typically expressed as the probability for a fire to exceed a given size, to simulate fire hazard [START_REF] Preisler | Probability based models for estimation of wildfire risk[END_REF][START_REF] Preisler | Spatially explicit forecasts of large wildland fire probability and suppression costs for California[END_REF].

These probabilistic models have most commonly been adjusted within the framework of generalized linear modeling (GLM), or of related extensions such as generalized additive modeling (GAMs, [START_REF] Wood | Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models[END_REF], where the latter have been shown to perform better (Woolford et al. 2011), since they allow replacing linear effects of explanatory variables (such as fire danger and/or human activity metrics) by more flexible shapes in nonlinear effects.

Besides accounting for non-linear effects of explanatory variables -as many other techniques-, GAM can include model components to account for spatial residuals [START_REF] Preisler | Probability based models for estimation of wildfire risk[END_REF]) ), i.e., spatial coordinates are used as explanatory variables with smooth nonlinear effects.

More recently, Bayesian methods have also been used as an alternative to these frequentist methods (Serra et al. 2014a&b, Joseph et al. 2019). They allow including and accurately estimating random components in the predictor to capture variation in components of fire activity that cannot be explained by a deterministic influence of other available explanatory variables. Moreover, expert knowledge can guide the choice of prior distributions of predictor components and smoothing parameters (e.g., variances and dependence ranges). In particular, the complexity of sophisticated model components can be controlled by shrinking them towards simpler baselines when no strong signal in the data exists. Therefore, Bayesian analysis provides a convenient and flexible setting for inference in hierarchically structured models. In particular, spatially correlated data can be handled, for example with the Stochastic Partial Differential Equations approach that allows for highly resolved spatial random effects (SPDE, [START_REF] Lindgren | An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach: Link between Gaussian Fields and Gaussian Markov Random Fields[END_REF]. Moreover, posterior distributions of parameters allow for interpretation of uncertainties and provide decision support thanks to credible intervals. Finally, predictive distributions for unavailable observations (e.g., future observations) -not only point predictionscan be naturally generated from the posterior distributions and new explanatory variables.

Probabilistic models in general -but mostly in a frequentist setting-have been used for a variety of applications, including forecasts of large fires [START_REF] Preisler | Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices[END_REF], the projection of future fire activity [START_REF] Ager | Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model[END_REF], the estimation of suppression costs [START_REF] Preisler | Spatially explicit forecasts of large wildland fire probability and suppression costs for California[END_REF], or the estimation of extreme fire size [START_REF] Joseph | Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima[END_REF].

Despite their potential for wildfire predictions, probabilistic approaches still present some challenges and limitations, and some of which have not been fully addressed. First, the evaluation of the underlying model performance in a probabilistic framework is not straightforward. Indeed, it requires checking the goodness-of-fit and model parsimony in the model-building framework through various approaches including information criteria, comparisons of predictions and uncertainty bounds with observations aggregated on various temporal and spatial scales, and external validation using hold-out data [START_REF] Xi | Statistical Models of Key Components of Wildfire Risk[END_REF]. Second, even if early probabilistic approaches combined models of occurrence and exceedance of fire size above high fixed thresholds, they did not simulate the size of fire events. Notable exceptions are [START_REF] Westerling | Climate change and growth scenarios for California wildfire[END_REF][START_REF] Ager | Wildfire risk estimation in the Mediterranean area: MEDITERRANEAN WILDFIRE RISK ESTIMATION[END_REF], 2018), who fitted generalized Pareto distributions with parameters depending on explanatory variables to simulate the size of individual fires. Third, probabilistic approaches have seldom been used to evaluate the potential predictability of fire activity (i.e. the degree to which observations can be deterministically predicted) across a range of spatial and temporal scales. Indeed, it is expected that fire activity is less predictable at short temporal and/or fine spatial scales and for rare events (large fires), than more frequent events (small fires) over longer and/or broader scales. Probabilistic approaches provide a suitable framework to quantify this predictability, which should help managers to understand observed activity patterns. Moreover, probabilistic models help understand the extent to which catastrophic events are (un)expected, and can therefore provide useful information regarding their likelihood of occurrence, such as return periods and levels.

The objective of the present study is to assess the predictability of fire activity at various temporal and spatial scales in the French Mediterranean region, through a Bayesian probabilistic approach. To this aim, we present and use a full framework of fire activity modelling, called Firelihood, which simulates potential scenarios of daily fires occurring in small pixels (8 x 8 km). We then assess the overall model performance, the relative importance of selected explanatory variables, and the predictability at scales ranging from the pixel to the region, and from days to periods of multiple years. The assessment of model performance includes a specific focus on the catastrophic 2003 year characterized by a severe synoptic-scale heat wave in summer following a prolonged drought [START_REF] Trigo | How exceptional was the early August 2003 heatwave in France?[END_REF]). We finally discuss the strength and weaknesses of the current model and its potential applications for wildfire-related research avenues and the improvement of operational fire suppression and management.

METHODS

Data and site description

Study site and fire activity. The study area consists of 15 NUTS3-level French administrative units located in southeastern France (Fig. 1a, 75,560 km 2 ), which concentrate the vast majority of burnt area during the summer season in France. The climate of this area is mostly Mediterranean, characterized by cool and moist winters and hot and dry summers, but exhibits strong variations with orography, from the high mountains in the Alps to coastal plains. The population is mostly concentrated near the Mediterranean coast and the Rhône river valley.

These climatic and socio-economic contrasts strongly shape variations in fire activity over time and space. Fire activity is the highest near the coast and in the Corsican island, where human activities, drought and wind bursts come together (Fig. 1c). Burnt area shows a bimodal seasonal pattern, with a first peak in spring associated with agricultural, pastoral and forestry practices, during which fires are generally not a major threat, and a more important second peak during the summer dry season, during which most large fires occur (Fig. 1b). At the interannual scale, fire activity is highly variable (Fig. 1d) and mostly dictated by annual drought conditions [START_REF] Ruffault | Objective identification of multiple large fire climatologies: an application to a Mediterranean ecosystem[END_REF], Barbero et al. 2019). The outstanding burnt area of the 2003 summer was due to several extreme fires that occurred during an unprecedented heatwave [START_REF] Trigo | How exceptional was the early August 2003 heatwave in France?[END_REF], Ruffault et al. 2018a). Following these 2003 extreme fires, fire prevention and fighting was enhanced with a modernization of the fire management law in 2004. This might explain the decrease in the number of fires larger than 1 ha and in burnt areas after 2003 (Fig. 1d, Curt et al. 2018). In France, fires larger than 1 ha are of special interest, as limiting fire size to 1 ha is a goal of fire suppression services during the dry season. Fires larger than 1ha will therefore be referred to as "escaped fires" in the remainder of the article.

Fire records were extracted from the Prométhée fire database (http://www.promethee.com/) for the period from 1995 to 2018. This period was selected so that the dataset was large enough to allow the fitting of robust models. We discarded, however, the pre-1995 period, because of the lack of consistency of the weather data prior to 1995 (monitoring station number had evolved until 1995, [START_REF] Vidal | A 50-year high-resolution atmospheric reanalysis over France with the Safran system[END_REF]) and of reliability and completeness issues in earlier fire records.

Similarly, to limit the uncertainties associated with small fires in fire databases (Turco et al. 2013, Ruffault and[START_REF] Ruffault | How a new fire-suppression policy can abruptly reshape the fire-weather relationship[END_REF], only fires larger (or equal) than 1 ha (or escaped fires) were retained. One should note, however, that the increasing precision of size records over time has led to a temporal decline of the proportion of fires exactly equal to 1ha among small fires.

We focused our analysis on the summer season (weeks 22-44, 25 th may to 31 th October, Fig. 1b), as most burnt areas occur during summer, and because the causes and the factors behind spring fires are quite different and would have blurred the fire-climate relationships we sought to explore.

Explanatory variables.

The main explanatory variable was the daily Fire Weather Index (FWI), which represents temporal and spatial variations in meteorological fire danger. FWI was computed onto an 8 km-resolution grid from 12:00 LST meteorological variables (24hcumulated precipitation, mean wind speed, mean temperature and minimum relative humidity, calculated using specific humidity and maximum temperature) following [START_REF] Bedia | Assessing the predictability of fire occurrence and area burned across phytoclimatic regions in Spain[END_REF], using the 'cffdrs' R package [START_REF] Wang | cffdrs: an R package for the Canadian Forest Fire Danger Rating System[END_REF]). These variables were extracted from the SAFRAN reanalysis [START_REF] Vidal | A 50-year high-resolution atmospheric reanalysis over France with the Safran system[END_REF].

The second explanatory variable was the forest area in each 8-km pixel, which is expected to affect both the number and size of fires. It shows significant spatial variability (Appendix S1: Fig. S1). Forest area was obtained from the CORINE land-cover database (CLC, https://land.copernicus.eu/pan-european/corine-land-cover), by merging the patch areas covered by sublevels "Forests" and "Scrub and/or herbaceous vegetation association" in each pixel. This forest area (FA, in ha or in % cover of the pixel) was estimated on a yearly basis by linear interpolation of CLC inventories available in 1990, 2000, 2006, 2012 and 2018. 

Probabilistic model of fire activity

Model overview. Firelihood consisted of two hierarchically structured components: one describing the occurrence of escaped fires, and another describing the size of each fire event conditional to its occurrence (Fig. 2). For the occurrence component, the response variable was the daily number of escaped fires (i.e. fires larger than 1 ha), for each pixel of the FWI grid. For the size component, the response was a continuous positive quantity (size of each escaped fire event) modelled with a piecewise distribution, for flexibility.

Both the occurrence and size components included FWI and forest area as explanatory variables. The occurrence model also included two temporal factors and a spatial model. Models were fitted in a Bayesian framework, using the integrated nested Laplace approximation (INLA) implemented in R software (www.r-inla.org) and described in (Rue et al. 2009, Lindgren and[START_REF] Lindgren | Bayesian Spatial Modelling with R -INLA[END_REF]. INLA can be applied to large datasets using sophisticated hierarchical In the next two subsections, we describe the "full" model that includes all explanatory variables (Table 1). To verify the added value of the "full" model and to avoid overfitting (i.e. the situation where prediction performance on validation data decreases) [START_REF] Xi | Statistical Models of Key Components of Wildfire Risk[END_REF], intermediate models for fire occurrence and size with less explanatory variables were also estimated, and their corresponding information criteria were compared with those of the "full" model.

Combining both components of the models enable simulation, according to the estimated posterior model, of an unlimited number of replications (here: 1000) of the potential daily fire activity in each pixel, in the form of escaped fire lists whose number and sizes were simulated with each model component. These simulations can then be aggregated at different spatial and temporal scales for corresponding predictions and evaluations against observations.

Fire occurrence component. We built the fire occurrence model for escaped fire ( 1 ha) ≥ counts in 8 km X 8 km daily voxels, as a Poisson random variable (Fig. 2). Following the approach of [START_REF] Brillinger | Risk assessment: a forest fire example[END_REF], we incorporated residual spatial and temporal random effects (at the pixel size and weekly, respectively), to account for unknown sources of variations in escaped fire probability. They can be viewed as spatial and temporal scaling factors between FWI and the observed number of escaped fires.

The voxel size was considered as a good approximation for the "true" Poisson distribution resulting from grouping intra pixel variations, since pixel-day probabilities remained small [START_REF] Brillinger | Risk assessment: a forest fire example[END_REF]. Contrary to large voxels in which multiple fires can occur more often (e.g. [START_REF] Joseph | Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima[END_REF], our Poisson-based method was applied to an almost binary dataset, and spatial correlations were accounted for with a spatial model, so that over-dispersion was less of a concern [START_REF] Taylor | Wildfire Prediction to Inform Fire Management: Statistical Science Challenges[END_REF]. For the same reasons, the use of a zero-inflated Poisson model was not required. Moreover, this resolution was fine enough to explicitly link the fire occurrence probability to locally observed fire conditions (weather data and forest area), rather than some average value at a coarser scale [START_REF] Taylor | Wildfire Prediction to Inform Fire Management: Statistical Science Challenges[END_REF]. To identify the range of variation of spatial biases unexplained by the available predictor variables (FWI, FA, season), the pixel size should be much smaller than the distance at which the correlation in the spatial model drops to near zero. This avoids issues related to within-pixel overdispersion and overestimation of the smoothness of occurrence intensity maps. Model fit showed that this range was approximately 30 km, which is indeed substantially larger than pixel size. Finally, the pixel size was consistent with the computational and memory costs of INLA, which strongly increase with the size of the dataset and the resolution of spatial and temporal random effects.

The partial effects of the models were assumed to be multiplicative, based on an additive decomposition of the log of expected fire counts, which has been shown to be adequate for time and space in Woolford et al. (2011). The form of the "full" model, including all explanatory variables ("FWI+2003+FA+WEEK+SPATIAL", see The prior distributions of the different predictors were Gaussian processes. The nonlinear ffunctions in (1) were modelled with piecewise constant first-order random walks, with 30, 18 and 23 segments, for FWI, FA and the seasonal effect, respectively. For each of them, one hyperparameter (called precision) governed curve smoothness (i.e., the size of the small steps between consecutive segments), as a Bayesian variant of smoothers used in GAM models (e.g. [START_REF] Preisler | Probability based models for estimation of wildfire risk[END_REF]). For the spatial component, the SPDE approach consists in implementing a numerically convenient approximation to the Matérn covariance function for the Gaussian random field prior of in the 1143 pixels (meshing the study site). Two hyperparameters 𝑓 𝑋,𝑌 were estimated for this random field: precision (to control the spatial variability of field values) and range (to control spatial dependence, i.e. the smoothness of the spatial surface). For hyperparameters, we specified Penalized Complexity priors [START_REF] Bakka | Spatial modeling with R-INLA: A review[END_REF], which penalized the distance of a model component towards a basic baseline (i.e., absence of effect), and we fixed penalty parameters that ensured fairly smooth estimated posterior effects. In order to limit computational and memory costs, we took advantage of the additivity of the Poisson process to aggregate data in segment classes to reduce dataset size, which initially contained 4.44 million voxels. The numerical design described above enabled keeping the number of observed classes below 500,000, which avoids numerical instabilities when running R-INLA, and models are estimated within several minutes to several hours in case of the full model. Such an aggregation is an appealing alternative to approximations often implemented for large datasets (e.g. subsampling of non-fire voxels, in [START_REF] Brillinger | Risk assessment: a forest fire example[END_REF], which have shown to decrease model robustness (Woolford et al. 2011).

Fire size component.

We built a probabilistic model for sizes of escaped fires (conditional on a fire being larger than 1 ha), which corresponded to the marks of the "fire" point-process (Fig. 2). The fire size distribution is usually not well reproduced by any of the commonly used probability distributions over the whole range of observations -in particular for small and large fires- [START_REF] Cui | What do we know about forest fire size distribution, and why is this knowledge useful for forest management[END_REF]. Consequently, we used a piecewise specification of the distribution based on Pareto and Generalized Pareto Distributions (GPD) in the different size segments, as justified by the asymptotic theory of threshold exceedances [START_REF] Davison | Statistics of Extremes[END_REF]. In each segment, size distributions depended on both FWI and FA of the voxel (8 km X 8 km by daily cell) in which the fire initially spread. In principle, we could have estimated the probability of a given fire to exceed the upper threshold of each segment by using the exceedance probability derived from the fire size distribution within this segment. However, because of the small fraction of fire sizes in the higher parts of each segment (i.e., most fires have size closer to the lower than the upper bound of each segment), we obtained more accurate estimates of exceedance probabilities with specific logistic regressions for each threshold (Bernouilli process, see Fig. 2). In summary, the size model was generative and had hierarchical structure using a piece-wise specification over intervals of burnt area (Fig. 2). First, a logistic-regressionbased model determined the segment into which each individual fire should fall (1-10 ha, 10-100 ha, 100-1000 ha or larger than 1000 ha). Then, the exact size was simulated according to the distribution of the corresponding segment.

Contrary to other regions of the world where fires can spread over tens of km 2 during several days (e.g. [START_REF] Joseph | Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima[END_REF], most fires in the study area spread for less than a day and were smaller than 1000 ha (which was much smaller than the pixel area of 6400 ha). Therefore, it is appropriate to stick to the voxel scale for fire size modeling, even if a few fires spread over more than one voxel. The rationale for including FA (in addition to the FWI) was that a small forest area is thought to limit fire spread. Contrary to the fire occurrence model, we did not include any other spatio-temporal factors in the size model, as the dataset size was too small to develop robust models. The form of the size component of this "full" model was hence "FWI+FA" (Table 1), except for the GPD (Table 3).

The piecewise model of fire size distribution was developed using standard modeling techniques suggested by extreme-value theory, based on threshold exceedances. We carried out preliminary analyses of the response of fire size distributions in different FWI classes based on mean excess plots [START_REF] Hall | Statistics and related topics[END_REF] of the log-transformed escaped fire sizes. The number of exceedances over increasingly high thresholds suggested a slow power-law-like tail decay for most of the thresholds except the highest ones, for which exceedance numbers seem to decrease much faster as in the power-law setting, similar to the findings in [START_REF] Cui | What do we know about forest fire size distribution, and why is this knowledge useful for forest management[END_REF]. For our data, the behavior of mean excess curves of log fire sizes, and of related curves (cumulative distributions in log-log scale), tended to change around fire sizes of 10 ha, 100 ha and 1000 ha. Therefore, we assumed that the distribution of fire sizes could be modelled through piecewise Pareto distributions between thresholds , , and 𝑢 1 = 1 𝑢 2 = 10 𝑢 3 = 100 𝑢 4 ha, which depended on both FWI and FA (equivalently, through piecewise exponential = 1000 distributions for log fire sizes). More precisely, given a threshold , we estimated exponential 𝑢 𝑘 regression models for , where corresponds to an observed fire size larger than , for

𝑙𝑜𝑔 ( 𝑆 𝑖 𝑢 𝑘 ) 𝑆 𝑖 𝑢 𝑘
segments k=1, 2, 3; moreover, we censored observations , so that the model provides 𝑆 𝑖 > 𝑢 𝑘 + 1 a good fit for by construction. The estimation was conducted with INLA using 𝑢 𝑘 ≤ 𝑆 𝑖 < 𝑢 𝑘 + 1 its survival model framework for handling censoring, and FWI and FA were used as covariates with potentially nonlinear influence:

(2)

𝑙𝑜𝑔 𝑆 𝑖 𝑢 𝑘 ~𝑒𝜂 𝑖 ,𝜂 𝑖 = 𝛽 𝑒𝑥𝑐,𝑢 0 + 𝑓 𝑒𝑥𝑐,𝑢 𝐹𝑊𝐼(𝐹𝑊𝐼 𝑖 ) + 𝑓 𝑒𝑥𝑐,𝑢
where the f-terms captured nonlinear influences of the covariates FWI and FA, with piecewise constant first-order random walks, with 20 and 10 segments, respectively.

Finally, for the category with largest fire sizes (exceeding 1000 ha and containing 33 and 7 fires for the periods 1995-2014 and 2015-2018, respectively), we selected a generalized Pareto distribution (GPD), which allows for a finite upper endpoint if its shape parameter is negative, since an upper bound -even a very large one -must necessarily exist for physical considerations. The GPD has shown to perform generally well for large fire sizes [START_REF] Schoenberg | Detection of non-linearities in the dependence of burn area on fuel age and climatic variables[END_REF][START_REF] Westerling | Climate change and growth scenarios for California wildfire[END_REF]. Therefore, we estimated the shape and scale parameters 𝜉 𝜎 of the GPD, by fitting it to for observations . Since this model was not

𝑙𝑜𝑔 ( 𝑆 𝑖 1000 )
𝑆 𝑖 > 1000 available within INLA with a negative shape parameter (due to some peculiarities of its density, e.g., de Haan and Ferreira 2007), we estimated the GPD parameters using frequentist maximum likelihood, followed by a careful inspection of the estimated model. Owing to the small sample size, we chose a more parsimonious parametrization of covariate influence using only linear coefficients:

(3)

{ 𝑙𝑜𝑔 ( 𝑆 𝑖 1000 | 𝑆 𝑖 > 1000 ) ~ 𝐺𝑃𝐷{𝜉(𝐹𝑊𝐼 𝑖 ,𝐹𝐴 𝑖 ), 𝜎(𝐹𝑊𝐼 𝑖 ,𝐹𝐴 𝑖 )} 𝜉(𝐹𝑊𝐼 𝑖 ,𝐹𝐴 𝑖 ) = 𝜉 0 + 𝜉 1 * 𝐹𝑊𝐼 𝑖 + 𝜉 2 * 𝐹𝐴 𝑖 𝑙𝑜𝑔𝜎(𝐹𝑊𝐼 𝑖 ,𝐹𝐴 𝑖 ) = 𝜎 0 + 𝜎 1 * 𝐹𝑊𝐼 𝑖 + 𝜎 2 * 𝐹𝐴 𝑖
However, because the sample size was small, uncertainty on the FA coefficient was high and confidence intervals and information criteria advised against including FA in this model (see Appendix S2 for details). We hence selected for the "Full" model a GPD with parameters function of FWI only.

As mentioned above, we cannot expect a good estimation of exceedance probabilities derived from the three Pareto distribution due to the relatively small sample fraction of fire sizes in the higher segments. For example, a moderate number of fires were greater than 10 ha (1348 fires among 7193), and only few of them (280, approx. 4 % of fires larger than 1 ha) were also larger than 100 ha. Between 1995 and 2018, only 40 fires reached more than 1000 ha (0.6% of fires larger than 1 ha). Therefore, we separately modeled and estimated these exceedance probabilities , for a threshold u and a voxel i, with INLA, based on logistic regressions for 𝑝 𝑢 𝑖 the indicator variables of threshold exceedances (i.e., 1 if fire size exceeds and 0 otherwise), 𝑢 𝑘

given FWI and FA: for ( 4)

𝑙𝑜𝑔 𝑝 𝑢 𝑖 1 -𝑝 𝑢 𝑖 = 𝛽 𝑝,𝑢 0 + 𝑓 𝑝,𝑢 𝐹𝑊𝐼 𝑢 = 10,100,1000
where the f-terms captured nonlinear influences of the covariates FWI and FA, with piecewise constant first-order random walks, with 20 and 10 segments, respectively.

These three probabilities and the four estimated fire size distributions were hence combined to predict the size of each fire larger than 1 ha, given FWI and FA, through a sequential approach consisting in simulating i) in which segment the size of the fire is, and, conditional to the segment, ii) the exact size (in this segment).

Variable selection and model evaluation.

The final "full" model was developed by including the different explanatory variables and non-linear functions step by step, checking information criteria of the intermediate probabilistic models. A selection of intermediate models is presented in Tables 1,2,3, ranging from the simple "FWI-linear" to the "full" model. Information criteria aimed to assess goodness-of-fit of models while safeguarding against overly complex models that overfit data [START_REF] Vehtari | Practical Bayesian model evaluation using leaveone-out cross-validation and WAIC[END_REF], and were an appropriate means to check if the structure of each response to an explanatory variable, as implemented in the "full" model, was significant and parsimonious. We used the DIC (Deviance Information Criterion) and the WAIC (Widely-Applicable Information Criterion) for variable selection in submodels, which are generalizations of the well-known Akaike Information Criterion (AIC) for Bayesian models.

The WAIC is known to better reflect posterior uncertainty in the models' prediction than DIC, which can sometimes select over-fitted models [START_REF] Vehtari | Practical Bayesian model evaluation using leaveone-out cross-validation and WAIC[END_REF]. For the Generalized Pareto Distribution of largest fires, we simply used the AIC of the model fit. The robustness of the occurrence model was checked in a preliminary development, thanks to a 7-fold cross validation procedure, holding out 3 randomly selected years in each fold, which demonstrated little sensitivity to data sample [START_REF] Fargeon | Effet du changement climatique sur l'évolution de l'aléa incendie de forêt en France métropolitaine au XXI e siècle[END_REF].

We evaluated the performance of the model by two different means. First, we evaluated the subcomponents of the model with Area-under-the-Curve measures (AUC, [START_REF] Fawcett | An introduction to ROC analysis[END_REF].

AUCs rate the model ability to diagnose the realization in voxels of different events, here "at least one escaped fire" and a selection of "size exceedances", by verifying that their occurrence 

Model applications

Once the model has been evaluated, it can be used to analyze the stochasticity in fire activity,

given that 1000 replicates of the models can provide more insight than the single realization of observations. Two example applications were developed in the present paper.

Detailed analysis of year 2003.

For the first application, we provided detailed comparisons of seasonal predictions and observations and fire size distribution in 2003, during which the total burnt area was extremely high for study area.

Predictability analysis. In order to better understand the predictability of fire activity, we compared simulated fire activity for years 2015-2018 to observations (validation sample) within a crossover plan of spatio-temporal aggregations, and for a selection of fire sizes. We used six classes for spatial aggregation (ranging from the single 8-km pixel to the whole studied area) that were crossed with seven classes for time aggregation (ranging from a single day to the four 2015-2018 years). MAE and MU, as defined in the previous section, were computed based on the 1000 simulations for the corresponding 42 aggregation classes, for fire numbers ranging between 1 and 500 ha and for total burnt area. The predictability was analyzed by comparing the model uncertainty and prediction errors (i.e., expected minus observed value). When both were of the same order of magnitude, the model correctly represented the stochasticity at play.

Hence, low uncertainty and error indicated a high predictability, whereas high uncertainty and error revealed low predictability. Uncertainty lower than error meant that a bias was present in the model predictions, making predictability assessment tricky if the bias was not constant, even if a high model uncertainty likely indicated low predictability. This approach allowed to diagnose the fire sizes and aggregation scales for which simulations were in agreement with observations.

RESULTS

Presentation of the "Full" model

Partial effects of the "Full" model. The partial effects of both components (occurrence, size) of the "full" fire activity model for the different explanatory variables on escaped fire numbers and on a selection of exceedance probabilities are shown in Fig. 3. The 95 th credible intervals were obtained from the posterior predictive distributions. As expected, the FWI had a strong effect on the expected number of escaped fires, which was about 60 times higher for a FWI of 60 than one of 5 (Fig. 3a). This effect was however marginal for FWI above 60, with wider credible intervals, due to smaller sample size for the most extreme values. We observed a positive effect of forest area (FA, including both and the offset, see Eq. 1) on the expected 𝑓 𝐹𝐴 number of escaped fires with a maximum around 30%. The slight decrease starting at around 40 % reflected a strong decrease in escaped fire density (number of fires per unit of forest area) observed in pixels with the highest FA.

The partial effect of the season showed a constant increase between mid-June and the end of August, and then decreased during autumn. Even if the magnitude of this effect was moderate, it indicated that the FWI was not fully consistent to rate escaped fire occurrence over the course of the fire season. For instance, for a same fire danger level, escaped fires were 1.6 times more numerous in late August than in mid-June. The spatial effect was much stronger in magnitude, indicating that very different fire activities were associated with the same FWI level at different locations. The last effect was the "post-2003" effect (Eq. 1), which was equal to 0.46 in posterior mean, meaning that the number of fires was roughly reduced by half after 2003, with a high statistical significance. The transition between the two periods will be further analyzed and discussed below. Among these different effects, the FWI and -in a lesser extent-the spatial model exhibited the strongest magnitudes.

The effects of FWI and FA on the size of escaped fires showed that the probability to exceed a given size generally increased with both explanatory variables. Moreover, these exceedance probabilities decreased when larger fire size were considered, as expected (Fig. 3b). For example, the probability to exceed 10 ha in a pixel with FA=30 % increased from 0.069 for a FWI of 7.3 to 0.325 for a FWI of 64. Also, the probability to exceed 500 ha could be larger than to exceed 100 ha, depending on the value of FWI, which illustrates that fire size is strongly impacted by this index. It should be noted, however, that the magnitude of these effects was generally much smaller in the size than in the occurrence model. Surprisingly, the exceedance probability decreased for fires larger than 2000 ha at higher FWI, with however little significance because of small sample issues. We further point out (see last subsection of 3.2) that highest FWI values were not equally distributed in space but were most often observed in areas less prone to large fires (e.g. coastal populated areas where suppression is high). The surprising decrease could hence be explained by a confounding spatial effect. The use of a spatial model -as in the occurrence model, see Fig. 9 for details-in the size model could have dampened the impact of missing spatial factors, but the dataset was too small to afford it for the size model. More surprising was the moderate decrease observed for FWI lower than 10. In the dataset, a non-negligible number of medium and large fires was recorded for very low FWI (<5), with 60 fires larger than 10 ha occurring with FWI lower than 5. For example, three large fires (936, 2369 and 4378 ha) occurred in 2003 when FWI was lower than 1, 2 and 4, respectively. A range of factors might explain this, including the development of burnt area of these fires on the days following ignition (for which the FWI at ignition day is a not relevant fire danger metric for size), by sub-daily scale events (e.g. afternoon thunderstorms following fire events inducing rapid change in FWI during the ignition day), by uncertainties in the weather reanalysis (SAFRAN), or simply, poor rating of actual fire danger conditions by the FWI.

Example simulated scenarios of fire activity with the "Full" fire activity model. As an illustration of the model practical utility, fire activity simulations aggregated for the whole zone were compared to historical observations (black dots) at daily (for escaped fires only) or weekly scales (escaped fires, fire number larger than 10, 50 and 100 ha, as well as burnt areas). Results are shown in Fig. 4 for the example year 2001, but similar figures for other years of the study period are available in Appendix S5. As expected, the uncertainty due to stochasticity (MU, in %) was larger for daily than for weekly escaped fires, and tended to increase with the fire size of interest, partly because the numbers to predict were smaller. Although not exactly equal to 95%, coverage probabilities (CP) were of the right order of magnitude, even when the width of the confidence intervals was fairly narrow (e.g. weekly escaped fire number, CP=70%). MAE were most often slightly larger than MU, but on the same order, which illustrated model skills, despite high stochasticity in the data.

Next, to study in detail the ability of our modeling framework to reproduce observed patterns of fire size distribution, simulated cumulative distributions of fire size were compared to observations for the same example year in Fig. 5. Although observations may deviate from expectations for the largest fires, most exceedance probabilities fell into the simulation-based 95 th confidence interval. Note that in this example, the simulated trend for 2001 was close to the mean simulation (orange dotted line, for year 1995-2018), but this was not the case in general (e.g. years 1997 or 2002, see Appendix S6 for details). In particular, annual trends in escaped fire number (Fig. 7a) were poorly predicted without the "Post-2003" effect, with a CP of only 4.2 % and a MAE of 40 %. The systematic overestimation of fire activity after 2003 with this model clearly indicates that the fire-weather relationship changed over time. The "Full" model performed much better than the intermediate one but remained still slightly biased and did not fully accounted for the evolution of the fire-climate relationship over years, or underestimated confidence intervals (CP of 58%, lower than 95%).

Model evaluation and importance of each explanatory variable

In particular, we note that the "Full" model underestimated escaped fire numbers in years 2004-2007, suggesting that the transition was probably less abrupt in observations than assumed with a single fixed "Post-2003" effect. Several factors could explain this strong evolution near 2003. This includes the evolutions in fire management after 2003 (modernization of the fire management law, increase in airborne armed-guard funding), as well as the increase in the precision of fire size recordings that has decreased the proportion of fire sizes above 1 ha in records, which was marked near 2003. In the end, we considered the "Full" model satisfactory, because tendencies for recent years -and especially those simulated after 2015 (validation sample)-were in good agreement with historical observations. Although moderate, the seasonal correction at the weekly scale enabled to match observations closely, with a CP of 87% (Fig. 7b), which was fairly close to 95 %. The trends observed with the "No seasonal" model showed that FWI explained a large part of the seasonal dynamics, but that the escaped fire number was overestimated until the end of July and underestimated in late August, which was consistent with the partial effect of the Week of Year shown in Fig. 3. When the spatial model component was not included ("No spatial"), the occurrence component did not simulate the spatial patterns of escaped fires well (Fig. 7c,right). In particular, hot spots were missed, whereas the model predicted too many fires in the Alps and in the Camargue region (coastal plain in the Rhône valley).

In general, burnt areas exhibited similar results (Fig. 8), albeit with notable differences. First, the observed burnt area in 2003 was strongly underestimated, and was way above the upper bounds of confidence intervals (Fig. 8a). This important point will be further analyzed in section 3.4. Second, the confidence interval widths, which expressed the amount of stochasticity, were much larger for burnt areas than for escaped fire numbers, with model uncertainties on the order of 35 % for both annual and seasonal predictions. Although such a high stochasticity was expected due to the flat tail of the fire size distribution, one could argue that the randomness was overestimated by the model. Two main clues indicated that it was not the case. Although no obvious bias was evident in temporal and spatial trends, CP were on the order of 75-80 %, which was not too far from the target (95 %), suggesting that stochasticity was on the right order of magnitude. Moreover, observed mean weekly burnt areas (averaged over 1995-2018) exhibited large fluctuations between consecutive weeks (between weeks 28 and 36, especially between the last week of July and the first week of August: 13.6 km 2 for week 30; 4.0 km 2 for week 31), whereas no obvious mechanisms except randomness could explain such a behavior (Fig. 8b). The magnitude of these fluctuations seems to be consistent with the confident intervals predicted by the model.

Expected temporal trends and spatial patterns in simulations looked like a smoothed expression of observations, in which stochasticity would have been removed. However, one should notice a few spurious differences. Simulations seemed to slightly overestimate burnt areas at the beginning and the end of the season, and to exhibit less burnt areas than observed in the Corsica and Var NUTS3 units, where most of the very large fires of the 2003 season occurred.

Interestingly, simulated burnt areas were only slightly better predicted when they were simulated from escaped fire observations (using the fire size component only, see Appendix S4: Fig. S1). This revealed that the limitation in burnt area simulations mostly arose from the fire size model and that the full occurrence model performed well.

Sensitivity of response functions to explanatory variable selection.

Beyond their limited ability to reproduce observations, intermediate models also revealed that the accuracy and shape of response functions could also be greatly impacted by modeling choices and the non-inclusion of some key effects. The response function of FWI to escaped fire number for the intermediate models were both limited in magnitude and exhibited spurious decreases, when compared to the "Full" model (Fig. 9). In particular, the "Linear-FWI" model (for which the log number of escaped fires has a linear response to FWI) was penalized by both low and high FWI, for which the actual response to FWI was respectively stronger and lower than exponential. For other intermediate models, the decrease observed above the FWI level of 65 could be explained by confounding effects between FWI and space. Indeed, highest FWI values mostly occurred in coastal populated areas where fire density was lower (at constant FWI). For the "Full" model, a small decrease was also observed at 65, but its magnitude was much smaller and was followed by slight increase above 70, thanks to the spatial model that considerably limited the impact of the confounding effect. Hence, the inclusion of the cofactor (FA) and spatio-temporal components in the occurrence model enabled to extract valuable information from FWI relative variations, than what is available in absolute values in this fire danger index.

Insights on an extreme year: the example of 2003

Here, we examine in detail why the model underestimated burnt area for the year 2003. Because most of the burnt area was caused by a small number of large fires, one might hypothesize that i) observed burnt area for 2003 was unlikely considering fire weather, but possible with a low probability ("bad luck"); ii) most fire observations were expected (i.e. consistent with the usual fire-weather relationship), but the occurrence of a few very large fires that disproportionately contributed to the total burnt area, leading to an underprediction of the total burnt area with the model. In this context, arson is sometimes mentioned (and an arsonist was indeed involved in a limited number of large fires in Var NUTS 3 division).

According to Fig. 8, the central tendency and the upper bound of the 95 th CI (0.975 quantile) for burnt areas predicted by the model were respectively of 213 and 357 km 2 , which was well below observations (610 km 2 ). Similarly, the quantile 0.999, corresponding to a millennial event according to the model was 469 km 2 , still below observations. We can then conclude that the model failed to simulate the likelihood of observed burnt area in 2003. We then analyzed time series corresponding to 2003 seasonal fire activities in Fig. 10 (similar to Fig. 4, but with 99.9 th confidence intervals added to show unlikely events). The predictions of escaped fires were consistent with observations at both the daily and weekly scales, which shows that fires did not escape more frequently than expected all along the season (without any exceptional week or day). However, more than six weeks were largely above the central tendency in numbers of fires larger than 100 ha and in burnt areas. Four weeks were above the 0.975 quantile and one was even above the 0.9995 quantile (week 35). This shows that 2003 was atypical during several weeks, with an early start. The analysis of the distribution of fire size (Fig. 11), showed that all fires larger than 10 ha occurred much more often than expected.

Hence, even if the presence of a few very large fire constituted most of the burnt area, most fires (larger than 10 ha and during most of the season) were exceptionally large with respect to observed FWI, which invalidates the "bad luck" or arson assumptions. The decrease in fire suppression efficiency with increasing escaped fire number can be invoked to explain the 2003 observations as well. However, it is important to acknowledge that it had apparently not affected the number of escaped fires, weakening this assumption, as their number was consistent with expectations.

Predictability of fire activity

We proposed a detailed analysis of the predictability of fire activities at various temporal and spatial aggregation scales to better understand the role of stochasticity in fire activity patterns.

In general, stochasticity in observations (fire counts and sizes) typically decreases when aggregating them to larger scales, such that the nature of both observations and model predictions becomes more deterministic. Slight biases of models arising at the voxel scale may then lead to stronger biases at aggregated scales.

Predictability and confidence intervals at weekly scale.

As shown in Fig. 4, aggregating fire activity over the whole area at the weekly scale led to reasonable confidence intervals and MAE for year 2001. More generally, the overall predictability of escaped fires at the weekly scale was satisfactory for the whole period , with a MAE of 32% and a CP of 84% (Appendix S3: Fig. S1A). However, the number of escaped fires out of confidence interval (16%) was slightly larger than expected (5%). The majority of these weeks consisted in false "high" fire numbers for small observed numbers, and false "low" fire numbers for high observed numbers. They were explained by stochasticity (fortunate and unfortunate events),

Bayesian model smoothness, and over-dispersion of observations with respect to aggregated

Poisson laws (caused by the decrease in fire suppression efficiency with fire activity for example). More explanations can be found in Appendix S3. Regarding weekly burnt areas, the central tendencies (Appendix S3: Fig. S1B) were positively correlated with observed burnt area for 1995-2018, but the MAE was high (76 %), mostly because of the width of the confidence intervals (MU=91 %). This illustrates the huge role of stochasticity in observed burnt areas at this scale. Most false "high" burnt areas occurred when observed occurrences were lower than expected, whereas false "low" burnt areas mostly occurred in 2003. More details are available in Appendix S3.

Predictability at other scales. The MAE and MU are presented in Fig. 12 for 42 spatio-temporal levels of aggregation, ranging from one pixel-day to the whole area during the four years of the validation sample. As expected, the MAE increased for smaller aggregations, and large fire numbers and burnt areas were more uncertain than escaped fire number (higher MU). Beyond this general trend, Fig. 12 allows us to identify which scales led to reasonable predictions (typically, those with MAE -and MU-lower than 30 %) and which were, on the contrary, subject to too much stochasticity for valuable predictions (typically, MAE and MU both above 60-70 %). In particular, the spatial aggregation drastically reduced the MAE, while sub-regional predictions remained quite poor, even for escaped fire number, when predictions were made at a shorter scale than the full season. This could be partly explained by the fact that spatial patterns of ignitions have slightly evolved over the 24 years of the study period, resulting in a small spatial bias of the model during recent years. This was suggested by the pattern followed by MU, which was slightly smoother regarding the effect of spatial aggregation and by the lower AUC of the occurrence model in recent years (Appendix S2: Table S1). In particular, less fire activity than expected was observed in North Corsica and more escaped fires in the western part of the basin during the recent years (Not shown). It should also be noted that the fire activity was fairly limited during the validation period, which increased the magnitude of relative errors, as model uncertainty becomes larger when central tendency decreases. It is hence expected that the predictability of a larger number of fire events would be more accurate (even if the model failed to predict 2003).

DISCUSSION

Predictability of fire activity. The wildfire phenomenon results from multiple interactions between biophysical and human factors acting at various spatial and temporal scales, which spawn individual events with a high degree of stochasticity. Firelihood is a probabilistic model of regional fire activity that simulates replications of individual fires with their size (on a daily basis and at 8km-pixel resolution) with a reasonable accuracy (for example see coverage probabilities and AUC values in Fig. 4 and 5, respectively), thereby offering the opportunity to study the predictability of fire activity, i.e. to determine to what extent observed patterns can be deterministically predicted. This analysis was carried out by comparing the model uncertainty and prediction errors (i.e., expected minus observed value) on data held out during the estimation of the model.

Our results showed that the stochasticity of fire activity was quite high, especially for large fire sizes, which exhibited large model uncertainties and equally large errors, unless aggregating fire data at larger temporal and/or spatial scales (Fig. 12). The number of fires larger than small thresholds (1 to 10 ha) were fairly deterministic for the whole study area on a weekly basis and could be well predicted for years following the training period with limited uncertainties and errors. However, the predictability of sub-regional fire activity decreased rapidly at finer spatial scales, with model errors increasing faster than model uncertainties (Fig. 12). Refined analyses are required to better understand the differences between spatial and temporal aggregations in terms of predictability, but this suggests that there are prospects for improving the model spatial predictions. Preliminary analysis suggested that time-variations in spatial effects would explain this decrease in model performance.

Overall, our results highlighted that stochasticity was a major component of observed fire activity, so that individual events, pixels, years or fire size class, etc. are often far from deterministic. Hence, even long-term (>20 years) fire datasets that are used either for ecological or operational purposes should be used with caution since they do not allow capturing the full variability in fire disturbance. This major point is illustrated for instance by the high degree of stochasticity observed in weekly burnt areas in Fig. 8b. Moreover, observed monthly and annual burnt areas, which are often used as benchmarks in a number of studies, namely for damage assessment exercises or for comparing efficiency of fire suppression strategies, were also shown to be highly random. We recommend to use more robust metrics such as number of escaped fires or fires larger than a given size threshold, instead (e.g. 100 ha in Southeastern France). ≥ Factors controlling fire activity. The FWI and the forest area were included as explanatory variables in the model to represent where and when weather conditions are conducive to fires, and how much area is available for fire spread, respectively. Weather conditions are major drivers of fire activity in Southeastern France and our results showed that FWI is an effective metric to rate fire danger (e.g. Fig. 3a and3b), as suggested by earlier studies based on FWI subcomponents in the same region [START_REF] Ruffault | Objective identification of multiple large fire climatologies: an application to a Mediterranean ecosystem[END_REF][START_REF] Fréjaville | Seasonal changes in the human alteration of fire regimes beyond the climate forcing[END_REF], Barbero et al. 2019), and in accordance with studies using the FWI in other southern Mediterranean countries (e.g. Padilla and Vega-Garcia 2011, Fernandes 2018, [START_REF] Dupuy | Climate change impact on future wildfire danger and activity in southern Europe: a review[END_REF]). However, our study also highlighted several limitations of the FWI. First and foremost, our results suggest an inconsistent rating of actual fire danger by the FWI for different fire weather types (Ruffault et al. 2020). Specifically, the relative sensitivity of the index to ranges of wind speed on the one hand, and of temperature and drought on the other hand, might not be properly scaled in southeastern France. Indeed, the FWI has an exponential response to wind, which might not be the case of fire activity for high wind values, as suggested by the saturation of the FWI effect in the fire occurrence (FWI > 60) and fire size (FWI > 40) models (Fig. 3), even if the saturation was partly explained by spatial bias (Fig. 9). The FWI could overestimate actual fire danger during these high wind days. By contrast, our results showed a systematic underestimation of the numbers of fires with size larger than 10 ha during the whole fire season during the 2003 heatwave (Fig. 10 and 11), suggesting that the explanatory variable for fire danger (FWI) could underestimate the actual fire danger during hot drought conditions. Another weakness of the FWI could be its time lag with respect to seasonal fire observations. Indeed, with the version of the probabilistic model without week correction (model "No seasonal" in Table 1), the fire season predicted by the model starts and ends two to three weeks earlier than the observations (Fig. 5b and 6b, blue line). Such a lag has already been reported for the KBDI in the Mediterranean [START_REF] Ganatsas | Development of an adapted empirical drought index to the Mediterranean conditions for use in forestry[END_REF]), but never for the FWI to our knowledge. This could be explained by the desiccation processes empirically modelled in the Drought Code (a subcomponent of the FWI reflecting monthly variations in fuel moisture content), which only poorly explains Live Fuel Moisture Content (Ruffault et al. 2018b), the latter being increasingly recognized as an important factor of fire behavior (e.g. [START_REF] Pimont | Why is the effect of live fuel moisture content on fire rate of spread underestimated in field experiments in shrublands[END_REF]. The seasonalityand potentially spatial patterns-of fire danger rating could be improved by the use of more mechanistic models for fuel moisture assessment. Live fuel moisture content dynamics depends on the processes of the water (soil water uptake, plant water storage and transpiration) and the carbon (photosynthesis, respiration, carbon allocation and canopy phenology) cycles [START_REF] Jolly | Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research[END_REF]. Key water processes during an extreme drought and heat wave can be modeled according to plant hydraulics, depending on plant traits (e.g. [START_REF] Martin-Stpaul | Modelling live fuel moisture content at leaf and canopy scale under extreme drought using a lumped plant hydraulic model[END_REF]. As far as the carbon cycle is concerned, the evolution of fuel moisture linked to the production of new shoots could be taken into account thanks to tree phenological models (e.g. [START_REF] Vitasse | Assessing the effects of climate change on the phenology of European temperate trees[END_REF].

Our results also confirmed that forest area is an important factor of spatial variations of fire activity in southeastern France (Ruffault andMouillot 2017, Ganteaume andBarbero 2019), with less escaped fires in pixels with low forest area (typically below 20 %) than those with moderate to high forest areas (typically higher than 40 %) (Fig. 3). A saturation effect or a slight decrease was however observed above 40 %. This pattern is the result of two opposite mechanisms explicitly accounted for in our model. First, fire numbers in each pixel are limited by the area in which ignition "points" can occur ("offset" effect). Second, fire density (i.e. number of fires per unit of forest area,

) decreased with increasing forest area because human 𝑓 𝐹𝐴 activities, which are responsible for most fire ignitions in human-dominated landscapes [START_REF] Syphard | HUMAN INFLUENCE ON CALIFORNIA FIRE REGIMES[END_REF], Hawbaker et al. 2013, Costafreda-Aumedes et al. 2018), are more limited in these gridcells. This confirms that fire activity can be ignition-limited when forest area is high but fuel-area-limited when forest area is low; the resulting effect of these two opposites being likely due to some specificities of the studied area and scale-dependent [START_REF] Parisien | Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005[END_REF].

Methodological insights to fire activity modelling. One of the critical aspects of this work was the determination of the appropriate voxel size. Typically, smaller voxels lead to issues related to both data reliability, as well as computational and memory costs, but larger voxels result in information loss, leading to a challenging trade-off. For example, we aimed at accounting for fine spatio-temporal variations in fire weather, but had to ignore hourly variations in FWI and spatial variations smaller than 8 km. Depending on the objective of a study and the specificity of each region, an appropriate voxel size should be adapted, but the approach of the present study is applicable with a sophisticated Bayesian method to fine scales at a reasonable cost. To bypass prohibitively high computation costs, one critical device in our study was the aggregation of escaped fire counts in classes of same predictor configurations. This aggregation led to a reduction of the dataset's effective size by a factor close to 10, allowing to avoid the resampling of non-fire observations, which can affect the accuracy of partial effect estimates (Woolford et al. 2011).

Our study also confirmed the importance of accounting for non-linearities in FWI and cofactors for fire activity modeling, in accordance with Woolford et al. (2011). We found the FWI effect was either underestimated or inconsistent when non-linearities/co-factors were ignored (Fig. 9). In particular, the use of the spatial model was critical to properly address fine scale data in which spatial autocorrelation is present. This spatial model was only involved in the fire occurrence component -not in the fire size, which simply included FWI and FA as explanatory variables-, which was sufficient to obtain a general agreement with burnt area observations. Although 1 ha fires (escaped fires) only represent a minor part of cumulated burnt areas, this finding highlights their importance in explaining patterns of burnt areas. Regarding the fire size component, an innovative aspect of the present work was the piecewise modelling framework for fire size distribution, which allowed to model its dependency to explanatory variables with flexible nonlinear response functions.

The ensemble approach allowed us to compute central tendencies, but also confidence intervals and return intervals of specific events. This approach is hence purely probabilistic; in particular, probabilistic statements about the uncertainty of specific components of the model (e.g., the response functions) are possible, and the goodness-of-fit of models can be formally compared through probabilistic information criteria. These ensemble simulations can be evaluated against observations thanks to coverage probabilities of the confidence intervals [START_REF] Joseph | Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima[END_REF].

Model limitations.

A first limitation of the present approach was the limited number of Land Use and Land Cover (LULC) predictors included in both models (Forest Area only). LULC predictors are increasingly used in statistical models of fire activity, especially when intended for long-term predictions [START_REF] Costafreda-Aumedes | Human-caused fire occurrence modelling in perspective: a review[END_REF]. They usually relate to the presence of human settlements through variables such as the presence of roads, urban land-uses and housing or population densities, or to that of human activities with variables encompassing the number of farms or that of touristic infrastructure. Other models also include variables related to landscape composition, such as the amount of shrubland (compared to high forest) or the proportion of coniferous trees, or to landscape structure, such as wildland-urban interfaces, wildland-agriculture interfaces or landscape fragmentation metrics. The influence of such variables on fire activity has been documented in France [START_REF] Ager | Wildfire risk estimation in the Mediterranean area: MEDITERRANEAN WILDFIRE RISK ESTIMATION[END_REF][START_REF] Opitz | Point-process based Bayesian modeling of spacetime structures of forest fire occurrences in Mediterranean France[END_REF][START_REF] Curt | Modelling the spatial patterns of ignition causes and fire regime features in southern France: implications for fire prevention policy[END_REF][START_REF] Ruffault | Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region[END_REF][START_REF] Ganteaume | What causes large fires in Southern France[END_REF] and other Mediterranean countries [START_REF] Moreira | Landscape -wildfire interactions in southern Europe: Implications for landscape management[END_REF][START_REF] Oliveira | Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest[END_REF][START_REF] Gallardo | Impacts of future land use/land cover on wildfire occurrence in the Madrid region (Spain)[END_REF][START_REF] Nunes | Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014)[END_REF][START_REF] Vilar | Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms[END_REF][START_REF] Papakosta | Probabilistic prediction of daily fire occurrence in the Mediterranean with readily available spatio-temporal data[END_REF][START_REF] Costafreda-Aumedes | Human-caused fire occurrence modelling in perspective: a review[END_REF].

Other, less frequently encountered variables with similar effects include levels of preparedness [START_REF] Podschwit | Patterns and trends in simultaneous wildfire activity in the United States from 1984 to 2015[END_REF] or of unemployment and economic welfare metrics [START_REF] Mancini | Ranking the importance of Wildfires' human drivers through a multi-model regression approach[END_REF][START_REF] González-Olabarria | Different Factors for Different Causes: Analysis of the Spatial Aggregations of Fire Ignitions in Catalonia (Spain)[END_REF].

In the present study, we did not explicitly account for those factors, but relied on the SPDE approach to model spatial variations in escaped fire density. We do not expect large improvement from the inclusion of LULC variables (which are almost static over a decade) in the occurrence model performance, but it would increase the genericity of the model, for a better understanding of effective factors, or for extrapolated predictions to other areas of Southern France where reliable calibration data are not available, for example. Larger benefits could be expected from the inclusion of LULC variables into our fire size model in which no spatial effect was included because of the small amount of data available. For example, large fires are expected to happen more often in shrubland-dominated areas and further away from cities and communication axes [START_REF] Moreira | Landscape -wildfire interactions in southern Europe: Implications for landscape management[END_REF][START_REF] Ager | Wildfire risk estimation in the Mediterranean area: MEDITERRANEAN WILDFIRE RISK ESTIMATION[END_REF][START_REF] Ganteaume | What causes large fires in Southern France[END_REF]. This perspective is all the more important as our results suggested that the main limitations of the "Full" model were rooted in this fire size component. Hence, going this direction appears promising and the inclusion of both LULC and socio-economic predictors is part of our future research agenda. Based on high-resolution rasterized datasets of standard LULC variables, we propose to construct derived predictor variables (e.g., proportions of LULC categories around the location of interest for different sizes of spatial buffers, or proportions of co-occurrence of several categories such as forest cover and buildings in such buffers to represent interfaces), which may have higher predictive power. Since this may lead to a relatively large number of potentially useful but also strongly correlated variables, preliminary analyses (prior to constructing the full stochastic model) may consist of variable selection algorithms, or of dimension reduction steps in the spirit of principal component analysis. The resulting set of variables, identified as possessing relevant predictive potential, is then included into the occurrence and size model components, either in a linear or nonlinear way as for predictor variables in the current model. This approach is expected to allow for attribution of wildfire occurrences to risk factors enclosed in LULC and socio-economic variables. Moreover, it presents a promising lead for improving predictions since LULC variables are available at higher spatial and temporal resolution than the random spatial effect accounting for bias terms in our current model.

One challenging aspect of fire activity modelling is related to the changes in the nature and strength of the fire-weather relationship not only over space but also over time, which can be due to various co-factors, including variations in LU-LC factors, in suppression means, detection efficiency [START_REF] Higuera | The Changing Strength and Nature of Fire-Climate Relationships in the Northern Rocky Mountains[END_REF][START_REF] Ruffault | How a new fire-suppression policy can abruptly reshape the fire-weather relationship[END_REF][START_REF] Xi | Statistical Models of Key Components of Wildfire Risk[END_REF]). In the present study, we used a sophisticated approach for spatial but static effects, and a crude approach to account for annual evolution of the relationship by simply modelling the abrupt shift in the relationship occurring between 2003 and 2005 (using a single global, not spatially resolved regression coefficient). We noticed that spatial patterns have slightly evolved over time resulting in a slight decrease in AUC after 2015. These elements might call for a reduction of the temporal period used in fire activity studies to increase fire-weather relationship consistency, and hence prediction performance. However, our study also highlights the need for long time series to include exceptional events such as 2003. The best approach would hence be to allow for temporal variation of response functions and spatial bias components in the models. In that regard, the use of a spatio-temporal log-Gaussian Cox process model for fire occurrence is particularly promising to account for time-varying spatial effects (Serra et al. 2014b;[START_REF] Opitz | Point-process based Bayesian modeling of spacetime structures of forest fire occurrences in Mediterranean France[END_REF]; but its implementation on a daily basis still poses considerable methodological challenges due to prohibitively high computational and numerical requirements.

Some studies proposed that fire numbers could be better represented with a negative binomial model than with a Poisson model [START_REF] Marchal | Exploiting Poisson additivity to predict fire frequency from maps of fire weather and land cover in boreal forests of Québec, Canada[END_REF][START_REF] Joseph | Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima[END_REF] as it accounts for the overdispersion of the data, i.e., the situation where variance in observed count values can be higher than the intrinsic variance of the estimated model. This situation can arise due to a too low space-time resolution of the model and explanatory variables (such that important variability within a pixel-time step unit is not properly taken into account), of missing explanatory variables, and of spatio-temporal effects unaccounted for in the model (e.g., timevarying spatial effect). In particular, we identified in section 3.4 that the decrease in suppression efficiency when escaped fire numbers increase could be involved. In this context, preliminary investigations (where we replaced the Poisson distribution with a negative binomial one) confirmed the presence of overdispersion with respect to the Poisson model, but simulations from a model fitted with a negative binomial response showed unrealistically high values for the number of escaped fires per voxels, with simulated counts being up to 10 times larger than the maximum of observed numbers. This implies that the model performance would deteriorate by capturing overdispersion at the pixel-day scale. Therefore, we used the Poisson-based model as the more realistic model for all our analyses, but confidence intervals based on the aggregated simulations can be too narrow in some cases (with CP lower than 95) due to an excess of "false" extremely high and low fire activity. A more robust, but highly challenging approach would be to identify the spatial and temporal scales where overdispersion arises, and to include some corresponding components in the model.

Model applications and perspectives. Beyond the developments and example cases covered in the present study, the Firelihood modeling framework offers a variety of promising research applications. Our modeling framework can be used to further investigate the effects of biophysical and human factors on fire dynamics and the variations of these effects over time and space. The model is also able to compute and map the return intervals of fire disturbance, which can cover longer time spans than observations, and be used to increase our understanding of the interactions between wildfire disturbance and vegetation dynamics [START_REF] Keeley | Fire in Mediterranean ecosystems-ecology, evolution and management[END_REF].

Another research avenue for Firelihood is to run the model for retrospective evaluation (e.g. attribution studies, [START_REF] Barbero | Attributing Increases in Fire Weather to Anthropogenic Climate Change Over France[END_REF] or the anticipation (e.g. Wotton et al. 2003;[START_REF] Fargeon | Effet du changement climatique sur l'évolution de l'aléa incendie de forêt en France métropolitaine au XXI e siècle[END_REF] of the effects of climate change on wildfire activity. Statistical models of fire activity may also help gain insight into the socio-economic impacts of changing fire regimes and drive insurance company strategic prospects. At local scales, they can be used to estimate and forecast suppression costs [START_REF] Preisler | Spatially explicit forecasts of large wildland fire probability and suppression costs for California[END_REF]. At larger scales, economic activity and climate mitigation in the forest sector may be affected by disturbances [START_REF] Lindner | Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems[END_REF][START_REF] Seidl | Increasing forest disturbances in Europe and their impact on carbon storage[END_REF], as well as smoke production [START_REF] Mckenzie | Smoke consequences of new wildfire regimes driven by climate change[END_REF]). Long-term forecasts often rely on deterministic simulators where the inclusion of risk is a methodological challenge [START_REF] Chudy | Incorporating risk in forest sector modeling -state of the art and promising paths for future research[END_REF][START_REF] Riviere | Evolving Integrated Models From Narrower Economic Tools: the Example of Forest Sector Models[END_REF]: Firelihood may provide a way to consider fire activity in such assessments, provided that they include relevant LULC factors for management.

Operational outcomes include short-term forecasts of fire activity across the landscape (Woolford et al. 2011). Because weather forecasts are now quite accurate for periods up to seven days, the present modelling approach could be used to anticipate the number of escaped fires and large fires (50-100ha) and to organize suppression means, since the predictability of fire activity was encouraging at weekly regional scales. It should however be acknowledged that uncertainties arising from weather predictions were not included in our study and might degrade the prediction performance, so that additional testing is required. Although this weekly regional scale is relevant for many operational purposes, finer resolutions are also of interest for managers. Our modeling framework offers opportunity for managers to select the temporal and spatial aggregation scales of interest. In the present study, we used the NUTS3 spatial scale, but other can be used, such as the forest massif, which is often used for detailed preparedness.

Our predictability study showed that the predictive performance remained high at finer temporal scales, so that daily predictions can be envisioned as a reasonable lead time. Regarding spatial predictions however, we found that the predictive performance of the model tended to decrease faster than expected when the aggregation level was finer than the region (on the evaluation dataset, period 2015-2018, Fig. 12). Since mapping daily expected burnt areas (e.g. at a 8km-resolution) or predicting fire numbers inside forest massifs are of major interest for operational services, we think incorporating temporal trends in spatial effects (i.e. time-varying effects) would be the most promising option to improve operational applications of our model.

Another promising application of such probabilistic approaches is to help identify changes in fire-weather relationship over time, related to operational aspects. This includes detection efficiency variation, changes of local regulations and public awareness strategies for risk mitigation, as well as the evolution in strategies, tools and techniques for fire suppression [START_REF] Xi | Statistical Models of Key Components of Wildfire Risk[END_REF].

Finally, the probabilistic approach of Firelihood can be applied to many other areas, provided that i) fire data are available; ii) the factors controlling fire activity are identified and measurable; iii) voxel sizes are adjusted following guidelines mentioned above. In particular, this methodology can be used to model occurrence in mixed models, which combine a probabilistic approach for occurrence with a mechanistic approach for fire size [START_REF] Parisien | Considerations for modeling burn probability across landscapes with steep environmental gradients: an example from the Columbia Mountains, Canada[END_REF][START_REF] Finney | A simulation of probabilistic wildfire risk components for the continental United States[END_REF]. The mechanistic approach for fire size is based on the spread of fire contours on a landscape and may better account for fuel load and continuity, topography and land use and cover. However, such mixed approaches could be refined by building on the strengths of the occurrence model presented here (e.g. SPDE approach for spatial variations) and on their mechanistic model for fire spread.

Conclusion

This study proposed a comprehensive probabilistic framework, Firelihood, for modeling fire activity in Southeastern France. The hierarchically-structured Bayesian model used a spacetime Poisson model for fire occurrence and a piecewise-estimated distribution for fire size, which enables the simulation of likely spatial-temporal explicit fire activities. The Bayesian approach allows an accurate estimation of random components in these sophisticated hierarchical models, which can be parametrized in a convenient and interpretable setting thanks to INLA. This ensemble-based methodology is innovative and applicable to spatially-correlated fire observations in other regions or landscapes. In Southeastern France, the model performance was very encouraging, especially for escaped fire numbers, and allowed to better understand the role of stochasticity in fire activity. Further effort is needed to elucidate the fire outbreak that occurred during the 2003 heat wave as well as the limitations of the FWI in fire size estimates during such conditions. We identified and discussed a few methodological challenges, including the time variations in spatial effects or the proper integration of overdispersion in data. We also suggest a variety of ecological, operational and economic applications of Firelihood.
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  structure and provides accurate and (relatively) fast inference by means of analytical approximations of the posterior model, in contrast to standard, simulation-based Bayesian approaches (Markov-Chain Monte-Carlo). It allows non-linear responses to explanatory variables to be estimated through flexible Gaussian prior distributions for spline functions in combination with spatial models. Model components were trained with data from 1995-2014 (training sample), the years 2015-2018 being withheld for the evaluation of the predictive performance (validation sample). The dataset for fire occurrence contained fire counts ( 1 ha) for approximately 4.44 million pixels-≥ days, whereas the dataset of observed fire sizes contained 7193 fires ( 1 ha). ≥

  probabilities were better predicted when including more explanatory variables and/or nonlinear responses. AUC values range between 0 and 1, with 1 indicating perfect prediction of the binary presence/absence information, whereas 0.5 indicates a random prediction. AUCs were computed for both the1995-2014 (training) and 2015-2018 (validation) periods. Second, we evaluated model performance by comparing simulations with historical observations aggregated on various temporal and spatial scales[START_REF] Xi | Statistical Models of Key Components of Wildfire Risk[END_REF]). These evaluations were carried out from 1000 replications of fire occurrence per voxel, which were sampled as a Poisson process according to draws from the posterior predictive distributions of the occurrence intensity. Note that INLA (in contrast to Markov Chain MonteCarlo, MCMC) does not provide simulations of the posterior model's component during the estimation process, but sampling from the fitted model is nevertheless straightforward (e.g.[START_REF] Fuglstad | Environmental mapping using Bayesian spatial modelling (INLA/SPDE): A reply to Huang et al[END_REF]. A fire size was then randomly assigned to each simulated escaped fire based on the size submodels (Fig.2) parametrized with posterior mean parameters. This approach allowed considering the inherent variability of the stochastic processes at stake. This variability was used to draw pointwise envelopes showing the spread between 5 th and 95 th percentiles of fire activity, and to compute central tendencies for the different spatio-temporal aggregations of simulated fire activity.The overall goodness-of-fit between central tendencies and observations were measured with mean absolute error (MAE, in %). These errors were examined with respect to model uncertainty (MU, in %), which quantified the stochasticity of the corresponding trend, expressed as the variability of simulated quantities over the 1000 simulations. MU was computed as the mean absolute deviation of the simulated activities to rate the model spread, expressed in % of the observed value. The last metric used to evaluate the model was the coverage probability (CP) of the 95% confidence interval, which measured how often observations fall within the estimated confidence interval. The CP of a perfect model is exactly equal to 95 %. A coverage significantly different from 95% means that the model is either biased or exhibits an incorrect variability.

  Variable selection and model fits. Model information criteria (DIC, WAIC), and AUCs for years 1995-2014 (training sample) and 2015-2018 (validation sample), are systematically reported in Tables of Appendix S2. A selection of these AUCs is presented in Fig. 6. The performance of the "full" occurrence component was high (>0.8) on both training and validation subsets, and better than the simple FWI-linear model. Regarding the size component model, the predictability of medium fire sizes (50 to 500 ha) was highest, with AUC > 0.75. AUCs were in general on the same order for the validation (2015-2018) and the training sample (1995-2014), showing the encouraging performance of the model beyond the training sample.Evaluation of central tendencies and spatial patterns.In order to more comprehensively evaluate the model, fire activity simulations were compared to the historical observations for spatially aggregated annual and seasonal data as well as temporally aggregated data at the pixel level in Fig.7(escaped fire numbers) andFig. 8 (burnt areas). Orange lines and left maps ("Full" model) compared generally well to observations, contrary to blue lines and right maps, which correspond to different intermediate models, with less explanatory variables. This demonstrates the absence of major bias of the "Full" model (metrics in orange), as well as the limitations of intermediate models (metrics in blue).

Figure legends FIG. 1 .
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  Table 2) was: log 𝑁 𝑖 ~ log (𝐹𝐴) +𝛽(𝑌𝐸𝐴𝑅 𝑖 > 2003) + 𝑓 𝐹𝑊𝐼 (𝐹𝑊𝐼 𝑖 ) + 𝑓 𝐹𝐴 (𝐹𝐴 𝑖 ) + 𝑓 𝑋,𝑌 (𝑋 𝑖 ,𝑌 𝑖 ) + 𝑓 𝑊𝐸𝐸𝐾

	incorporate in the model the temporal evolution of the fire-weather relationship. In this study,
	we decided to ignore other annual effects in order to develop a model applicable to predictions
	and projections. Contrary to other studies (e.g. Opitz et al. 2020), we did not seek to model time
	variation in spatial patterns.
	(𝑊𝐸𝐸𝐾 𝑖 )	(1)
	where	𝑙𝑜𝑔(𝐹𝐴)	was a deterministic offset, the fixed effect (with a different value before and 𝛽
	after 2003), and the f-terms captured nonlinear influences of the covariates FWI and FA, as
	well as spatial and temporal effects.
	Because escaped fires cannot occur in non-forested area (urban areas, crops, etc.), the area of
	each pixel in which fire "points" could happen was not spatially constant. This variability was
	incorporated in the Poisson model with an offset equal to forest area (FA). The model allowed
	non-linear effects of FWI, but also of FA -in addition to the offset -as a land use factor.
	Indeed, it is expected that the probability to get a fire per area of forest decreased for high forest
	area, since interface, road and urban densities decreased. Spatial effects were represented using
	the Stochastic Partial Differential Equation approach (SPDE, Lindgren et al. 2011), which
	estimates the spatial model for residuals, through continuous spatial random effects at high
	resolution. Temporal effects were incorporated as a non-linear weekly seasonal factor and a
	fixed effect "post 2003". This "post 2003" effect should not be interpreted as an actual shift in
	the relationship that occurred exactly in 2003, but more as a convenient and simple manner to

Table 1 .

 1 List of probabilistic fire activity models (occurrence+size)

	Probabilistic model name	Occurrence model	Size model
	"Linear FWI"	Linear FWI	Linear FWI
	"FWI only"	FWI	FWI
	"No Seasonal"	FWI+2003+FA	FWI+FA
	"No Spatial"	FWI+2003+FA+WEEK	FWI+FA
	"Full"	FWI+2003+FA+WEEK+SPATIAL	FWI+FA

Table 2 .

 2 Fire occurrence component (number of escaped fires, larger than 1 ha)

	Occurrence model component	Effects
	Null	No explanatory variable
	Linear FWI	The predictor of fire counts in the Poisson model is
		a linear function of FWI
	FWI	The predictor of fire counts in the Poisson model is
		a non-linear function of FWI
	FWI+2003	As above + include also a fixed effect to account for
		post-2003 difference
	FWI+2003+FA	As above + include the offset associated with FA and
		the non-linear effect of FA
	FWI+2003+FA+WEEK	As above + include a weekly-based seasonal
		correction for occurrence
	FWI+2003+FA+WEEK+SPATIAL Full occurrence model described in section 2.1. As
		above + spatial model

Table 3 .

 3 Fire size component (size of escaped fires)

	Size model component	Effects
	Null	No explanatory variable
	Linear FWI	The predictor of fire-size-distribution parameters is a linear
		function of FWI
	FWI	The predictor of fire-size-distribution parameters is a non-
		linear function of FWI
	FWI+FA	As above + include a non-linear effect of FA 1
	1 Except for the GPD which is a linear function of FWI only

Ecological Applications
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