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Abstract: This study reports on the optimization of the operating conditions using response surface 
methodology and a comparative study of three promising technologies of cell disruption (bead mill-
ing, microwaves and ultrasound) to increase the lipid extraction from Nannochloropsis oceanica, Nan-
nochloropsis gaditana and Tetraselmis suecica. Central composite designs were used for the optimiza-
tion of ultrasound and microwave processes. The performance of the cell disruption processes in 
breaking down microalgae cells is dependent on the strain of microalgae. Microwaves (91 °C for 25 
min) were the most efficient for the recovery of lipids from N. oceanica, reaching a lipid content of 
49.0% dry weight. For N. gaditana, ultrasound process (80% of amplitude for 30 min) was the most 
efficient in terms of lipid recovery (21.7% dry weight). The two aforementioned processes are inef-
fective in disturbing T. suecica whatever the operating conditions used. Only the bead milling pro-
cess at low flow feed rate with 0.4 mm zirconia beads made it possible to extract 12.6% dry weight 
from T. suecica. The fatty acid profiles of N. oceanica and T. suecica are affected by the cell disruption 
process applied. The calculation of specific energy consumption has shown that this criterion should 
not be neglected. The choice of the most suitable cell disruption process can be defined according 
to numerous parameters such as the microalgae studied, the total lipid extracted, the fatty acids 
sought, or the energy consumption. 

Keywords: microalgae; cell disruption processes; lipids; fatty acid profile; specific energy consump-
tion 
 

1. Introduction 
Microalgae are currently attracting a lot of interest as, in addition to their renewable 

nature, they produce valuable molecules. [1,2]. In particular, lipids from microalgae have 
gained interest all over the world not only as potential substitutes for petroleum-based 
fuels, but also as building blocks in the chemical industry or edible oils for the food and 
health market [3]. Species such as Botryococcus braunii, Schizochytrium sp., Parachlorella kess-
leri, and Nannochloropsis sp. produce amounts of lipids between 25 and 75%, 50 and 77%, 
41 and 65%, and 31 and 68% DW, respectively [4–6]. To extract these lipids, a cell disrup-
tion process is necessary after cell harvesting. Indeed, lipids are either located in cell struc-
tures or linked to cell membranes [7,8] and need to be released.  

For several decades of research on microalgae, a certain number of processes of cell 
disruption have been tested and validated. These processes are usually classified accord-
ing to their nature (i.e., mechanical or non-mechanical). Mechanical methods include bead 
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milling, high speed or high-pressure homogenization, ultrasound, microwaves and 
pulsed electric fields. Non-mechanical methods consist of the use of chemical or enzy-
matic hydrolysis to break the cell membranes or increase their permeability [9–11]. 
Among these cell disruption processes, this paper focuses on the three most commonly 
used: bead milling, ultrasound and microwaves processes. 

The optimization of the operating conditions of the bead milling on cell disruption 
and the release of lipids, proteins and carbohydrates from different microalgae has been 
studied by different authors [6,7,12]. The grinding process is achieved through mechanical 
compaction and shear stress of the solid surface of the beads with microalgae cells [13]. 
The efficiency of cell disruption by bead milling depends on many parameters, including 
the geometry of the chamber and the agitator, the flow rate of the suspension, the biomass 
concentration, the agitator speed, the density and diameter of beads, the bead filling ratio, 
and the cell wall composition of microalgae strains [7]. The results reported in the litera-
ture may be contradictory due to the interactions between the operating conditions [13].  

Ultrasound has been widely applied for protein extraction, chemical synthesis, emul-
sion production and cell disruption [9,11]. The potential of ultrasound to assist lipid ex-
traction from microalgae has already been demonstrated in various studies [14]. Cell dis-
ruption by this process takes place via two mechanisms, namely cavitation and mechani-
cal-acoustic effects, induced by the ultrasound [14]. The efficiency of the ultrasound de-
pends also on various factors such as the power, the temperature, the viscosity, the sus-
pension concentration, the cycle number, the process time, and the microalgae species 
[9,11]. 

Microwave-assisted extraction offers an alternative green method for cell disruption 
and extraction of compounds from microalgae. It has been evaluated for industrial-scale 
applications, revealing effective cell wall disruption with relatively low energy input, a 
rapid treatment time and the avoidance of the utilization of hazardous substances [15]. 
Microwaves interact selectively with polar molecules and induce intracellular heating. 
This heat and pressure located in the cell walls lead to cell disruption allowing the extrac-
tion of intracellular compounds [14]. As the other cell disruption processes mentioned 
above, the efficiency of the microwave process for lipid recovery also depends on several 
factors, namely residence time, temperature, agitation, suspension concentration, micro-
algae type, and microwave power [9]. 

To the best of our knowledge, only a few studies have compared the effects of cell 
disruption processes on the recovery of lipids from microalgae [10,16–19]. In addition, 
these studies have mainly focused on a single operating condition for each cell disruption 
process, without considering the possible interactions of the different parameters that af-
fect the efficacy of the cell disruption process. Thus, the objective of this paper is to con-
duct an optimization and a comparative study of three promising mechanical cell disrup-
tion processes—the bead milling, the ultrasound and microwave processes—to break or 
weaken the integrity of the cell walls and to increase lipid recovery. To highlight the im-
portance of optimizing the disruption processes for each species of microalgae, three types 
of microalgae have been studied.  

The choice of species was made to compare two species of the same genus and two 
genus with different structural characteristics. Thus, this study has been conducted on 
Nannochloropsis oceanica, Nannochloropsis gaditana and Tetraselmis suecica, three species se-
lected for their high lipid content and their differences in the composition of their mem-
branes. Microalgae of the genus Nannochloropsis [Eustigmatophyceae] have been widely 
studied in the literature for biofuel applications [14]. Additionally, Nannochloropsis species 
have been used in feed for aquaculture and for the recovery of valuable pigments and 
nutritive oils [20]. These microalgae cells are spherical and small in size, ranging from 1 
to 4 µm. The structure of their cell walls is composed of an inner layer of cellulose and an 
outer layer of algenane [21]. The marine microalga Tetraselmis [Chloroendrophyceae] is 
one of the few species to be used for the production of food supplements, due to its high 
intracellular content of proteins, lipids and polysaccharides [22,23]. The lipid content can 
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reach up to 23% (% w/wDW) [15]. Tetraselmis cells are oval and range in size from 7 to 25 
µm [21]. The cell walls of these microalgae consist of complex polysaccharides composed 
of galactose, xylose, rhamnose, mannose, and arabinose [12].  

Herein, we aimed at determining the most suitable disruption process for lipid ex-
traction among the three processes studied (bead milling, microwaves and ultrasound) 
for each microalga (N. oceanica, N. gaditana and T. suecica). For this, initially, the operating 
conditions of the three processes were optimized to obtain the highest lipid recovery. The 
results of the optimization according to the disruption process and the species of microal-
gae were compared. Secondly, for each optimum of the three processes studied, the lipid 
profile of the fraction extracted, and the energy consumption induced by the process were 
determined.  

2. Materials and Methods 
2.1. Preparation of Microalgae Suspensions  

The frozen biomass of N. oceanica (average cell size of 2.1 μm, 20%DW) and T. suecica 
(average cell size of 8.2 μm, 25%DW) were obtained from AlgoSolis R&D Facility (Saint-
Nazaire, France). The dried biomass of N. gaditana (average cell sizes of 3.2 μm, 95%DW) 
was obtained from Necton, S.A. (Algarve, Portugal). The composition of the microalgae 
species, according to the supplier, is shown in Table 1.  

Table 1. Composition of microalgae species. 

Microalgae 
Species 

Composition (%DW) 
Lipids Proteins Carbohydrates Ashes Fibers 

N. gaditana ≤16 ≤37 * NR ≥17 NR 
N. oceanica 46 26 16 12 NR 
T. suecica 15 21 55 9 NR 

* NR = Not reported. 

To verify the integrity of the microalgae cells after the stabilization process (freezing, 
drying), a microscope observation was carried out and the size of the cells of each micro-
algae strain was measured with the IMAGEJ program.  

According to the literature and in order not to encounter technical problems with the 
recirculation pump of the bead milling process, the concentration of 10 g.kg−1 (DW/w) for 
suspensions of microalgae were chosen. For all the experiments, the necessary quantities 
of frozen biomass and dried biomass were weighed and suspended in distilled water (2 
L) to obtain a suspension of microalgae at 10 g.kg−1 (DW/w). All the microalgae suspen-
sions were kept at 5 °C for 24 h before use to obtain complete hydration of the cells. The 
dry weight was determined (Section 2.4.1) for each suspension of microalgae to verify that 
the concentration of 10 g.kg−1 (DW/w) is reached.  

2.2. Cell Disruption Processes 
2.2.1. Disruption Process by Bead Milling 

Bead mill experiments were performed with a Dyno®-Mill Multi Lab of WAB (Willy 
A Bachofen AG, Muttenz, Switzerland). A volume of 2 L of microalgae suspension at 10 
g.kg−1 (%DW/w) was pumped from an agitated feed tank, at a given feed rate, to a 600 mL 
horizontal grinding chamber VGC. A constant filling volume ϕGM of 80%v.v−1 with grind-
ing beads is ensured. Ceramic beads made of zirconia (specific density ρb of 3.7 g.cm−3) 
were used with different diameters. The rotational speed (u) of the mill and the product 
temperature were kept constant at 10 m.s−1 and 15 °C. Three or four grinding cycles were 
carried out in pendulum mode [24]. Samples were taken from the chamber after each 
grinding cycle.  

The operating conditions for each trial of bead milling is summarized in Table 2. The 
flow rate was assessed in a first step for N. gaditana. According to the first results obtained 
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from this strain, the flow rate was fixed at 150 mL.min−1 for the second trial of experiments 
whit N. oceanica and T. suecica, for which the bead diameter was studied.  

Table 2. Bead milling conditions for each experiment. 

Test 
Microalgae 

Species 

Flow Rate 
(FR) 

(mL.min−1) 

ZrO2 Bead Diameter 
(dGm, mm) 

Grinding 
Cycles 

1 N. gaditana HFR: 150 0.35–0.45 (0.40) 4 
2 LFR: 50 0.35–0.45 (0.40) 4 
3 

N. oceanica 
HFR:150 0.35–0.45 (0.40) 3 

4 HFR: 150 1.1–1.4 (1.25) 3 
5 T. suecica HFR: 150 0.35–0.45 (0.40) 3 
6 HFR: 150 1.1–-1.4 (1.25) 3 

HFR: High Flow Rate; LFR: Low Flow Rate; dGm (bead diameter). 

The operating conditions of bead milling have already been studied in the literature 
on various species of microalgae [7,12,13,25,26]. However, the effects of these conditions 
depend on the type of microalgae studied. For example, the flow rate has been reported 
to increase the kinetic effect of cell disruption for yeast but led to a decrease for Chlorella 
vulgaris [25] and P. cruentum [13]. To our knowledge, no study has focused on the impact 
of flow rate (indirectly indicating residence time) and bead size on lipid release for the 
microalgae strains used in this study. Thus, the two operating conditions chosen for opti-
mizing the bead milling are the flow rate of the microalgae suspension and the bead size 
used in the grinder. 

In a first part, two flow rates were studied: A High Flow Rate HFR (150 mL.min−1) 
and a Low Flow Rate LFR (50 mL.min−1). These values were chosen to represent a signifi-
cant difference between the two feed flow rates. The LFR corresponds to the minimum 
value which can be obtained with the pump and the HFR corresponds to the maximal 
value of feed flow rate, that we can set [13]. In a second part, the effect of bead size was 
determined. The minimum and maximum average diameters for zirconia beads were cho-
sen: dGm = 0.40 mm and dGm = 1.25 mm.  

2.2.2. Disruption Process by Microwaves 
The microwave treatment was carried out with the Monowave 400 reactor (Anton 

Paar, Graz, Austria). A volume of 20 mL of microalgae suspension at 10 g.kg−1 (%DW/w) 
was placed in a 30 mL glass tube. Samples, continuously mixed at 600 rpm, were subjected 
to a percentage of the maximum power of 100 W. This percentage is set by the system in 
order to reach the desired temperature. The microwave power can vary throughout the 
treatment time to keep the set point temperature constant. Once the microwave process 
was completed, the samples were cooled with compressed air down to 40 °C and removed 
from the microwave. The effect of two independent parameters (the sample temperature 
and the residence time) on the total lipids extracted (TLE) was studied during the disrup-
tion process by microwaves. 

The efficiency of microwaves is primarily affected by the temperature and time [14]. 
According to the literature, temperature below 50 °C and residence time below 5 min are 
inefficient to disrupt microalgae cells [16,17,27]. Moreover, temperature higher than 100 
°C and residence time superior to 25 minutes leads to the formation of free radicals, chem-
ical conversion or high value lipids and high value pigments degradation can occur [9,21]. 
Thus, the experimental field has been limited to variations between 50 and 100 °C for the 
temperature of the sample and 5 and 25 minutes for the residence time. 
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2.2.3. Disruption Process by Ultrasound 
The treatment by ultrasound was carried out with the ultrasonic processor Vibra-

CellTM 75,186 model CV18 (SONICS®, Connecticut, USA), at 130 W and 20 kHz. A 6 mm 
diameter probe with an amplitude of 123 microns (100%) was used. 25 mL of microalgae 
suspension 10 g.kg−1 (%DW/w) were placed in a 30 mL glass flask, which was immersed 
in an ice water bath for temperature control (5 °C). The probe was immersed in the sus-
pension at a distance of 1.5 cm from the bottom of the glass flask. The treatment time is 
composed of several cycles consisting of 30 s ON and 5 s OFF. This prevents heating of 
the probe [17]. 

The effect of two independent parameters (amplitude and treatment time) on the TLE 
was studied during the disruption process by ultrasound. The range of variation of these 
factors was established based on preliminary experiments and information available in 
the literature [21]. An amplitude between 50 and 80% and a treatment time between 10 
min and 30 min were chosen. Values of 100% of amplitude were not considered to avoid 
excessive heat and the formation of free radicals. The latter causing oxidation strongly 
affects lipid quality.  

2.3. Design of Experiments  
Modde v.10.1 software (Umetrics AB, Sweden) was used to generate experimental 

designs to maximize the TLE of the microalgae suspensions. The analysis of experimental 
data was carried out by Response Surface Methodology allowing the choice of optimal 
operating conditions of the microwave and ultrasound processes. Table 3 presents the in-
dependent variables (Xi) and their levels in terms of coded and uncoded values. The 
ranges of variation of the variables were fixed considering specific constraints of each dis-
ruption process. 

Table 3. Coded and uncoded values used in each experimental design for microwave and ultra-
sound processes. 

Process Variables 
Coded 
Factor 

Low 
Value 

(−1) 

Center 
Value 

(0) 

High 
Value 

(+1) 

Microwave Temperature (°C) Temp 50 75 100 
Time (min) t 5 15 25 

Ultrasound Amplitude (%) Amp 50 65 80 
Time (min) t 10 20 30 

A central composite face centered design (CCF) was used to study the effect of oper-
ating conditions on TLE. Two independent variables at three levels were studied. A total 
of 8 experiments were used to cover the design space (Supplementary data. Tables S1, S4, 
S7, S9, S12, S15). The replicate error was obtained by three replicates at the center point 
values. 

A second order polynomial equation was used for all the models in this study (Equa-
tion (1)). 𝑌 =  𝛼଴ + 𝛼ଵ𝑋ଵ + 𝛼ଶ𝑋ଶ + 𝛼ଷ𝑋ଵଶ + 𝛼ସ𝑋ଶଶ +  𝛼ହ𝑋ଵ𝑋ଶ +  𝜀, (1)

where Y represents the TLE, X1 and X2 are the variables studied 𝜶i the coefficients for the 
constant, the linear, the quadratic and the interaction terms. 𝜀 the residues between the 
predicted and observed values. 

The models obtained are validated with new experiments carried out for the optimal 
operating conditions found. The microwave process was implemented at 100 °C for 5 min 
for N. gaditana and at 91 °C for 25 min, for N. oceanica. For the ultrasound process, an 
amplitude of 80% and a process time of 30 min were used for the suspensions of N. 



Processes 2021, 9, 369 6 of 20 
 

 

gaditana and N. oceanica. The experimental tests were carried out in triplicate. No model 
validation was performed for the microalgae T. suecica. 

2.4. Analytical Methods  
2.4.1. Dry Weight 

Dry weight (DW) was determined by gravimetric method based on the weight loss 
of microalgae suspensions by evaporation of the water. Samples aliquots of 5 mL were 
placed in a pre-weight aluminum cup and put in a convection oven at 100 °C and at at-
mospheric pressure, for at least 18 h. Samples were removed, cooled to room temperature 
in a desiccator, and weighed until their mass were constant (differences less than 0.5 mg). 

2.4.2. Degree of Cell Disruption 
The percentage of disrupted cells was determined by counting 10 squares of a Malas-

sez counting cell. The cells of the control and treated solutions were fixed with a Lugol 
iodine solution. The percentage of disrupted cells was calculated as described in Equation 
(2):  𝐷𝑒𝑠 (%) = ൬1 − 𝐶௧௫𝐶௧଴൰ × 100 (2)

with Ctx the number of intact cells per ml remaining after x cycles of bead milling, and Cto 
the number of intact cells per ml before disruption (control solution).  

2.4.3. Total Lipids Extracted (TLE) 
The total lipids extracted were measured from samples before and after disruption 

using a CHCl3: MeOH solvent extraction as second step [28]. 5 mL of microalgae solution 
at 10 g.kg−1 were mixed with 4 mL of a mixture of CHCl3: MeOH (2:1, v/v) in a conic glass. 
Samples were maintained for 2 h at room temperature and under constant agitation at 
1000 rpm using a magnetic stirrer. The phases were separated by centrifugation at 3000 g 
for 15 min at 4 °C. The bottom lipophilic layer was removed and transferred into another 
pre-weighed conic glass tube. Two more consecutive extractions were done with 4 mL of 
CHCl3: MeOH mixture (2:1, v/v) for 1 h. All organic phases were mixed and 10 μL of the 
antioxidant dibutylhydroxytoluene (BHT) at 10 g.L−1 were added to avoid lipid oxidation 
during storage until the determination of the fatty acid profile. The organic phase was 
evaporated under nitrogen flux in a water bath at 40 °C for 1 h in a 12-position N-EVAP 
Nitrogen Evaporator. The TLE from each microalgae suspension (control and treated) was 
calculated as defined in Equation (3): 𝑇𝐿𝐸 (%𝐷𝑊) = ቆ 𝑤௥௘௦௜ௗ௨௘𝐷𝑊௠௜௖௥௢௔௟௚௔௘ ௦௨௦௣௘௡௦௜௢௡ቇ × 100 (3)

with wresidue the mass of the recovered residue after evaporation, and DWmicroalgae suspension 
the dry mass of the microalgae suspension.  

The residue was resuspended in 1 mL of CHCl3: MeOH mixture (2:1, v/v) and the 
lipid extract was stored at -20 °C for other analysis.  

2.4.4. Determination of the Fatty Acid Profile 
The determination of the fatty acid profile (FAP) was performed in two steps: firstly, 

an alkali-based transmethylation was realized to transform lipids into fatty acid methyl 
esters (FAMEs). Secondly, the identification and quantification of FAMEs was performed 
by GC-FID analysis.  
• Alkali-based transmethylation  

A sample of 1 mg from the extracted lipid was used for the transmethylation proce-
dure with MeOH-BF3 (14%w/w) mixture. Boron trifluoride (BF3) catalyzes the transmeth-
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ylation reaction and lipids are transformed to fatty acid methyl esters (FAMEs). The sam-
ple was put in a pyrex tube with 1.8 mL of the MeOH-BF3 mixture. The pyrex tube was 
placed in a water bath at 95 °C for 20 min. After reaction, samples were cooled at room 
temperature for 20 min. 1 mL of heptane was added at FAMEs and the solution was rinsed 
three times with 1.5 mL of saturated water in heptane. The aqueous phase was separated 
and the heptane phase containing FAMEs was recovered and diluted with a solution of 
the internal standard C9:0 methyl ester. A final concentration of 100 µg/mL of C9:0 methyl 
ester was obtained for each sample. FAMEs samples were stocked at -20 °C until GC-FID 
analysis.   
• GC-FID analysis  

Fatty acid methyl esters were separated and identified using a Shimadzu® GC-2010 
Plus Gas Chromatograph (GC) coupled with a flame ionization detector (FID), based on 
the AOAC method 996.06. A RT-2560 fused silica column (100 m × 0.25 mm × 0.20 µm) 
was used to separate the FAMEs. The sample volume injected was 1 µL. Helium (He) was 
used as carrier gas at 1.74 mL.min−1. The initial and final column temperatures were, re-
spectively, 100 and 240 °C (with a heating rate of 3 °C/min), while the temperature of 
sampler and detector were 250 and 28 °C, respectively. A mix of 3 gas was used in the 
detector: He at 30 mL.min−1, hydrogen at 40 mL.min−1 and air at 400 mL.min−1. The total 
analysis time for each sample was 65 min.  

Individual fatty acid methyl esters were identified by comparing their retention time 
with those of the standard FAME Mix (C4-C24) (Supelco, Sigma Saint Quentin Fallavier, 
France). The quantification was done using GC solution® software and a comparison be-
tween the respective peak areas and the one obtained for the internal standard C9:0 me-
thyl ester. Results were expressed as percentage of each fatty acid (as FAME) to the total 
fatty acids identified (TFA) (g.100g−1 TFA). 

2.5. Determination of the Specific Energy Consumption for Each Disruption Process 
The specific energy consumption (SEC) (kWh/g lipids) was calculated for each mi-

croalga and for the optimum of each disruption process. This parameter translates the 
total electricity requirements as a function of the lipids extracted. A comparison of the 
SEC was carried out in order to determine the least energy-consuming process among 
those making it possible to improve the recovery of lipids from microalgae. 

The electricity requirements for each cycle of bead milling were estimated consider-
ing the average drive of the mill (3.65 kW) and the parameters described in Section 2.2.1. 
The electric power (W) supplied by the microwave device was recorded continuously 
over the entire treatment time in order to estimate the total energy consumption for each 
configuration. The ultrasound equipment directly provided the total electricity consump-
tion (J). The value observed after each iteration has been converted into kWh. The total 
energy consumption per gram of extracted lipids (DW) has been reported taking into ac-
count the suspension concentration and the TLE.  

2.6. Statistics  
All chemical analyses were performed in triplicate. The error bars, shown in the fig-

ures, represent the standard deviations of the mean values. An analysis of variance 
(ANOVA) was performed using JMP software to assess whether a difference is significant 
(p < 0.05). Tukey tests were performed for each series of the Figures 1 and 2. Different 
letters on the bars show significant differences (p < 0.05). 

3. Results 
In total, three disruption processes (bead milling, microwave and ultrasound) were 

applied to three strains of microalgae (N. gaditana, N. oceanica and T. suecica) to improve 
the extraction of lipids. The effect of operating conditions was studied for each process. 
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The percentage of cell disruption and the total lipids extracted in the microalgae suspen-
sions were determined in order to choose the optimal operating conditions for each dis-
ruption process. For the optimal conditions of each disruption process and for each mi-
croalga, the fatty acid profile and the specific energy consumption were determined. 

3.1. Effect of the Bead Milling Process on the Lipid Recovery 
According to Section 2.2.1, the operating conditions chosen for the optimization of 

the bead milling are the feed flow rate and the size of the beads. Thus, the effect of these 
two parameters on the percentage of cell disruption and the TLE was studied. 

3.1.1. Effect of the Feed Flow Rate 
The effect of the feed flow rate on the percentage of cell disruption and TLE for N. 

gaditana strain according to the number of grinding cycles is presented in Figure 1. 

 
Figure 1. Percentage of cell disruption and TLE as a function of the number of grinding cycles for 
N. gaditana suspension, at HFR (150 mL.min−1) and LFR (50 mL.min−1). Constant conditions: ZrO2 

beads; dGm = 0.40 mm; ϕGM = 80%; u = 10 m.s−1; Temp= 15 ºC. TLE (Total Lipid Extracted) HFR 
(High Flow Rate); LFR (Low Flow Rate); dGm (bead diameter); ϕGM (grinding filling); u (rotational 
speed); Temp (Temperature). Different letters on the bars for each serie show significant differences (p < 
0.05). 

A significant increase in the percentage of cell disruption is observed according to 
the number of grinding cycles until total rupture is obtained. Percentages of 93 ± 5% and 
99 ± 5% were achieved, respectively, for the HFR and the LFR after three grinding cycles. 
Taking into account the uncertainties of 5%, it can be considered that after three grinding 
cycles, the cell disruption is complete. Our results are consistent with those obtained in 
the literature [6]. Indeed, complete cell disruption was achieved with the same bead mill 
model used in this study on Parachlorella kessleri. Cell disintegrations of 85 and 100% were 
obtained after, respectively, 3 and 5 cycles of grinding at a feed flow rate of 200 mL.min−1 
(glass beads of 1.3 mm, filling volume of 75%). 

No significant difference on the percentage of cell disruption was found between N. 
gaditana suspensions milled at HFR and LFR after two cycles. However, a tendency to 
increase the cell disruption is observed for the suspension milled at LFR. Results reported 
in the literature regarding the impact of the flow rate on cell disruption of microalgae 
shown better results at lower flow rates. Indeed, it has been reported a decrease of 6% on 
cell disruption by bead milling of P. cruentum, when the feed flow rate increases from 48 
mL.min−1 to 170 mL.min−1 (glass beads of 2.15 mm, 75% of filling volume and a rotational 
speed of 8 m.s−1) [13]. A general decrease on the degree of cell disruption for C. vulgaris 



Processes 2021, 9, 369 9 of 20 
 

 

was also found when the feed flow rate was increased for different values of bead size, 
filling volume, stirring speed [25]. These contradictory results can be explained by the 
presence either of an interaction between the feed flow rate and other operating condi-
tions, or by an effect of the strain of microalgae treated. Thus, these findings confirm the 
need to study the effect of bead milling operating conditions for different strains of mi-
croalgae. 

The TLE for N. gaditana suspension was measured before the grinding (control) and 
after four grinding cycles. Figure 1 shows a significant 5% increase (%DW) in TLE after 4 
cycles of bead milling whatever the feed flow rate. These results reveal that cell disruption 
by bead milling increased the quantity of lipids available for extraction. This positive ef-
fect of the bead milling on lipid extraction has also been observed from Parachlorella keslerri 
and from Yarrowia lipolityca yeast [6,29]. However, no significant difference was observed 
on the TLE between the two values obtained with HFR and LFR. 

Our results show that there is an impact of the bead milling on the percentage of cell 
disruption and on the TLE for N. gaditana suspension. Indeed, the bead milling enabled 
the liberation of lipids in the medium after a solvent extraction. However, no effect of the 
feed flow rate is noticed in this study. As HFR reduces residence time and therefore the 
energy consumption of the process, HFR value was chosen for bead milling tests per-
formed on other microalgae. As well, as high values (93 ± 5%) of cell disruption were 
achieved with three grinding cycles, the number of grinding cycles was fixed to 3 for the 
upcoming experiments.  

3.1.2. Effect of the Bead Size 
The effect of zirconia bead size on the percentage of cell disruption and TLE for N. 

oceanica and T. suecica, according to the number of grinding cycles, is presented in Figure 
2. The minimum and maximum average diameters for zirconia beads were chosen: dGm 
= 0.40 mm and dGm = 1.25 mm. 

 

(a) 

 

(b) 

Figure 2. Percentage of cell disruption and TLE as a function of the number of grinding cycles for (a) N. oceanica and (b) 
T. suecica, at dGm = 0.40 mm and dGm = 1.25 mm. Constant conditions: ZrO2 beads; FR = 150 mL.min−1; ϕGM = 80%; u = 10 
m.s−1; Temp = 15 ºC. TLE (Total Lipid Extracted); dGm (bead diameter); FR (Flow Rate); ϕGM (grinding filling); u (rotational 
speed); Temp (Temperature). Different capital letters on the series of TLE. dGm=0.40 mm show significant differences 
(p<0.05) between the grinding cycles. Different lowercase letters on the series TLE. dGm=1.25 mm show significant differ-
ences (p<0.05) between the grinding cycles. 
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Whatever the bead size, the bead milling leads to a cell disruption but with different 
efficiencies. Indeed, significant differences on the percentage of cell disruption for the two 
microalgae were found between the two bead sizes.  

For N. oceanica, after a first grinding cycle, a percentage of cell disruption of 76 ± 5% 
is obtained with 0.4 mm beads, whereas this percentage is only 30 ± 5% with 1.25 mm 
beads. After three grinding cycles, whatever the size of the beads, the percentage of cell 
disruption increases. A percentage of 96% ± 5% is obtained with 0.4 mm beads, whereas 
with 1.25 mm beads, a disruption of only 55% is noticed.  

For T. suecica, the difference in percentage of cell disruption between the two bead 
sizes is lower than for N. oceanica. Indeed, for 0.4 mm beads, an increase between the first 
and the third cycles from 87 ± 5% to 100 ± 5% is noticed, whereas an increase from 48 ± 5% 
to 87 ± 5% is observed for 1.25 mm beads. The disruption can be considered as complete 
for 0.4 mm beads after three grinding cycles. Our results are in accordance with the liter-
ature. Indeed, an optimal disintegration, for T. suecica, by using bead size 0.3-0.4 mm was 
observed [7].  

An effect of the bead size on the cell disruption is then confirmed as the use of small 
beads induces an increase in the number of particles for the same filling volume. Thus, 
stress events (i.e. impact or compression and shear), as well as their intensity, are ampli-
fied, resulting in greater efficiency of the disruption process [13,26]. The effect of the bead 
size on the cell disruption of Nannochloropsis sp. was also studied [26]. As a result, they 
observed that smaller zirconia beads (0.3–0.4 mm) were more efficient in cell disruption 
(> 98%) rather than the greater beads (0.7–0.8 mm and 1.8–2.0 mm) under optimal condi-
tions (disintegration time of 40 min, circumferential speed of 2.3 m.s−1, a concentration in 
microalgae of 15% m/v and 60% of grinding filling). 

Results in Figure 2 show that the effect of bead size varies according to the microalgae 
species. The effect of small beads is more noticeable on N. oceanica than on T. suecica. This 
could be associated with the different structural compositions and resistances of their cell 
walls. Indeed, Nannochloropsis strain has a bilayer structure consisting in a cellulosic inner 
wall protected by an outer hydrophobic algenane layer [20]. The resistance of algenanes 
and the small size of Nannochloropsis cells make it difficult to weaken or break cell mem-
branes [21]. For T. suecica strain, its cell wall consists in complex polysaccharides made up 
of galactose, xylose, rhamnose, mannose, and arabinose [12], which is easier to decon-
struct by disruption processes. Thus, one can assume that T. suecica possess a weaker cel-
lular structure than N. oceanica. These results are in accordance to those that compared the 
resistance to shear damage between Chlorella vulgaris, Neochloris oleoabundans and Tetra-
selmis suecica [7], demonstrating a higher resistance of N. oleoabundans, followed by C. vul-
garis and lastly T. suecica.  

Concerning the TLE, a significant increase was noticed with 0.4 mm beads for the 
two microalgae. For N. oceanica, which is richer in lipids, the TLE value for the control 
sample was of 38 ± 1% (%DW). After three grinding cycles, a TLE of 43 ± 1% (%DW) is 
reached. Although the increase remains low, herein we almost reach the total lipid content 
reported by the supplier (46%) for this microalgae strain. Since the TLE of the control sam-
ple is already high, one would think that the cell wall membrane became more permeable 
during the freezing process, which facilitated the release of lipids during solvent extrac-
tion. No significant increase in the TLE is noticed with 1.25 mm beads.  

For T. suecica, the TLE varies from 3 ± 1% (%DW) for the control to 13 ± 1% (%DW) 
for a grinding with 0.4 mm beads, from the first grinding cycle. A same value of TLE is 
obtained with 1.25 mm beads, after three grinding cycles. The bead milling process im-
proved the extraction of lipids by solvents, reaching the maximal content of lipids that can 
be extracted from this microalga, according to the supplier. 
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3.2. Effect of the Microwave Process on the Lipid Recovery 
A CCF design with two factors at three levels has been carried out to optimize the 

cell disruption of microalgae by microwaves. The response studied is the total lipids ex-
tracted (TLE) after treatment. As indicated in Section 2.2.2, a power of 100 W is given as a 
set point. The independent variables studied are the temperature applied to the suspen-
sion of microalgae and the time of treatment. 

Quadratic models were used to predict the TLE for N. gaditana and N. oceanica during 
microwave treatment. The non-significant coefficients (p > 0.05) (Supplementary data. Fig-
ures S1, S2) were removed to obtain reduced models (Supplementary data. Tables S2, S5). 
TLE can be predicted by Equation (4) for N. gaditana and Equation (5) for N. oceanica. 𝑇𝐿𝐸 = 14.01 + 1.60 𝑇𝑒𝑚𝑝 + 2.05 𝑇𝑒𝑚𝑝 × 𝑇𝑒𝑚𝑝 (4)

with R2 = 0.914 and R2adj = 0.893 𝑇𝐿𝐸 = 46.41 + 2.28 𝑇𝑒𝑚𝑝 − 2.34 𝑇𝑒𝑚𝑝 × 𝑇𝑒𝑚𝑝 + 0.19 𝑡 + 0.99 𝑡 × 𝑡 + 0.80 𝑇𝑒𝑚𝑝 × 𝑡 (5)

with R2 = 0.980 and R2adj = 0.956 
The temperature and its quadratic term have a significant and positive effect on the 

TLE, while the treatment time and the interaction term between the two factors have no 
effect on TLE from N. gaditana (Equation (4)). Thus, greater exposure time will not result 
in higher lipids extraction and high temperature was enough to destabilize the cell mem-
brane and improve lipid extraction even applied few minutes, under the operating condi-
tions of this study. This cell wall distortion and collapse of some cells due to microwaves 
was already observed by scanning electron microscopy after applying a microwave treat-
ment at 100 °C for 5 min of a suspension of C. vulgaris [17]. 

The temperature and its quadratic term have significant effect, but the latter has a 
negative impact on TLE from N. oceanica (Equation (5)). A possible degradation on lipids 
can be induced at higher temperatures [21]. The interaction term and the quadratic term 
of the treatment time are significant and have a positive effect on TLE from N. oceanica. 

The determination coefficients for both models are superior to 0.9, and the two mod-
els show a good correlation between the experimental data and the predicted data. The 
models were statistically assessed using analysis of variance (ANOVA) (Supplementary 
data. Table S3, S6). The first F-test performed corresponds to a comparison between the 
variance of the regression and the variance of the model residuals. P-values are less than 
0.05 for the two strains which indicates a validation of the model. The second F-test per-
formed corresponds to a comparison between the replicate error and the model error. P-
values obtained are equal to 0.734 for N. gaditana and 0.432 for N. oceanica which indicates 
a good fit of experimental data to the values predicted by the models.  

The contour plots presenting the evolution of the TLE according to the temperature 
and treatment time for N. gaditana and N. oceanica are shown in Figure 3. 
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Figure 3. Contour plot of treatment time and temperature on the TLE for (a) N. gaditana and (b) N. oceanica during micro-
wave process. TLE (Total Lipid Extracted); t (time); Temp (Temperature). 

For N. gaditana (Figure 3a), the TLE evolves in vertical bands, which confirms that the 
treatment time factor has no effect on the content of extracted lipids. For this strain, the 
optimal operating conditions for the microwave treatment are 100 °C and 5 min. These 
conditions make it possible to recover the highest lipid content (17.7 ± 0.2 %DW); a signif-
icant increase of 4% is noticed in comparison with the control. For N. oceanica (Figure 3b,) 
the parabolic shape of the curves shows the effect of the quadratic term of the temperature. 
Two areas with a high TLC appear for opposite values of temperature demonstrate the 
contradictory effects of the term temperature (positive effect) and its quadratic term (neg-
ative effect). However, the model made it possible to define a single optimum area. The 
optimal operating conditions for the microwave process are 25 min and 91 °C. These con-
ditions allow to obtain 49 ± 1%DW of lipids extracted. An increase of 8% is noticed in 
comparison with the control. 

New experiments were carried out under these conditions to validate the models 
(Table 4). 

Table 4. Validation of the prediction models by comparison with new experiments  

Process/Microalgae 
strain 

Predicted values 
(% of increase of 

TLE) 

Observed values 
(% of increase of 

TLE) 

p-value 
(Student-

test) 
Ultrasound/N.gaditana 53 ± 6% 45 ± 8% 0.2 
Microwave/N. gaditana 25 ± 5% 22 ± 8% 0.6 
Ultrasound/N.oceanica 15 ± 3% 20 ± 3% 0.09 
Microwave/N.oceanica 22 ± 4% 16 ± 2% 0.54 

An increased in TLE of 22 ± 8 % is observed while the model predicts an increase of 
25 ± 5% for N. gaditana. Concerning N. oceanica, the model predicts an increase of 16 ± 2% 
whereas we observe 22 ± 4% of increase in TLE. Student tests were performed, and non-
significant differences were found between the predicted and observed values (p > 0.05).  

Concerning T. suecica, the two factors did not have a significant effect (p > 0.05) on 
the TLE in the range of values studied (Supplementary data. Figure S3). In addition, no 
significant difference on the TLE was found between the values of the samples treated 
with microwaves and the control (Supplementary data. Table S7, S8). These results sug-
gest that the microwave process is not an efficient technology to improve lipid extraction 
from T. suecica. 
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The results obtained reveal that the different species of microalgae react differently 
to the microwave process. This confirms the importance of optimizing the operating con-
ditions for each microalga. In this study, for the two strains of Nannochloropsis genus, mi-
crowaves facilitated the recovery of lipids. However, although these strains are of the 
same genus, a difference is observed in the values of the operating conditions necessary 
to reach a maximum in TLE. However, this technology has been shown ineffective in in-
creasing lipid recovery from T. suecica. These results are in agreement with the literature 
where it has been shown that the microwave process can be an optimal pretreatment 
method to increase lipid recovery and that the optimal conditions of the microwave pro-
cess differ depending on the strain studied [14,26,30,31]. 

3.3. Effect of the Ultrasound Process on the Lipid Recovery 
A CCF design with two factors at three levels has then been carried out to optimize 

the cell disruption of microalgae by ultrasound. The response studied is the recovery of 
lipids after treatment. As indicated in Section 2.2.3, a power of 130 W and a frequency of 
20 kHz were used. The independent variables studied are the amplitude applied to the 
suspension of microalgae and the time of treatment.  

First order polynomial models were applied to predict the TLE for N. gaditana and N. 
oceanica during ultrasound treatment. The non-significant coefficients (p > 0.05) (Supple-
mentary data. Figures S4, S5, S6) were removed to obtain reduced models (Supplementary 
data. Tables S10, S13) to predict the TLE from N. gaditana (Equation (6)) and from N. oce-
anica (Equation (7)). 𝑇𝐿𝐸 = 18.66 + 1.21 𝐴𝑚𝑝 + 1.54 𝑡, (6)

with R2 = 0.900 and R2adj = 0.875 𝑇𝐿𝐸 = 42.54 + 1.28 𝐴𝑚𝑝 + 1.18 𝑡 (7)

with R2 = 0.861 and R2adj = 0.826 
For N. gaditana and N. oceanica, the amplitude and the treatment time have a signifi-

cant and positive effect on the TLE. The interaction between the two factors and each 
quadratic term have no significant effect on TLE. The models were statistically assessed 
using analysis of variance (ANOVA) (Supplementary data. Tables S11, S14). The first F-
test performed corresponds to a comparison between the variance of the regression and 
the variance of the model residuals. P-values are less than 0.05 for the two strains which 
indicates a validation of the model. P-values of the second F-test are equal to 0.554 for N. 
gaditana and to 0.622 for N. oceanica which indicates a good fit of experimental data to the 
values predicted by the models. 

The contour plots presenting the evolution of the TLC according to the power ampli-
tude and the treatment time for N. gaditana and N. oceanica are shown in Figure 4.  
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Figure 4. Contour plot of treatment time and amplitude on the TLE for (a) N. gaditana and (b) N. oceanica during ultrasound 
process. TLE (Total Lipid Extracted); t (time); Amp (Amplitude). 

The TLE rises progressively when the treatment time and the ultrasound amplitude 
increase (Figure 4a,b). According to Equations (6) and (7), both factors contribute equally 
to the determination of the TLE. The highest values of TLE are obtained for the maximal 
values of the factors. Thus, the optimal operating conditions for the ultrasound treatment 
are an amplitude of 80% during 30 min for both microalgae. These conditions make it 
possible to extract the highest lipid value: 21.7 ± 0.5%DW (i.e., an increase of 8% in com-
parison with the control for N. gaditana) and 45.4 ± 0.6% DW (i.e., an increase of 6% for N. 
oceanica). 

As well as for microwave, new experiments were carried out under the optimal con-
ditions to validate the models for the ultrasound-assisted extraction (Table 4). An in-
creased in TLE of 45 ± 8% is observed while the model predicts an increase of 53 ± 6% for 
N. gaditana. Concerning N. oceanica, the model predicts an increase of 20 ± 3% whereas we 
observe a 15 ± 3% increase. Student tests were performed, and non-significant differences 
were found between the predicted and observed values (p > 0.05).  

Concerning T. suecica, the treatment time and the ultrasound amplitude have no sig-
nificant effect on the TLE in the range of values studied (Supplementary data. Figure S6). 
Nevertheless, a significant increase of the TLE of 9% is noticed. Indeed, the average over 
all the experiments is equal to 10.9 ± 0.4%DW whereas the control is equal to 1.7% ± 
0.3%DW (Supplementary data. Table S15). Thus, the operating conditions of the ultra-
sound process will be the minimum values of the factors, i.e., 50% of amplitude during 10 
min. 

The ultrasound process was found to be effective in increasing the recovery of lipids 
from the three strains of microalgae. Indeed, for the two strains of Nannochloropsis, the 
maximum TLE was reached for the highest amplitude and treatment time in the range of 
values studied. For T. suecica, the optimum was obtained for lower values of amplitude 
and treatment time. Therefore, as for the microwave process, the optimization of the op-
erating conditions of the ultrasound process to maximize the TLE depends on the strain 
studied. These results are in agreement with Alhattab et al. (2019), who showed the sig-
nificant influence of the composition of the cell wall of microalgae and the operating con-
ditions on the effectiveness of sonication as a disruption technique [21]. Indeed, Nanno-
chloropsis strains have a stronger cell wall than that of T. suecica. In conclusion, the operat-
ing conditions of the ultrasound process necessary to release the maximum lipid content 
of Nannochloropsis are the maximum values of the space studied, whereas lower values 
are recommended for T. suecica.  
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3.4. Effect of Cell Disruption Processes on the Fatty Acid Profile 
Previously, only the TLE was measured to optimize the disruption processes. How-

ever, the determination of the FAP also seems relevant as such information can help to 
choose the most profitable application for the microalgae according to their composition 
in lipids. For example, palmitic (C16:0), stearic (C18:0), oleic (C18:1n-9c) and linolenic 
(ALA-C18:3n-3c) acids are the most common fatty acids (FAs) for biodiesel production 
from microalgae [15,17]. Unsaturated fatty acids (UFAs) have applications in the chemis-
try industry for renewable polymeric materials [4,32]. Microalgae species with a high con-
tent of PUFAs, and especially those with essential FAs as eicosapentanoeic acid (EPA, 
C20:5n-3c) and docosahexanoic acid (DHA, C22:6 n-3), have important applications in the 
nutraceutical industries for the development of functional products [4,33,34]. 

Figure 5 presents the FAP obtained for the two strains of Nannochloropsis and for T. 
suecica in optimized conditions with bead milling, microwave and ultrasound processes.  

Lipids extracted from N. gaditana are constituted of six FAs whatever the disruption 
process used (Figure 5a). Two Saturated Fatty Acids (SFAs-C14:0; C16:0), two mono-un-
saturated fatty acids (MUFAs: C16:1-7; C18:1n-9c) and two poly-unsaturated fatty acids 
(PUFAs: C18:2n-6c; C20:5n-3c) were found.  

 

(a) 

 

(b) 

 

(c) 

Figure 5. Fatty acid profile of lipids extracted after cell disruption processes for (a) N. gaditana, (b) N. oceanica and (c) T. 
suecica. M (Microwave); BM (Bead milling); U (Ultrasound); t (time); Temp (Temperature); Amp (Amplitude); SFAs (Sat-
urated Fatty Acids); UFAs (Unsaturated Fatty Acids). n=3 replicates. 
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Similar findings on the FAP have been reported by several authors on both N. 
gaditana and other species of the genus Nannochloropsis. The main FAs found in these stud-
ies are C16:0, C16:1-7 and C20:5n-3c [33,35–38]. According to the results of an ANOVA, no 
significant differences are noticed on the content of the 6 FAs between the control and the 
samples obtained after the disruption processes. FAP does not, therefore, provide infor-
mation allowing us to favor one of the three disruption methods studied. The potential 
applications for this microalga could be the production of biodiesel due to its high content 
in SFAs (around 40%) or the use as food supplements due to a high proportion of EPA 
(around 20%). 

For N. oceanica, the same FAs were found as for N. gaditana but in different propor-
tions (Figure 5b). This indicates that the quantities of FAs found in the genus Nannochlo-
ropsis can vary across its different strains [39]. Depending on the disruption process used, 
significant variations in the palmitic acid (C16: 0) and EPA (C20: 5n-3c) ratios were ob-
served. Palmitic acid is extracted in larger quantities when using bead milling or ultra-
sound as disruption process, increasing the proportion of SFAs in the extract. The disrup-
tion of the internal organelles containing the SFAs was favored by these to processes. Con-
cerning the microwave process, the palmitic acid content obtained is lower than that of 
the control. Regarding EPA, its content decreases after a bead milling treatment while it 
increases after a microwave process. The ultrasound process results in the same EPA con-
tent as the control. 

Thus, for biodiesel application, where lipids with a large amount of SFAs are sought 
as they provide low viscosity and better quality to biodiesel [40], bead milling and ultra-
sound will be recommended as disruption process. Concerning other applications, the 
microwave process will be used to improve the nutritional quality of the lipids thanks to 
a higher quantity of EPA. However, it should be considered that on an industrial scale, 
the lipid extraction process can be performed with other solvents and composition of the 
fatty acids can be modified. 

The FAP of T. suecica differs from that of N. gaditana and N. oceanica (Figure 5c). Most 
FAs are SFAs for the genus Nannochloropsis, while for T. suecica, the UFAs are present in 
larger quantities. Indeed, linolenic acid (ALA-C18:3n-3c) in higher proportions as well as 
the absence of the myristic acid (C14:0) were observed. In addition, a higher proportion 
of about 30% of oleic acid (C18:1n-9c) is noticed.  

Variations on the FAP were observed according to the disruption technology applied. 
The SFA C16:0 is found in high proportion in suspensions treated with bead milling. A 
decrease of the proportion of the linoleic acid (LA-C18:2n-6c) and the linolenic acid (ALA-
C18:3n-3c) is also observed with bead milling process. These results suggest that bead 
milling process could be an appropriate method to release lipids from T. suecica for bio-
diesel applications, due to the high proportion of palmitic (C16:0), oleic (C18:1n-9c), and 
linolenic (ALA-C18:3n-3c) FAs. Concerning the microwave- and ultrasound-assisted pro-
cesses, as they favor the release of UFAs, they should be used if the lipids are intended for 
nutraceutical, cosmetic or pharmaceutical applications. 

In conclusion, these results show that the effect of the three disruption processes is 
different on the microalgae cells. Bead milling is assumed to breakdown the internal or-
ganelles of energy reserve containing the SFAs, while microwaves and ultrasound would 
destroy the cell membranes, thus releasing the polar FAs characteristics of this structure. 

The field of application can also be a constraint. For instance, for biodiesel applica-
tions, a higher proportion of SFAs than UFAS will be preferred. In this case, for T. suecica, 
it would be recommended to apply bead milling despite the significant energy consump-
tion (Section 3.5). Indeed, with bead milling, 20% more of SFAs are released compared to 
the ultrasound treatment. For nutritional applications where significant proportions of 
UFAs are sought, ultrasound assisted process is the most interesting except for N. oceanica. 
Indeed, microwaves can increase the proportion of UFAs by 9% compared ultrasound. 

  



Processes 2021, 9, 369 17 of 20 
 

 

3.5. Evaluation of the Energy Consumption for the Cell Disruption Processes 
The choice of the most suitable disruption process for lipid recovery will not be based 

solely on the TLE but also on an energy criterion. This criterion is the specific energy con-
sumption (SEC) and corresponds to the total electricity requirements according to the li-
pids extracted in kWh/g lipids. The SEC and the TLE are presented in Figure 6 according 
to the microalgae studied and the disturbance process. The operating conditions of the 
disruption processes used for the calculations are those determined previously.  

 
Figure 6. Specific energy consumption and total lipids extracted according to the cell disruption 
process for N. gaditana, N. oceanica and T. suecica. Bead Milling-N. gaditana (BM-Ng): 4 cycles; HFR; 
ZrO2; dGm = 0.40 mm; Microwaves-N. gaditana (M-Ng): Temp = 100 °C; t = 5 min); Ultrasound-N. 
gaditana (U-Ng): Amp = 80%; t = 30 min; Bead Milling-N. oceanica (BM-No): 3 cycles; HFR; ZrO2; 
dGm = 0.40 mm; Microwaves-N. oceanica (M-No): Temp = 91 °C; t = 25 min); Ultrasound-N. oceanica 
(U-No): Amp = 80%; t = 30 min; Bead Milling-T. suecica (BM-Ts): 3 cycles; HFR; ZrO2; dGm = 0.40 
mm; Ultrasound-T. suecica (U-Ts): Amp = 50%; t = 10 min. 

Among the three disruption processes tested, the bead milling is the most energy-
consuming process. For N. gaditana and T. suecica, the lipid yields are less than 20% and 
induce SECs of 0.73 and 0.77 kWh.g−1 lipids, respectively. For N. oceanica, the energy con-
sumption is lower since a greater amount of lipids has been recovered (42.9%DW, 3 and 
14 times higher than that of N. gaditana and T. suecica.) with a corresponding SEC equal to 
0.23 kWh.g−1 lipids.  

Concerning the ultrasound process, the SEC is lower than for the bead milling for a 
same level of extracted lipids. A critical parameter for the SEC of the ultrasound process 
is the treatment time. Indeed, despite a low TLE of 10.9%DW, the lowest SEC (0.06 kWh.g−1  
lipids) corresponds to the lowest sonication time (10 minutes for T. suecica). For N. gaditana 
and N. oceanica, the treatment time is 30 minutes with a same amplitude. The SEC of N. 
oceanica (0.09 kWh.g−1 lipids) is less than this of N. gaditana (0.18 kWh.g−1 lipids) due to a 
very high value of TLE for N. oceanica (45.4%DW) in comparison of this of N. gaditana 
(21.7%DW). 

Considering N. gaditana, for which the TLE is the same for the two processes, the 
SECs obtained for the microwave process are lower than that of the bead milling one. On 
the contrary, comparing the SECs between ultrasound and microwave processes is diffi-
cult as it depends on the percentage of lipids extracted. Despite a different microwave 
application time, identical SEC values were obtained for N. oceanica and N. gaditana. The 
increase in SEC generated by a long treatment time can be offset by a high level of ex-
tracted lipids. Thus, for N. gaditana, microwaves were applied 5 min to obtain 17.7%DW 
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of lipids, the SEC corresponding is equal to 0.15 kWh.g−1 lipids. For N. oceanica, the appli-
cation time is 25 minutes and the TLE 49%DW, the SEC determined is equal to 0.16 
kWh.g−1 lipids. 

The most suitable disruption process for each microalga can be determined according 
to the objective set. To maximize lipid content, a treatment by ultrasound will be recom-
mended only for N. gaditana. For N. oceanica, the highest TLE is obtained with a microwave 
treatment. For T. suecica, the bead milling will be the preferred extraction process. How-
ever, in a context of sustainable development, a compromise will have to be made between 
the lipid content and energy consumption. Under such consideration, the bead milling 
process is no longer competitive with the other two processes. The microwave process 
will be recommended for N. gaditana and an ultrasound process will be chosen for T. 
suecica and N. oceanica 

4. Conclusions 
The efficiency (lipid yield and specific energy consumption) of cell disruption pro-

cesses for the extraction of lipids varies according to each microalga species and the oper-
ating conditions applied. In addition, the fatty acid profile for the same microalgae species 
can change depending on the disruption process applied. Thus, it is also an important 
criterion for the choice of a disruption technology. On a laboratory scale, bead milling is 
the least efficient process in terms of specific energy consumption among those studied. 
Microwaves and ultrasound showed promising results in terms of lipid extraction effi-
ciency and specific energy consumption. However, their scaling up for the treatment of 
microalgae remains currently far below bead milling.  

Supplementary Materials: The following are available online at www.mdpi.com/2227-
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Abbreviations:  

Amp Amplitude (%) 
BM Bead milling 
BM-Ng Bead milling for N. gaditana 
BM-No Bead milling for N. oceanica 
BM-Ts Bead milling for T. suecica 
CCF Composite face centered 
dGm Beads diameter (mm) 
FAP Fatty Acid Profile 
FAs Fatty acids 
FR Flow rate (mL.min−1) 
HFR High Flow Rate (mL.min−1) 
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LFR Low Flow Rate (mL.min−1) 
M Microwaves 
M-Ng Microwaves for N. gaditana 
M-No Microwaves for N. oceanica 
MUFAs Mono unsaturated fatty acids 
PUFAs Poly unsaturated fatty acids 
SEC Specific Energy Consumption 
SFAs Saturated fatty acids 
t time (min) 
Temp Temperature (°C) 
TFA Total fatty acids 
TLE Total lipid extracted (% DW) 
u Rotational speed [m.s−1] 
U Ultrasound 
U-Ng Ultrasound for N. gaditana 
U-No Ultrasound for N. oceanica 
U-Ts Ultrasound for T. suecica 
UFAs Unsaturated Fatty Acids 
ϕGM Grinding filling volume (%) 
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