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A B S T R A C T

Data generated from spectroscopy may be deformed by artefacts due to a range of physical, chemical and envi-
ronmental factors that are not of interest for the characterization of the samples under study. For example, data
acquired by near-infrared (NIR) spectroscopy in the diffuse reflectance mode can be affected by light scattering.
This artefact, if not reduced or removed by spectral pre-processing, can complicate the multivariate data analysis.
However, different pre-processing approaches correct these effects in different ways. For example, differentiation
can reveal underlying bands, while spectral normalization techniques such as standard normal variate (SNV) can
correct for multiplicative and additive effects. Combining multiple pre-processing techniques can lead to better
results. However, it is not feasible for a user to explore all possible combinations of pre-processing techniques. In
the present work, a new pre-processing fusion approach, based on the framework of separating common and
distinct components in multi-block multivariate data analysis, is demonstrated. The approach utilizes parallel and
orthogonalized partial least squares (PO-PLS) regression for the parallel fusion of multiple pre-processing tech-
niques applied to the same data. The results obtained on 4 different NIR spectroscopic data sets related to the
assessment of fruit quality and used as benchmark are compared to those of the recently developed sequential pre-
processing through orthogonalization (SPORT) approach: it is found that, in all the cases, the PO-PLS approach
leads to slightly better performances. Furthermore, a clear understanding of the common and distinct information
present in the data sets after each pre-treatment was obtained. Parallel pre-processing through orthogonalization
(PORTO) can be seen as parallel boosting of multiple pre-processing techniques to improve model performances.
1. Introduction

Data generated from spectroscopy may be deformed by artefacts due
to a range of physical, chemical and environmental factors that are not of
interest for the characterization of the samples under study [1,2]. For
example, NIR spectroscopic measurements done in diffuse reflectance
mode contain scattering effects which, in the majority of cases, may mask
the absorption features related to the chemical components present in the
samples [3–6], even if there are a few particular situations, e.g., when the
physical properties such as granulometry have to be modeled, in which
scattering itself constitutes the relevant information. These artefacts in
a).
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the measured signal can complicate the multivariate data analysis,
especially if predictive models are to be created. Often, pre-treatment
methods are used to reduce/remove such artefacts that are unrelated
to the property to be predicted [1]. For example, if one would like to use
NIR spectroscopy to predict moisture content in a fresh fruit, then, the
objective of pre-processing would be to remove the scattering effects
while retaining the absorption features related to water so as to use them
for the data modelling.

Pre-processing is required to correct for scattering, baseline shifts,
noise and other sources of unwanted/spurious variation [2,3]. Several
methods are available to remove these effects. In the case of spectral data
tober 2020
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Table 1
A description of the data sets used in the study.

Food Spectral
range (nm)

Calibration Test Reference Source

Apples 500–1018 437 188 SSC (%) [23]
Olives 669–1122 171 81 DM (%) [24]
Mangoes 744–1092 1014 435 DM (%) [27]
Pears 709–1125 329 142 MC (%) Generated for

the present
study

Fig. 1. An illustration of the SPORT approach for pre-processing fusion. SPORT
involves sequential PLS and orthogonalization steps to extract scores from
differently preprocessed data. Later all the scores are concatenated and used for
ordinary regression analysis.

Fig. 2. A schematic illustration of the concept of common and distinctive in-
formation which constitutes the conceptual basis of PO-PLS and, as a conse-
quence, of the PORTO approach to pre-processing fusion. The Fig. is adapted
from the one presented in Ref. [19].

Fig. 3. Distribution of the reference values for each data set used for calibration and
data set.
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with broad bands such as UV, visible or near infrared spectroscopy, high
frequency noise is commonly removed using smoothing methods such as
the Savitzky-Golay filter (SAVGOL) [1,3]. The additive and multiplica-
tive effects are dealt with by spectral normalization techniques such as
standard normal variate (SNV) [7], variable sorting for normalization
(VSN) [8], and scatter correction methods, such as multiplicative scatter
correction (MSC) [9] and its extended version (EMSC), which expands
the range of effects which can be removed from the signal by taking into
account, e.g., polynomial baselines, known analyte profiles or interfer-
ents [10]. Furthermore, differentiation of the signal is commonly used to
reveal underlying bands [1]. However, there are so many pre-processing
methods available that it is difficult for a user to optimally test all
possible combinations of techniques, in order to select the best combi-
nation for their data. To deal with this, a design of experiments (DoE)
based approach to the selection of combinations of pre-processing tech-
niques has been proposed [11]. The DoE based approach aims to select
the pre-processing techniques and their sequential combination by
exploring their effects on the model performances.

The complementarity of different pre-processing techniques is
apparent and ensemble approaches to pre-processing fusions are
emerging [12–15]. Another interesting approach to pre-processing fusion
is sequential pre-processing through orthogonalization (SPORT) [14,16,
17]. SPORT is based on the concept of multi-block data analysis and is
inspired by sequential and orthogonalized partial least squares (SO-PLS)
regression. However, SPORT performs the pre-processing fusion in a
sequential way, which implies that the order of pre-processing might
impact the result. This is inherited from the SO-PLS approach which
processes the blocks by means of a sequential extraction of information
[18]. However, it is difficult to objectively define this order.

In the present work, a new approach utilizing parallel and orthog-
onalized partial least squares (PO-PLS) regression for the fusion of
multiple pre-processing techniques is proposed. The approach assumes
that all pre-processing techniques are of equal importance, and there-
fore, their parallel fusion can lead to improved outcomes with respect to
the sequential fusion which requires a pre-defined order for the
sequential inclusion of the pre-processing techniques. Furthermore, the
parallel approach is based on identifying the common and distinct in-
formation in the blocks corresponding to the different pre-processing
techniques [19–21]. This means that pre-processed data carry some
common information irrespective of the pre-treatment involved and, at
the same time, a distinct information which is specific to the
pre-processing technique. The proposed fusion approach has been
given the name parallel pre-processing though orthogonalization
(PORTO). In the present study, the PORTO approach was tested on 4
different real case data sets related to the use of NIR spectroscopy for
quality prediction in fresh fruits. Furthermore, the parallel PORTO
method is compared with the recently developed sequential SPORT
pre-processing fusion approach.
test set. (A) Apple data set, (B) Olive data set, (C) Mango data set, and (D) Pear



Fig. 4. Calibration (blue) and test (red) spectral profiles for different data sets. (A) Apple data set, (B) Olive data set, (C) Mango data set, and (D) Pear data set.

Fig. 5. Results of SPORT (upper row) and PORTO (lower row) modelling. Predictions on the test set samples: (A) and (E) Apple data set, (B) and (F) Olive data set, (C)
and (G) Mango data set, and (D) and (H) Pear data set.

Table 2
Summary of the performances of PLS models built on data pre-treated with each of the considered pre-
processing techniques and of the SPORT and PORTO approaches.
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Table 3
Number of LVs selected from each pre-processing block by the SPORT approach.

Data sets/Pre-
processing

Raw data MSC VSN SNV 2nd derivative

Apple 7 11
Olive 4 4 1
Mango 8 7 1 1
Pear 2 1 10

Table 4
Common and distinct components selected by the PORTO approach. The ‘þ’ sign
indicates that the common component is shared by the indicated blocks.

Data sets/
Pre-
processing

Common componentsa Distinct components

Apple 4 1. RAW (26.7%, 0.997) þMSC
(71.4%, 0.999) þ VSN
(69.9%, 0.998) þ SNV
(71.3%, 0.999) þ 2nd
derivative (27.5%, 0.997)

2. RAW (11.5%, 0.997) þMSC
(15.5%, 0.998) þ VSN
(16.9%, 0.997) þ 2nd
derivative (35.5%, 0.997)

3. RAW (17.7%, 0.997) þMSC
(6.0%, 0.997) þ SNV (6.2%,
0.997) þ 2nd derivative
(6.5%, 0.996)

4. RAW (34.0%, 1.000) þ 2nd
derivative (27.1%, 1.000)

3 5 RAW (9.0%)
6 MSC (2.1%)
7 2nd

derivative
(0.5%)

Olive 5 1. RAW (5.1%, 0.996) þ MSC
(22.7%, 0.998) þ VSN
(26.8%, 0.994) þ SNV
(22.9%, 0.999) þ2nd
derivative (24.5%, 0.995)

2. MSC (12.4%, 0.999) þVSN
(12.5%, 0.995) þSNV
(12.4%, 0.999) þ 2nd
derivative (40.6%, 0.994)

3. RAW (29.9%, 0.997) þ MSC
(26.1%, 0.997) þ 2nd
derivative (18.6%, 0.995)

4. RAW (14.3%, 0.994) þ SNV
(2.7%, 0.990) þ2nd
derivative (3.3%, 0.988)

5. MSC (7.7%, 0.999) þ VSN
(53.4%, 0.998) þ SNV
(7.6%, 0.999)

3 6 RAW
(42.2%)

7 MSC (10.7%)
8 VSN (0.2%)

Mango 5 1. RAW (4.7%, 0.999) þ MSC
(12.8%, 0.996) þ VSN
(4.4%, 0.989) þ SNV
(12.8%, 0.996) þ2nd

2 6 RAW
(37.1%)

7 MSC (0.7%)
2. Material and methods

2.1. Data sets

Four different NIR spectroscopic data sets related to the prediction of
quality attributes in fresh fruits were used. These data sets were selected
as they were all measured in diffuse reflectance mode, which leads to
various additive and multiplicative effects due to light scattering. Often
scatter correction methods are required to reduce/remove these effects
prior to data modelling. A description of the data sets is provided in
Table 1. All the samples were split into calibration (70%) and test sets
(30%) using the Kennard-Stone algorithm [22]. The apple data set is
related to soluble solids content (SSC) prediction in intact fruits [23]. The
olive fruits andmango data sets are related to the prediction of drymatter
(DM) in intact fruits [24]. The pear dataset was acquired specifically for
this study and consists of 471 fruit samples. More details on the fruit
samples can be found in Refs. [25,26]. The spectral measurements were
carried out with a portable spectrometer Felix F-750 (Camas, WA, USA)
with a Carl Zeiss MMS-1 detector (Oberkochen, Germany) to record the
reflected light in the spectral range of 310–1130 nm with a spectra
sampling at 3 nm, a Xenon Tungsten Lamp for illumination and a built-in
white painted reference standard for setting the 100% value of the
reflectance scale. The data acquisition was performed by placing the fruit
in the sample holder and by manually pressing the scan button on the
Felix device. For each pear, the spectral measurements were performed
on the largest part of the hypanthium. The moisture content (MC) was
measured by the hot air oven drying method.
derivative (26.8%, 0.995)
2. RAW (5.8%, 0.999) þ MSC

(27.3%, 0.997) þ VSN
(6.0%, 0.985) þ SNV
(27.3%, 0.997)

3. RAW (16.2%, 0.998) þ MSC
(4.6%, 0.990) þ VSN (9.8%,
0.980) þ 2nd derivative
(9.7%, 0.994)

4. RAW (22.7%, 0.998) þ MSC
(30.4%, 1.000) þ SNV
(30.4%, 1.000)

5. VSN (11.3%, 0.987) þ 2nd
derivative (7.6%, 0.987)

Pear 6 1. RAW (7.7%, 0.998) þ MSC
(29.5%, 0.998) þ VSN
(84.7%, 0.999) þ SNV
(30.0%, 0.999) þ 2nd
derivative (34.0%, 0.997)

2. RAW (9.0%, 0.998) þ MSC
(24.4%, 0.998) þ SNV
(24.2%, 0.999) þ 2nd
derivative (11.8%, 0.997)

3. RAW (11.5%, 0.997) þ MSC
(4.2%, 0.999) þ SNV (4.3%,
0.999)

4. MSC (6.0%, 0.998) þ VSN
(9.6%, 0.999) þ 2nd
derivative (10.1%, 0.996)

5. MSC (20.6%, 0.998) þ SNV
(20.2%, 0.999) þ 2nd
derivative (11.5%, 0.996)

6. RAW (10.8%, 1.000) þ 2nd
derivative (8.6%, 1.000)

2 7 RAW
(27.2%)

8 VSN (0.3%)

LVs: of SPORT vs PORTO for the olive dataset.
a The numbers in parentheses indicate the % explained variance for the block

and, for the common components, the correlation coefficient, respectively.
2.2. Pre-processing methods

NIR spectra of fruit contain a range of scattering effects leading to
additive and multiplicative distortion effects. In this work, four different
pre-processing methods, i.e. multiplicative scatter correction [9], stan-
dard normal variate [7], variable sorting for normalization [8] and 2nd
derivative (Savitzky-Golay with a 15 points window and 2nd order
polynomial) were used for pre-processing fusion [1]. The set of
pre-processings was selected to include both model-based (MSC and
VSN) and model-free (SNV and 2nd derivative) techniques. All the
pre-processing methods were implemented as discussed in Ref. [1].

3. SPORT

The SPORT approach to pre-processing fusion is based on two steps,
i.e., a PLS regression step and a sequential orthogonalization step [14].
Firstly, a PLS regression model is fitted between the Y and the first
pre-processed block. Then, the second block is orthogonalized with
respect to the scores of the first regression. Then the residuals of Y are
fitted to the orthogonalized second block and the procedure is continued
for as many blocks as there are pretreatments. The main steps of the al-
gorithm are schematically represented in Fig. 1. The algorithm for two
pre-processing blocks (X1 and X2) as presented in Ref. [14] is as follows:

1. The Y responses are fitted to the X1 by the PLS regression
2. X2 is orthogonalized with respect to the scores obtained from the first

regression
3. The orthogonalized X2 is used to predict the Y residuals
4. The overall predictive model is obtained by combining (concate-

nating the scores) the sub-models calculated in steps 1 and 3
4
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The number of LVs is usually optimized in cross-validation using a
global approach; all possible combinations of LVs are tested and the
optimal one is the one resulting in the lowest RMSECV (or classification
error in CV, depending on the property/ies to be predicted). In the pre-
sent work, the algorithm presented in Ref. [14] was implemented by
means of freely available multi-block data analysis graphical user inter-
face [28] in MATLAB (Release 2017b; The MathWorks, Natick, USA).
3.1. Parallel pre-processing through orthogonalization

Parallel pre-processing through orthogonalization (PORTO) is
inspired by and relies on PO-PLS regression [29]. The latter is a combi-
nation of PLS regression, generalized canonical analysis (GCA) and
multiple orthogonalization steps. GCA is the extension of canonical
correlation analysis (CCA) to more than 2 data blocks. The main aim of
PORTO is to identify and extract common and distinct information within
the blocks that result from differently pre-processed data, which can lead
to improved data modelling. The concept of common and distinct
component is illustrated in Fig. 2, where the three circles represent three
pre-processings performed on the same data set and the letters D and C
indicate the distinct and the common parts of the information. Like
PO-PLS, the aim of PORTO is to first identify the information common to
differently pre-processed data blocks and then orthogonalize each indi-
vidual pre-processing block with respect to the sub-space identified as the
common information. This leaves only the distinct information in each
differently pre-processed data block, highlighting the distinctiveness of
that pre-processing. The PORTO approach is basically performing the
multi-block PO-PLS on the differently pre-processed data sets. The main
steps of the PO-PLS algorithm, which constitutes the basis of PORTO, as
presented in Ref. [29], are the following:

1. The same data set X is pre-treated with a specific number of user-
defined pre-processing techniques (P): P matrices, each correspond-
ing to an individual pre-processing applied to X, are obtained and
altogether they constitute the multi-block data set.

2. Standard PLS models are calculated between the Y and each of the
differently pre-processed blocks Xp (p ¼ 1,…,P), so as to obtain the
corresponding scores matrices Tp. This is just a preliminary data
compression to filter out from each block noise or other unwanted
sources of variability, so to stabilize the successive search for common
and distinct components: all the successive steps are carried out on
the block scores Tp instead of the full data matrices Xp.

3. GCA is performed on all possible subsets of blocks to identify globally
and locally common components (TC, TLk) as those linear combina-
tions of the block scores with high correlation (close to 1). This is an
iterative process which starts with extracting common components at
the upper level (i.e., among all blocks), and continues by examining
all smaller subsets (in decreasing order of number of matrices
involved) to extract locally common components. Prior to each GCA
sub-step, all the individual block scores Tp are orthogonalized with
Fig. 6. Loading weights of the LVs extracted by SPORT for the

5

respect to the common components extracted at the previous sub-
steps. In detail the following steps are involved:
a. An ordered list of all the possible subsets k of the blocks is defined

(k¼ 1:K). Usually, one starts with a subset including all the blocks,
then with subsets including all the blocks but one and so on. For
instance, in a case with four blocks, there would be 10 subsets
ordered as follows: 1 2 3 4; 1 2 3; 1 2 4; 1 3 4; 1 2; 1 3; 1 4; 2 3, 2 4;
3 4.

b. GCA is performed on the scores Tp of all the blocks (k¼ 1) to
identify the globally common components TC as those linear
combinations of the block scores with high correlation (usually
above 0.90). To allow such components to be also predictive the
common components are considered for the successive modeling
step only if they explain at least a certain amount of X- and Y
variance (usually 5%).

c. If the number of extracted common components is greater than
zero, then the common scores are saved and the individual block
scores are orthogonalized with respect to the globally common
component, to obtain the orthogonalized block scores Tpo: Tpo ¼
Tp � TCTT

CXp.
d. GCA is performed on the orthogonalized scores Tpo of a subset k of

the blocks (k¼ 2:K) to identify the locally common components
TLk as those linear combinations of the block scores with high
correlation (usually above 0.90). To allow such components to be
also predictive, the common components are considered for the
successive modeling step only if they explain at least a certain
amount of X- and Y variance (usually 5%).

e. If the number of extracted common components is larger than
zero, then the locally common scores are saved and all the indi-
vidual block scores are orthogonalized with respect to the locally
common component, to obtain the orthogonalized block scores
Tpo: Tpo ¼ Tpo � TLkTT

LkXpo.
f. Steps (d)-(e) are iterated until all the K subsets of blocks have been

investigated.
4. For each block, a PLS regression model is calculated between Y and

the orthogonalized scores Tpo, and the scores of the corresponding
model TUp are the distinct scores for that block. Indeed, the orthog-
onalization steps in (3c) and (3e) have removed from the original
block scores Tp all the contributions from the global and local com-
mon components, leaving only the part of information which is
unique to that particular block. This further PLS modeling step allows
to retain only that part of the unique information which is relevant to
predict the response(s).

5. The final model is built by running an ordinary least squares regres-
sion between the concatenated scores matrix Tall¼ [TC, TL2, …

, TLk,
TU1, … TUp] and the Y: Y¼ Tallβ, β being the regression coefficients.

As described above, development of a PORTO model requires multi-
ple selection steps, to optimize the initial number of LVs for each block
and to identify the most appropriate number of common and distinct
olive data set. (A) MSC, (B), SNV, and (C) 2nd derivative.



Fig. 7. Loading weights of the common and distinct components extracted by PORTO for the olive data set. Common component 1 (A–E), Common component 2 (F–I),
Common component 3 (J–L), Common component 4 (M–O), Common component 5 (P–R), Distinct component corresponding to Raw (S), Distinct component cor-
responding to MSC (T), and Distinct component corresponding to VSN (U).

P. Mishra, J.M. Roger, F. Marini et al. Chemometrics and Intelligent Laboratory Systems 212 (2021) 104190

6



Fig. 8. PORTO model before and after pre-processing selection. (A) Preprocessings used: RawþMSCþVSNþSNVþ2nd derivative, and (B) RawþMSCþ2nd derivative.
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components; to this purpose, several local cross-validations (CV) are
performed in sequence, as discussed in Ref. [29] (Steps 2 and 4) or
threshold-based criteria are adopted (Step 3). Moreover, since all the
orthogonalization steps are extended also to the blocks not directly
involved in the calculation of the common and distinct components, the
final set of components are all mutually orthogonal, irrespective of their
nature. The functions for calculating and validating the PORTO approach
were developed in MATLAB (Release 2017b; The Mathworks, Natick,
MA) by the authors but rely on the multi-block data analysis codes from
NOFIMA [30] for the implementation of PO-PLS.

4. Results

4.1. Data description

The reference values for each data set are shown as histograms in
Fig. 3. The calibration set is shown in blue and the test set is shown in
brown. In all cases, the distribution of both the calibration and test sets
were almost normal. Such normal distributions of fruit properties are
often obtained in the field of fresh fruit analysis where most of the fruits
have average properties and a few fruits have either lower or higher
quality. Fig. 4 shows the calibration (Red) and test (Blue) spectra of the
different fruit samples used in the study. In the case of apples (Fig. 4A),
the bands in the range of 500–670 nm are related to the pigment
composition of the skin of the fruits. The region above 670 nm corre-
sponds to the 3rd overtones of C–H, O–H and N–H bonds and is widely
used in the analysis of fruit products to predict Brix and DM content [5,
6]. In the spectra of all the fruits (apples, olives, mangoes and pears), a
difference in the global spectrum intensities can be observed. Such a
difference indicates the presence of scattering effects (additive and/or
multiplicative) due to the interaction of light with the complex structure
of the fruit.

4.2. Data modelling

The results of regression modelling on all the 4 data sets are displayed
in Fig. 5. In particular, the outcomes of the sequential pre-processing
fusion done using SPORT are shown in panels A–D, whereas those of
the parallel pre-processing fusion done using PORTO are reported in
panels E–H. It can be noted that in all the cases, the PORTO models
showed slightly better performances compared to modelling with the
SPORT approach. In the case of the apple data set, for the PORTO
approach the R2

p was the same but the RMSEP decreased by 4%,
compared to the SPORT approach. In the case of the olive data set, the
PORTO approach increased the R2

p by 4.5% and decreased the RMSEP by
16%, compared to the SPORT approach. In the case of the mango data
set, the PORTO approach increased the R2

p by 1.2% and decreased the
RMSEP by 1% compared to the SPORT approach. In the case of the pear
7

data set, the PORTO approach increased the R2
p by 1.1% and decreased

the RMSEP by 4% compared to the SPORT approach. For all four data
sets, the differences in the predictive performances between PORTO and
SPORT were statistically significant based on the outcomes of CV-
ANOVA [25] (Apple: p¼ 0.002; Olive: p¼ 0.047; Mango: p¼ 0.014;
Pear: p¼ 0.007). A summary of the performances of the PLS models built
on data individually pre-treated with each of the pre-processings
considered for the fusion as well as those of the SPORT and PORTO ap-
proaches is presented in Table 2. The PORTO fusion approach performed
better than any individual pre-processing for all the cases considered.

4.3. Number of latent variables SPORT vs PORTO

A summary of the number of LVs extracted by SPORT and PORTO is
shown in Tables 3 and 4, respectively. In the case of SPORT, distinct
orthogonal LVs were extracted from the differently pre-processed blocks,
whereas, in the case of PORTO, the common and distinct LVs were
extracted from the whole set of preprocessed matrices or the individual
blocks, respectively.

An example of the LVs extracted by the SPORT and PORTO ap-
proaches for the olive data set are shown in Figs. 6 and 7, respectively.
The SPORT approach selected 4, 4 and 1 LVs for MSC, SNV and 2nd
derivative pre-processing, respectively. In the case of PORTO, 5 LVs were
selected as common and 3 LVs were selected as distinct (Fig. 7): it can be
seen that the common components that are extracted from the differently
pre-processed data often have similar profiles or similar bands (except for
2nd derivative which has different shape because 2nd derivative opera-
tion affects the overall profile of the spectra). Especially, the loadings of
the SNV and MSC blocks for the common components 1, 2 and 3 have
very similar profiles: this observation is consistent with what is reported
in the literature, where it is indicated that SNV and MSC perform very
similarly on sufficiently large datasets [31,32]. In this context, the pos-
sibility of identifying relations (similarities, such as in this case, but also
dissimilarities) between different pre-processings is one of the advan-
tages of PORTO. For example, the following comments can be put for-
ward for the common components. The first common component
(Fig. 7A–E) shows a very sharp peak at 700 nm, which is related to the
absorption of chlorophyll. It should be noted that, although chlorophyll
absorbs towards 680 nm, this peak at 700 nm actually corresponds to the
red edge that is observed in all chlorophyllin plants, which expresses the
slope between the chlorophyll absorption zone and the near-infrared
reflection plateau, caused by tissue scattering [33]. The loading
weights for the second common component (Fig. 7F–I) show on the one
hand a sinusoidal profile around 700 nm, related to the variation in po-
sition of the red edge, and on the other hand the beginning of a peak,
around 1150 nm, which certainly corresponds to the fat absorption,
around 1208 nm [34]. The third common component (Fig. 7J–L) seems
to be related to variations in light scattering, caused by the size of olive
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cells. For MSC and SNV, the component is related to the overall shape of
the spectrum; a peak, positive or negative, is found at the location of the
steepest areas of the spectra (Fig. 4C). For VSN, which performs a much
better correction of the spectra, the weights are very close to 0 every-
where, except in the red edge area. The fourth and fifth components are a
little more difficult to interpret; it seems that they are related to the
absorption of water at 960 nm [34] and to various interaction phenom-
ena. All these findings are consistent with the fact that the DM of olives is
very much related to their maturity. Indeed, during olive ripening, the
chlorophyll regresses, the proportions of water and oil change and the
cell size changes [35].

4.4. Pre-processing selection: an example on the apple data set

The PORTO approach supports pre-processing selection by deselect-
ing some of the preprocessings if they are redundant in both common and
distinct components. As an example, in the case of the apple data set
(Table 3), the distinct LVs were identified as corresponding to the raw
data, MSC and 2nd derivative pre-processing techniques. In the case of
the common components, all of them either have 2nd derivative pre-
processing technique or raw data linked to the common information.
Therefore, the SNV and the VSN pre-processings are not needed as the
common information is already present in the 2nd derivative pre-
processed data. Hence, SNV and VSN can be deselected. The model
before (Fig. 8A) and after deselecting (Fig. 8B) SNV and VSN are shown
in Fig. 8. It can be noticed that the performances before and after dese-
lecting SNV and VSN are practically identical.

5. Discussion

NIR spectra of fruit are affected by phenomena such as light scattering
and the efficient removal of the effect of this scattering can improve the
data modelling. Different scatter correction techniques can reduce/
remove scattering to a certain extent. However, a single technique is
usually not sufficient to remove all the effects, so a fusion of multiple
techniques can often perform better. This is because different scatter
correction techniques can highlight complementary information [36]. In
the present work, modelling with the SPORT and PORTO approaches also
showed that the optimal models were based on the information (LVs)
corresponding to multiple pre-processing techniques used to pre-process
the same data.

In the case of SPORT, the LVs are orthogonal, selected sequentially
and represent distinct information. Whereas, the PORTO method first
extracts the common LVs and later, once all the common information is
extracted, the remaining distinct information is extracted from each
differently pre-processed block. As in SO-PLS [18], the performances of
SPORT are dependent on the order of the pre-processing blocks as it
performs a sequential extraction of LVs where the blocks (pre-processing
techniques) of high importance should be included first [14]. However,
PORTO does not have such a disadvantage as it processes all the matrices
in parallel, so that the relevance of the individual blocks does not matter
as it doesn't affect the outcomes. Not needing to choose a priori the
pre-processing order is the main advantage of PORTO over the SPORT
approach. By extracting the common and distinct information, the
PORTO approach was able to achieve slightly better performances
compared to SPORT on all the data sets presented in this study. The better
performances of PORTO could be the fine tuning of the model by
extraction of the common and distinct information, where extraction of
the common information was guided by multiple pre-processing tech-
niques all together. However, when the pre-processing order for the olive
dataset was changed, the SPORT approach achieved similar results
compared to the PORTO approach. This indicates the SPORT approach is
not inefficient; rather, based on the “correct” block order it can perform
as well as the PORTO approach.

Pre-processing selection is also feasible with the PORTO approach:
indeed, if a certain pre-processing does not contain distinct components,
8

the corresponding pre-processing can be deselected, thus reducing the
computational load for future analysis. One other challenge frequently
encountered with the use of different pre-processings is related to the
interpretation of the models. Often the different mathematical trans-
formations make the chemical interpretation of the models based on the
model coefficients not straightforward [37]. In this regard, the PORTO
approach does not provide a clear solution but can support in gaining
better insight into how the data are affected by different pre-processings.
The common components of the PORTO approach can be used to explore
how the same information is represented by differently shaped LVs
extracted from differently preprocessed data, thus, giving a detailed
insight into the associatedmathematical transform. For example, in Fig. 7
the 5th common component (5th row of Fig.) has a very different shape
for the LVs corresponding to RAW andMSC preprocessed data, compared
to the 2nd derivative preprocessed data, but all three components explain
the same information.

Another advantage of PORTO can also be understood as a means of
selecting between the combinations of multiple preprocessing. Often
multivariate data generated from analytical sensors suffers from a range
of effects and several preprocessing operations are required to correct the
data, such as smoothing þ scatter correction þ2nd derivative for
revealing underlying peaks. Often, several combinations of pre-
treatments (and, within each technique, of parameters/meta-
parameters) need to be tested to select the best option. To this purpose,
approaches that rely on DoE-based exploration of preprocessing tech-
niques are available [11] but they are based on defining a specific order
of the operations and the selection of at most one technique for each
family of preprocessing strategies. On the other hand, the common and
distinct information extracted by PORTO can also be used to select spe-
cific combinations of preprocessing operations in a more versatile way.
Indeed, the user can just remove the preprocessing combinations which
do not carry unique information, similar to what was demonstrated with
the apple data set in the present study (Fig. 8).

6. Conclusion

In the present work, PORTO, a new approach for parallel orthogo-
nalized synergistic fusion of pre-processing strategies was presented. The
results showed that the performances of the PORTO approach were
slightly better than those of SPORT, a competing approach for pre-
processing fusion. The improvement in R2

p and decrease in RMSEP
were up to 4.5% and 16%, respectively. Furthermore, the key benefit of
the PORTO approach is to explore the common and distinct information
related to the use of the different pre-processing techniques. The pres-
ence of distinct information underlines the distinct variability high-
lighted by each pre-processing technique. Also, pre-processing
techniques can be deselected if they only explain the common informa-
tion but do not carry any distinct information. Moreover, it has been
shown [14] that the results of the SPORT approach may be dependent on
the pre-processing order, especially as far as the selected pre-processings
and, in general, the number of latent variables extracted from each block
are concerned; on the other hand, the order of the pre-processings has
been shown not to influence relevantly the predictive performances.
Unlike SPORT, the PORTO approach is almost unaffected by the
pre-processing order as, in most of the steps of the algorithms, blocks
corresponding to different pre-processings are all processed in parallel.
The PORTO approach is not limited to spectral data but can also be used
in the case of any data where pre-processing is required. This study does
not conclude that the SPORT approach is inefficient, but rather it stresses
that, in SPORT, there is always the need to decide on the order of the
pre-processing, which for some data sets may not be trivial; however, if
the correct order is chosen it can provide similar performances compared
to PORTO. It is also worth stressing that, although, for the sake of an
easier presentation of the algorithm and a more consistent discussion of
the results in this paper, the PORTO approach has only been discussed in
the regression context, it can also be used to deal with classification
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problems. In particular, to extend the PORTO approach to do this, it is
only necessary to introduce a dummy coding of the response, just as in
PLS-DA [33] and substituting the final ordinary least squares model (step
5 of the PO-PLS algorithm in Section Parallel pre-processing through
orthogonalization) by a linear discriminant analysis (LDA) on the
concatenated scores.

Lastly, it is fundamental to point out that, being a supervised
approach, PORTO could suffer from the risk of overfitting: to minimize
such a risk, it therefore essential that all modeling aspects (predictions,
interpretation, coefficients) be properly validated [34].
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