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Abstract

Anaerobic digestion (AD) is used to minimize solid waste while producing biogas by the

action of microorganisms. To give an insight into the underlying microbial dynamics in

anaerobic digesters, we investigated two different AD systems (wastewater sludge mixed

with either fish or grass waste). The microbial activity was characterized by 16S RNA

sequencing. 16S data is sparse and dispersed, and existent data analysis methods do not

take into account this complexity nor the potential microbial interactions. In this line, we pro-

posed a data pre-processing pipeline addressing these issues while not restricting only to

the most abundant microorganisms. The data were analyzed by Common Components

Analysis (CCA) to decipher the effect of substrate composition on the microorganisms. CCA

results hinted the relationships between the microorganisms responding similarly to the AD

physicochemical parameters. Thus, in overall, CCA allowed a better understanding of the

inter-species interactions within microbial communities.

Introduction

Anaerobic digestion (AD) is a well-established multistep process for the treatment of organic

waste that generates biogas, a gas mixture composed of CH4 and CO2, by the action of the

microorganisms growing in the anaerobic digesters [1]. A critical parameter in AD is the car-

bon-to-nitrogen (C/N) ratio. AD has been particularly used with wastewater sludge (WAS)

obtained from wastewater treatment plants. However, the low C/N ratio of WAS can lead to

low digestion efficiency rates and thus, to low biogas production yields [2]. In order to improve

WAS conversion to biogas, it can be digested in combination with other substrates richer in

carbon. This strategy is also known as anaerobic co-digestion (AcoD).

Substrates (and substrate mixtures) with different nutrient compositions result in different

performance outcomes. For example, the use of green waste rich in carbohydrates, such as

fruit residues, can lead to the rapid production of volatile fatty acids (VFA), resulting in the
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acidification of the digester that will inhibit the methanization process [3]. Alternatively to

these performance analyses, it is possible to examine the anaerobic digesters from a microbial

perspective. Advances in high-throughput 16S DNA and RNA sequencing have allowed to

extend our understanding of the microbiome by mapping the microbial diversity of the eco-

systems [4,5]. However, while RNA-based sequencing approaches give an insight into the

active microorganisms, DNA-based sequencing approaches detect both active and inactive

cells. For this reason, DNA-based sequencing approaches are inaccurate for studying the

microbial community structure [6].

In the study of anaerobic digestion processes, the analysis of the microbial communities

can provide an insightful link between the physicochemical state of these digesters and the

growth of the microorganisms [7–9]. Therefore, in waste AcoD, this analysis is not only useful

for obtaining a microbial characterization of the digestion process but also to determine the

digester conditions (e.g. temperature, pH, % co-substrate) that maximize the growth of the

microbial species responsible for the biomass digestion. In this regard, we have investigated

from a microbial perspective the AcoD of WAS with garden grass (GG) and fish waste (FW)

co-substrates, using the performance experiment presented in Cardona et al. (2019) [10].

In studies of ADs monitored by 16S sequencing techniques, microbial populations are

often dominated by the same phyla regardless of the reactors’ conditions [7]. For instance, the

most recurrent phyla from Bacteria are the Firmicutes, the Bacteroidetes, and the Proteobac-
teria [7,11]. From Archaea, the classes Methanobacteria and Methanomicrobia are typically

found in Ads [7]. Therefore, in order to identify those microbial populations that specifically

respond to the substrate of study, data should be explored at other, lower, taxonomic levels

(e.g., class, order, family, genus, or species), and this data exploration should not overlook the

less abundant microbial Operational Taxonomic Units (OTUs). However, the data exploration

at the lowest taxonomic levels is difficult as some OTUs may still remain unclassified [12].

Datasets containing 16S rRNA sequence counts are usually large, sparse, and over-dispersed

[13]. To reduce the complexity of the study, several approaches are commonly pursued: to ana-

lyze only those OTUs found above an abundance threshold (i.e., 1% of the total abundance

[14]), to analyze Archaea and Bacteria separately [15], and even by carrying out directed analy-

ses on the less abundant populations (i.e., comparing populations of Methanosarcina with

Methanosaeta [16]). However, none of these three approaches allows for a complete data

exploration, as they do not take into account the potential relationships (i.e., between Archaea

and Bacteria, and between the dominant and the subdominant micro-organisms) in the ADs.

With this aim, in this study we propose a data pre-processing pipeline to reduce the data

sparsity and dispersity, allowing the posterior analysis at the lowest taxonomic level of all the

microbial community.

The pre-processed data was further examined with the Common Components Analysis

(CCA) chemometric method [17,18] to unravel the underlying microbial communities that

responded to GG and FW co-substrates. CCA has the advantage over the more commonly

used Principal Components Analysis (PCA) in that variables presenting the same effect on the

dispersion of the observations will be grouped together in the same Common Component

(CC), and that the first CCs will group together the largest number of variables with the great-

est effect on a particular dispersion of the individuals [17,18]. Finally, these microbial commu-

nities associated with each latent structure (component) were explored from a phylogenetic

and ecologic perspective to investigate the foundations of these microbial interactions. Hence,

the proposed data analysis pipeline has not only been specifically designed to cope with the

particularities of this data type, but also to provide results of significance in ecological terms by

revealing potential microbial interactions in the ecosystems studied.
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Material and methods

Feedstock preparation

Wastewater sludge (WAS) was obtained from an industrial wastewater treatment plant (Valen-

ton, France) operated by Degrémon SAS. Fish waste (FW) was collected from a fish market,

and garden grass (GW) was generated by mowing INRAE’s lawn. Organic wastes were then

crushed and the resulting solid parts were stored at 4˚C for two days.

The inoculum was obtained from a mesophilic full-scale anaerobic digester treating pri-

mary sludge at the same wastewater treatment plant. To prepare the inoculum before use, it

was left under anaerobic conditions at 35˚C for two weeks to digest the remaining residual

organic matter.

Degrémon SAS gave permission to collect all sludge sources (WAS and the inoculum) from

the wastewater treatment plant.

Chemical characteristics of substrates and inoculum can be consulted in S1 Table.

Co-digestion experimental set-up

The same experimental set-up from Cardona et al. (2019) was used [10]. Nine anaerobic 1 L

batch bioreactors bottles were used. Bioreactors were filled with different mixtures of WAS

substrate and a co-substrate (FW or GG) prepared in different proportions of grams of chemi-

cal oxygen demand (COD). These proportions consisted of 0/100, 25/75, 50/50, 75/25, and

100/0 gCOD WAS/gCOD co-substrate. Next, for every mixture, 12 gCOD were introduced

into a reactor, and all bioreactors were inoculated with anaerobic sludge to a final substrate/

inoculum ratio of 12 gCOD/1.2 gCOD. All the digesters were complemented with a biochemi-

cal potential buffer (International Standard ISO 11734 (1995) [19]) up to a final working vol-

ume of 700 mL. The bioreactors were sealed with a screw cap and a rubber septum and

headspaces were flushed with N2 (purity > 99.99%, Linde gas SA). The reactors were incu-

bated for 4 weeks at 35˚C in the dark without agitation and samples were collected weekly

using a syringe. Samples were centrifuged at 10,000 g for 10 minutes to separate the pellets

from the supernatants. Both pellets and supernatants were snapped frozen in liquid nitrogen.

Pellets were kept at -80˚C until the RNA extraction, and supernatants were stored at -20ºC
until the chemical analysis.

Microbial structure analysis

For each tested substrate mixture, we only sequenced the 16S rRNA of the 2 samples closest in

time (one after and one before) to the maximal methane production capacity (see S1 File). The

maximal methane production for WAS was found at day 24, for the WAS-GG co-digestion

mixtures between the 14th and the 15th day, and for the WAS-FW co-digestion mixtures

between the 22th and the 25th day. So, for digesters containing mixtures of WAS and GG, the

sequenced samples were collected at days 14 and 21. For digesters containing mixtures of

WAS and FW, the sequenced samples were collected at days 21 and 28. By sampling at these

time points, the analysis was driven towards determining the microbial response linked to

methanogenesis for the different substrate mixtures used. In order to compare results from

GG and FW digesters to those from WAS digesters, samples sequenced from the latter were

collected at the 3 screened time-points (days 14, 21, and 28). In total, 19 samples were

sequenced. For more detail about the 16S rRNA sequencing analysis [4], see S1 File. The

sequencing data have been deposited in the bioproject PRJNA562430, and samples accession

numbers go from SAMN12640739 to SAMN12640746, from SAMN12640748 to

SAMN12640756, and from SAMN12640758 to SAMN12640759.
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Bioinformatic analysis

The FROGS (Find Rapidly Operational Taxonomic Units with Galaxy Solution) pipeline was

used to analyse the 16S rRNA tags reads. FROGS is a galaxy workflow designed to produce an

OTU count matrix from high depth sequencing amplicon data [20]. Briefly, the reads com-

prised between 100 and 500 base pairs (bp) were merged and the resulting dataset was

denoised. The reads kept were clustered with Swarm algorithm, and chimera and singleton

reads were removed. Finally, the taxonomic affiliation of the remaining reads was determined

using Silva132 16S as the reference database, resulting in 1145 different OTUs. The counts for

every sample and OTU were arranged into a 19-by-1145 data matrix.

Overview analysis of the anaerobic digester active populations (traditional

analysis)

OTU counts from Archaea and Bacteria were studied separately. For each subset, OTUs that

did not exceed 1% of the total abundance in at least one sample were combined and analysed

as a single OUT [14]. Then, the relative abundance of the OTUs were plotted in bars using the

phyloseq R-package [21].

Proposed data analysis pipeline

OTU abundances from GG and WAS samples collected at days 14 and 21 were grouped into a

new matrix, and the same was performed for the OTU abundances from FW and WAS sam-

ples collected at days 21 and 28. These resulting two matrices were composed of 10 samples

each and they will be referred from now on as the ‘GG dataset’ and the ‘FW dataset’, respec-

tively, since they represent the samples obtained from GG or FW digesters containing mix-

tures at 5 different proportions of sludge (0%, 25%, 50%, 75%, and 100%).

The microbial diversity for each of the studied datasets was calculated as the number of dif-

ferent OTUs presented in the digesters.

Prior to the chemometric analysis, OTU abundances in each sample were divided by their

total number of sample reads (Step 1a in Fig 1). Moreover, considering the dispersion of the

Fig 1. Proposed data analysis pipeline.

https://doi.org/10.1371/journal.pone.0232324.g001
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OTUs in the two matrices, OTUs not present in at least 2 samples were discarded and not used

in subsequent analyses (Step 1b in Fig 1) because their limited presence is proof of a lack of

preference for the used substrate. We refer to the set of retained OTUs as ‘ubiquitous’, while

the discarded ones are referred as ‘scarce’. Then, the two matrices were Pareto-scaled [22]

(Step 2a in Fig 1).

Each data matrix was investigated by Common Components Analysis (CCA) (Step 2b in

Fig 1). CCA is an unsupervised exploratory chemometric method that calculates a series of

orthogonal common components (CCs) as linear combinations of the weighted original vari-

ables. In these components, variables that present the same dispersion of the observations have

strong weightings. This implies that each CC will group together strongly correlated variables,

i.e. variables that have the same effect on the dispersion of the observations. As well, the first

CCs will group together the largest number of variables with the greatest effect on a particular

dispersion of the individuals. As in Principal Components Analysis, each CC has associated

scores and loadings vectors. Besides, a vector of weights (called salience) corresponding to the

importance of the variables is also obtained iteratively for each CC. For more information

regarding CCA, see [17,18].

When CCA is used for the analysis of a 16S dataset, each CC component is representative

of an underlying microbial community. CC scores were plotted in bars to examine the rela-

tionship between the substrate composition and these microbial communities (Step 3a in Fig

1). On the other hand, the phylogeny of the OTUs from these microbial communities was

determined from the analysis of their corresponding CC loadings. Representative OTUs for

each loading vector were selected after their inspection using S-plots, and they were graphically

represented over phylogenetic trees of these OTUs (Step 3b in Fig 1) using the GraPhlAn

online tool from the Galaxy website (http://huttenhower.sph.harvard.edu/galaxy/).

Finally, to evaluate possible links between the microbial communities and the performance

of digesters, the Pearson’s correlation coefficient, r, between the CC scores and each of the per-

formance parameters (see S2 Fig) was calculated (Step 4 in Fig 1).

Results

Overview analysis of the anaerobic digester active populations (traditional

analysis)

Overall, the microbial diversity consisted of 1145 OTUs. Particular distributions of the species

across the digesters can be recognized from the phylogenetic analysis of the OTU counts, as

shown in Fig 2.

The analysis of the OTU counts revealed that the active population of Archaea was inferior

to that of Bacteria in all digesters, ranging between ~4% and ~31% of the total microbial active

population (Fig 2A and 2B). Moreover, these differences in relative abundance among digest-

ers were associated with the co-substrates, since the relative abundance of Archaea presented a

negative correlation (r = -0.87) to FW substrate (Fig 2A), and a positive correlation (r = 0.69)

to GG substrate (Fig 2B).

Regarding the Archaea species, its diversity is mainly described by 8 OTUs that presented

an abundance superior to 1% in at least one sample. Only 4 of those 8 OTUs were found in

FW-digesters, while the number of Archaeal OTUs found in GG-digesters was of 6. In all sam-

ples, the most populated genus was Methanosarcina (2 OTUs), ranging from ~3% to ~29% of

the total microbial population. Methanosarcina is a typical genus found in co-digesters of sew-

age sludge [11]. Other Archaea genera were also detected, with a heterogeneous preference for

the different substrates. Methanoculleus species (2 OTUs) mainly spanned from 25% GG- to

100% FW-digesters, a Methanofollis species (1 OTU) had greater activity in digesters rich in
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grass, a Methanocorpusculum (1 OTU) species was more active in 50% and 75% GG-digesters,

and anaerobic digesters with�75% fish were found to be hostile AD environments for Metha-
nospirillum species (2 OTUs). A similar distribution pattern as for Methanospirillum was

observed for the Archaea species that accounted for less than 1% of the relative abundance in

the digesters (grouped in Fig 2A and 2B as ‘Other Archaea’).

Bacteria were mainly represented by 84 OTUs from 19 different orders that presented an

uneven distribution across all screened anaerobic digesters. Bacterial diversity of FW-digesters

was composed of 43 OTUs, while the number of Bacterial OTUs found in GG-digesters was of

61. At the order level, GG-digesters (Fig 2D) contained a higher diversity than FW-digesters

(Fig 2C). In the latter, they were clearly dominated by the Clostridiales (39 OTUs) order, and

Fig 2. Taxonomic distribution obtained from 16S rRNA sequencing, expressed in percentage of the total number of sequences. A-B) Taxonomic distribution of

Archaea (coloured by genus) in FW (A) and GG (B) digesters. C-D) Taxonomic distribution of Bacteria (coloured by order) in FW (C) and GG (D) digesters.

https://doi.org/10.1371/journal.pone.0232324.g002
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Bacteroidales (16 OTUs) were also found in all FW-digesters. Clostridiales and Bacteroidales
are known to be two dominant phylogenetic orders adapted to degrading a wide range of sub-

strates [23].

Synergistales (2 OTUs) and Petrotogales (1 OTU, genera Defluviitoga) were specific to the FW

substrate, although their activity was negligible in 100% FW-digesters. Synergistales have been

detected in samples collected in anaerobic digesters ecosystems, and also living as a host in fish [24].

Anaerolineales (2 OTUs) and Cloacimonadales (4 OTUs) could grow in 0–50% FW-digesters.

Anaerolineales is a core order found in sewage sludge [25], while Cloacimonadales are syntrophic

Bacteria that sustain on propionic acid found in anaerobic digesters containing WAS sludge [26].

Coprothermobacterales (1 OTU, genera Coprothermobacter), Hydrogenedentiales (1 OTU)

and Erysipelotrichales (1 OTU, genera Turicibacter) presented their maximal activity for 100%

WAS-digesters, whereas they were almost inactive in the rest. Coprothermobacterales are

hydrogen producers that can establish syntrophic associations with hydrogenotrophic Archaea

[27], such as with Methanoculleus, or with H2-utilizing Bacteria as Hydrogenedentiales [28].

On the other hand, Turicibacter is typically found in sewage sludge [29].

In GG-digesters (Fig 2D), a larger number of bacterial orders were observed than for FW-

digesters (Fig 2C). Furthermore, most of these orders were specific for a few of the GG-digest-

ers, while the span of the bacterial orders in FW-digesters was less restricted. In other words,

the bacterial diversity across GG-digesters was higher than across FW-digesters.

Bacteroidales, Cloacimonadales, Clostridiales, and MSBL9 (1 OTU) were found in all GG

digesters. Lactobacillales (2 OTUs), Enterobacteriales (1 OTU) and Spirochaetales (3 OTUs)

were mainly found in 100% GG digesters; Betaproteobacteriales (3 OTUs) and Actinomycetales
(1 OTU) preferred 25%-75% GG-digesters; and Fibrobacterales were prominent at the 21st day

in 25%, 50%, and 100% GG-digesters. Lactobacillales [3], Enterobacteriales [30], Spirochaetales
[31], Actinomycetales [32], and Fibrobacterales [33] are known to be carbohydrate fermenters.

Finally, in GG digesters, the percentage of bacterial OTUs that did not reach 1% of the total

abundance was very high, up to 25% for 100% GG digesters, while for FW-digesters this value

was about 10–15%.

Microbial diversity in anaerobic digesters

The species diversity in the anaerobic digesters was evaluated by studying the dispersion of the

OTUs. For this aim, we used an approach that consisted in the classification of all the detected

OTUs into two categories (either ‘ubiquitous’ or ‘scarce’) and the posterior exploration of the

distribution of ‘ubiquitous’ OTUs across all the samples (Step 1b in Fig 1). In this approach,

‘ubiquitous’ OTUs refer to those that were found in > 20% of the samples, while ‘scarce’ OTUs

are those not classified as ‘ubiquitous’.

From the original list of 1145 OTUs, in the FW dataset only 484 OTUs (25 Archaea + 459

Bacteria) could be considered as ‘ubiquitous’, while in the GG dataset 828 OTUs (36 Archaea

+ 792 Bacteria) were identified as ‘ubiquitous’. We also compared the microbial diversity

across the investigated digesters. In the FW dataset, the ‘ubiquitous’ microbial diversity was

negatively correlated (r = -0.94) to the percentage of fish (a 3.5-fold difference between 0% and

100% FW samples, see Fig 3A). On another note, in the GG dataset, the ‘ubiquitous’ micro-

biome was more diverse when WAS and GG were used in the same proportions. This mixture

produced a ~50% increase in the total number of OTUs compared to samples obtained from

digesters containing either only WAS or GG (Fig 3B).

Microbial active population dynamics

FW and GG datasets of ‘ubiquitous’ OTUs were explored by CCA (Step 2b in Fig 1).
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CCA only revealed two interpretable components for each of the two datasets. The CCA

scores (Fig 4) are descriptive of the species sensitivity to the variations in the substrate compo-

sition, regardless of their relative abundance in the anaerobic digesters (Step 3a in Fig 1). Both

CCA models show similar preference trends for the communities living in the anaerobic

digesters. On the one hand, the active microbial population represented by CC1 in the FW

dataset includes those OTUs most active in mixtures rich in WAS (by positive scores) or in

FW (by negative scores) substrate. On the other hand, CC2 (Fig 4B) is representative of those

OTUs that were most active in the mixture of WAS and FW substrates (by positive scores),

and those most active in the two mono-digestions (100% WAS and 100% FW, by negative

scores in Fig 4B). An analogous microbial response was interpreted from CC1 and CC2 scores

of the GG dataset (Fig 4C and 4D, respectively).

Lastly, in these CCs, the microbial communities were not severely altered over time, except

for CC2 from the FW dataset (Fig 4B). In this component, there is an important decay of the

preference for 25% and 50% FW over time. This response reflects a drastic change in the

microbial ecosystem that might be a consequence of the exhaustion of essential nutrients.

With the aim to focus only on the most characteristic OTUs from each population, OTUs

with the highest absolute covariance (greater than ± one standard deviation) with the CC

scores were selected employing the S-plots (see S1 Fig). For the FW dataset, 59 OTUs were

selected in CC1 and 42 in CC2. In total, 71 OTUs from 18 different orders showed a (positive

or negative) response to the FW substrate (see S2 Table). For the GG dataset, 109 OTUs were

selected in CC1 and 104 in CC2. In total, for this dataset, 161 OTUs from 36 different orders

showed a response to the GG substrate (see S3 Table).

The OTUs selected from the loadings were plotted in phylogenetic trees (Step 3b in Fig 1).

These plots are shown in Fig 5. For clarity, for every dataset, phylogenetic trees were created

from the combined list of selected OTUs in the two components. In this manner, the spatial

Fig 3. Sample taxonomic diversity. A) ‘Ubiquitous’ OTUs in the FW dataset. B) ‘Ubiquitous’ OTUs in the GG dataset. For every sample, the collection time and % co-

substrate is given as a label on the x-axis. Moreover, % co-substrate is also indicated by a colour-scheme palette ranging from orange to dark blue for 100% WAS to

100% FW, respectively, in the FW dataset; and from orange to green for 100% WAS to 100% GG, respectively, in the GG dataset. Uniform and striped bars correspond

to the time-points before and after the maximal methane production for the given co-substrate mixture (see methods). The red dashed lines represent the total number

of ubiquitous OTUs.

https://doi.org/10.1371/journal.pone.0232324.g003
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distribution of the loadings is identical for the two components. The phylogenetic trees

descriptive of the FW dataset are shown in Fig 5A and 5B, while those corresponding to the

GG dataset are shown in Fig 5C and 5D.

In these trees, some common trends can be observed. In the phylogenetic tree of the FW

dataset colored by CC1 loadings (Fig 5A), Cloacimonadia, Anaerolineae, Phycisphareae, and

most Methanomicrobia were associated with positive loadings (i.e. preference for WAS sub-

strate as seen in Fig 4A). Individual OTUs from Methanobacteriaceae, Syntrophobacterceae,
Coprothermobacteraceae, Hydrogenedensaceae, Rhodocyclaceae (order Betaproteobacteriales)
also showed positive loadings for this component. On the other hand, most species associated

with a negative loadings value (i.e. preference for FW) were from the Clostridiales and to a

lesser extent from the Bacteroidia classes. When the same phylogenetic tree is colored

Fig 4. CCA score plots for the FW and GG datasets. A) CC1 scores for the FW dataset B) CC2 scores for the FW

dataset C) CC1 scores for the GG dataset D) CC2 scores for the GG dataset. The colour-scheme used is the same as in

Fig 3.

https://doi.org/10.1371/journal.pone.0232324.g004
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Fig 5. Phylogenetic trees colored according to the CCA loadings from the FW and GG datasets. A-B) Phylogenetic trees of the OTUs selected from CC1 loadings

(A) and CC2 loadings (B) for the FW dataset. C-D) Phylogenetic trees of the OTUs selected from CC1 loadings (C) and CC2 loadings (D) for the GG dataset. Positive

loadings are coloured in red, negative loadings in cyan, and OTU not selected for the given components were left blank. The shadow colour of every phylogenetic group

represents the average loading of the associated OTUs. Labels: aci, Acidobacteria; act, Actinobacteria; alf, Alphaproteobacteria; ana, Anaerolineae; arm, Armatimonadetes;
bb, Bacteroidales; bet, Betaproteobacteriales; brc, BRC1; bs, Sphingobacteroidales; cal, Caldatribacteria; chl, Chlamydiae; chr, Christensenellaceae; cld, DTU014; cle,

Eubacteriaceae; clg, Gracilibacteriaceae; cll, Lachnospiraceae; clo, Cloacimonetes; clp, Peptostreptococcaceae; clpc, Peptococcaceae; clr, Ruminococcaeceae; cls,

Syntrophomonadaceae; clv, Clostridiales vadinBB60 group; cl1, Clostridiaceae 1; cl11, Clostridium Family 11; cop, Coprothermobacteria; cya, Cyanobacteria; del,
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according to CC2 loadings, positive values (i.e. preference for the mixture of WAS and FW)

were found for Cloacimonadia and Synergistia, while the negative values (i.e. preference for

100% WAS and 100% FW) were from the Clostridia and Bacteroidia classes.

As seen in the overview analysis of the active populations, the microbial communities in

digesters containing GG are more complex than those found in digesters containing FW.

Although most phylogenetic groups are very heterogeneous, some present a marked substrate

preference. For CC1 (Fig 5C), Anaerolineae and Phycisphareae OTUs are associated with posi-

tive loadings (i.e. preference for sludge), while Methanomicrobia, and the Ruminococcaceae
and the Christensenellaceae families from the Clostridiales class are associated with negative

loadings (i.e. preference for GG). On the other hand, Alphaproteobacteria and some Christen-
senellaceae species are more active in the mixture of WAS and GG (positive loadings), while

species from the Enterobacteriales and the Clostridiaceae 1 family respond better to the mono-

digestion substrates, WAS or GG (negative loadings).

Link to degradation performance markers

The connection between the microbial populations and the measured degradation perfor-

mance markers can be easily drawn from the analysis of the CCA scores. This link can be sus-

pected when the evolution of the degradation performance markers across the samples is

correlated to the CCA scores (Step 4 in Fig 1).

For instance, there is a positive correlation between CC1 and the methanogenic activity

(αapp), indicating that samples containing more organic matter (in this study, FW and GG)

presented a higher acetoclastic profile [34]. Specifically, for FW-digesters, Pearson’s correla-

tion between CC1 scores and the αapp is of 0.90 (see S3 Fig). For GG-digesters, the correlation

is of 0.96.

Other performance indicators can also be connected to the CCA results. For instance, for

the FW dataset, NH4
+ is strongly negatively correlated (r = -0.92) to CC1, such as most selected

Clostridium OTUs in the CCA analysis (see S2 Fig). A correlation between Clostridium and

NH4
+ has been already observed in household biogas digesters [29]. DIC parameter is also

highly negatively correlated to CC1 (r = -0.89).

For the GG dataset, the parameters that show a high Pearson’s correlation with CC1 were

DIC (-0.76), acetate (0.77), biogas (-0.91), and CO2 (-0.90) productions (see S2 Fig).

Discussion

The overview analysis (Fig 2) showed that important changes occurred for the active popula-

tions of the most dominant OTUs. In addition, across digesters, the difference in the percent-

age of the bacterial OTUs that did not reach 1% of the total abundance was very high,

revealing that in these digesters there exists an important latent microbial population that

should not be neglected in the analysis. In agreement with this observation, the high number

of ubiquitous OTUs obtained in the analysis of the microbial diversity using the proposed data

analysis pipeline (Fig 3) hinted that the microbial communities responding to the substrates

are significantly more complex than what could be interpreted from the overview analysis.

In the same analysis of the microbial diversity (Fig 3), different responses were observed for

the two sets of ADs. On one hand, in FW digesters, the number of ubiquitous OTUs inversely

correlated to FW implies that this substrate imposed a strong selective pressure (Fig 3A). On

Deltaproteobacteria; ent, Enterobacteriales; ery, Erysipelotrichales; fib, fibrobacterales; hyd, Hydrogenedentiales; izi, Izimaplasmatales; lac, Carnobacteriaceae; lae,

Enterococcaceae; lal, Leucononostocaceae; len, Lentisphaerae; mb, Methanobacterium; mc, Methanocollis; mcr, Methanocorpusculium; mf, Methanofollis; ms,

Methanosarcina; msp, Methanospirillum; pet, Petrotogales; phy, Phycisphaerae; pir, Pirellulales; spi, Spirochaetales; syn, Synergistales; wps, WPS-2.

https://doi.org/10.1371/journal.pone.0232324.g005
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the other hand, in GG digesters, the synergic effect of the two substrates observed on the

higher diversity of 50% GG-digesters (Fig 3B) may be the consequence of having combined

two complementary substrates, resulting in a better macro- and micro-nutrient equilibrium,

or due to the dilution of inhibitory or toxic compounds present in the mono-digestion sub-

strates.[35] These two reported alterations in the microbial diversity were not spotted in the

traditional analysis, pointing out that most of the affected species were sub-dominant.

Regarding the two CCA analyses (Fig 4), in broad terms, similar results were obtained. In

them, a gradual shift of the microbial community due to substrate composition was observed,

and the observed differences over time were smaller than those between reactors. Nevertheless,

CC scores were easier to interpret as each of the CCs represents those OTUs that responded

similarly to the substrate, while to retrieve the same information from Fig 2 required the re-

analysis of the OTUs one by one.

When the results from the traditional analysis (Fig 2) are compared with those from the

proposed data analysis pipeline (Figs 3–5), four important remarks can be given.

First, it can be seen that the analysis of the 16S rRNA data by CCA combined with the phy-

logenetic representation of the loadings allowed to analyze simultaneously the archaeal and the

bacterial population. In the traditional analysis of these type of data, Archaea and Bacteria are

typically analyzed separately due to the important differences in relative abundance.4 There-

fore, the methodology proposed here provides an advantage in the interpretation, since it

deepens our understanding of the interaction among all these different species living in the

anaerobic digesters.

Second, more OTUs (and more orders) were selected in the proposed method than in the

traditional analysis. Since the method does not depend on the measured abundances, but on

the relative measured response across the measured samples, it is possible to detect some latent

species that were not highlighted in the analysis of the taxonomic distribution of Fig 2. The

analysis in Fig 2 only made it possible to observe 92 OTUs from 19 bacterial orders and 5

archaeal genera, while CCA selected a total of 182 OTUs (in at least one of the datasets) from

[35] bacterial orders and 6 archaeal genera. Examples of the relevant OTUs according to the

CCA analysis but not evaluated in Fig 2 due to their abundance include Alphaproteobacteria
(alf in Fig 5), Deltaproteobacteria (del), Izimaplasmatales (izi), Lentisphareae (len), and Metha-
nobacterium (mb). Thus, in overall, the developed methodology avoids overlooking the less

abundant species, while at the same time resulting on a better understanding of the analyzed

microbial populations.

Third, the phylogenetic representation (Fig 5) allows investigating the selected OTUs at all

taxonomic levels at once, while this is not possible from the traditional analysis (Fig 2).

And fourth, all selected OTUs in the CCA responded to the substrate, which allows for an

easier and more direct interpretation of the active population dynamics associated with the

anaerobic co-digestion of sludge.

Furthermore, the most notable information that can be retrieved from the CCA analyses is

that OTUs from the same component present a similar substrate preference, pointing out that

they may have established a syntrophic relationship in the digesters. For example, from the

analysis of the CC1 loadings from the FW dataset (Fig 5A), it can be presumed that Methano-
microbia species may grow on the CO2 released from other microbial species associated with

similar loading values, such as Anaerolineae or Phycisphareae. Since these species are favoured

by WAS, Methanomicrobia species are indirectly favoured as well by the same substrate. How-

ever, when the CC1 loadings from the GG dataset (Fig 5C) are investigated, it is observed that

Methanomicrobia responds positively to GG. This preference can be interpreted as these

Archaea grow on CO2 mainly obtained from the fermentation of carbohydrates by the cellulo-

lytic Lactobacillales, Ruminococcaceae and Christensenellaceae, among other bacteria [36–38].
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Finally, the reduction of the data complexity into a set of scores and loadings enables to

investigate, by simple means, the possible connections between the microbial populations and

the measured degradation performance markers (as indicated in Step 4 in Fig 1).

For example, the observed correlation between CC1 and the methanogenic acetoclastic

activity may be the product of a Methanosarcina species (OTU 6 in S2 Table), which showed

preference for the fish substrate. Methanosarcina grows predominantly on acetoclastic metha-

nogenesis when it is provided by fats, oil, and grease [16] (all present in fish waste). On the

other hand, the more prominent hydrogenotrophic profile in 100% WAS-digesters may be

derived from the presence of Coprothermobacterales, since they are important hydrogen pro-

ducers [27].

Moreover, the observed correlation of both NH4
+ and DIC to the amount of FW substrate

(CC1) denotes an alkalization of the pH in these digesters. NH4
+ and alkali pH can inhibit

microbial growth [39]. Thus, in FW-digesters, NH4
+ production during fish degradation may

have caused the inhibition of several microorganisms, allowing the growth of NH4
+-resistant

microorganisms such as Clostridium.

For the GG dataset, the parameters DIC, acetate, biogas, and CO2 productions were corre-

lated to CC1. These four parameters can be linked to the preference of carbohydrate fermenter

Bacteria and acetoclastic Archaea to grass waste substrate. This preference led to the increase

of CO2 levels (by Bacteria), and the increase of biogas mediated by the consumption of acetate

levels (by Archaea). Moreover, the increase of CO2(g) production, in turn, could elevate the

levels of dissolved CO2, which would explain the increase in the DIC measurements.

Conclusions

The effect of substrate composition on microbial communities from AcoD can be investigated

by CCA, which grouped together in separate Components the microorganisms that respond

similarly to the substrates. CCA analysis showed that changes in the community structure due

to the substrate occurred for microorganisms present at all relative abundance levels. More-

over, the CCA models revealed that dozens of species responded selectively to the co-sub-

strates, and some of these substrate preferences of the microorganisms were largely class- or

order-specific.

The analysis of CCA scores together with the degradation performance markers allowed to

establish connections between these markers and the latent microbial communities described

by these Components. Specific to FS AcoD, FW caused an important decrease in the microbial

population due to NH4
+ being produced during fish degradation. Conversely, in GS AcoD,

GG enhanced microbial diversity. In addition, the inclusion of either of the two co-substrates

produced a switch in the methanogenic metabolism, from hydrogenotrophic (in WAS) to acet-

oclastic (in FW or GG), mediated mainly by Methanosarcina species.

In all, the developed pipeline avoids overlooking the less abundant species, while at the

same time resulting on a better understanding of the analyzed microbial populations. Since

this methodology allows for a full understanding of any 16S RNA sequencing dataset, it has

the potential to unravel the dynamics of other microbial ecosystems important for the agricul-

tural and food chemistry field, such as in food fermentation processes [8] or to study the gut

microbiota [9,40].
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Methodology: Francesc Puig-Castellvı́, Laëtitia Cardona.
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