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A VARIABLE SELECTION APPROACH FOR HIGHLY CORRELATED
PREDICTORS IN HIGH-DIMENSIONAL GENOMIC DATA

WENCAN ZHU, CÉLINE LÉVY-LEDUC, AND NILS TERNÈS

Abstract. In genomic studies, identifying biomarkers associated with a variable of inter-
est is a major concern in biomedical research. Regularized approaches are classically used
to perform variable selection in high-dimensional linear models. However, these methods
can fail in highly correlated settings. We propose a novel variable selection approach called
WLasso, taking these correlations into account. It consists in rewriting the initial high-
dimensional linear model to remove the correlation between the biomarkers (predictors)
and in applying the generalized Lasso criterion. The performance of WLasso is assessed
using synthetic data in several scenarios and compared with recent alternative approaches.
The results show that when the biomarkers are highly correlated, WLasso outperforms
the other approaches in sparse high-dimensional frameworks. The method is also success-
fully illustrated on publicly available gene expression data in breast cancer. Our method
is implemented in the WLasso R package which is available from the Comprehensive R
Archive Network.

1. Introduction

The identification of prognostic genomic biomarkers (i.e. biomarkers associated with a
variable of interest, for example a clinical endpoint in clinical trials) has become a major
concern for the biomedical research field. Indeed, prognostic biomarkers may help to
anticipate the prognosis of individual patients and may also be useful to understand a
disease at a molecular level and possibly guide for the development of new treatment
strategies (Kalia (2015)).

To this end, statistical variable selection approaches are widely used to identify a sub-
set of biomarkers in high-dimensional settings where the number of biomarkers p is much
larger than the sample size n. Several reviews focused on this topic (Saeys et al. (2007)
and Heinze et al. (2018) for example). Commonly used techniques include hypothesis-
based test: t-test (McDonald (2009)), wrapper approaches (Saeys et al. (2007)): forward,
backward selection, and penalized approaches: Lasso (Tibshirani (1996)), Elastic-net (Zou
and Hastie (2015)), SCAD (Fan and Li (2001)) among others. Hypothesis tests are limited
to independently consider associations for each biomarker thus neglecting potential rela-
tionships between them. Wrapper approaches often show high risk of overfitting and are
computationally expensive for high-dimensional data (Smith (2018)). More efforts have
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been devoted to penalized methods, given the attractive feature of automatically perform-
ing variable selection and coefficient estimation simultaneously (Fan and Li (2006)). We
shall thus focus on this type of approaches in the following.

Let us consider the following linear regression model:

(1) y = Xβ + ε.

where y = (y1, . . . , yn)T is the variable to explain (clinical endpoint), X = (X1, . . . ,Xp) is
the design matrix containing the expression of biomarkers such that the correlation matrix
of its columns is Σ, β = (β1, . . . , βp)

T is a sparse vector to estimate, namely with a majority
of null coefficients, and ε is the error term. The Lasso penalty is a well-known approach
to estimate β with a sparsity enforcing constraint. It consists in minimizing the following
penalized least-squares criterion (Tibshirani (1996)):

(2) Lλ(β) = ‖y −Xβ‖22 + λ ‖β‖1 ,
where ‖·‖2 is the Euclidean norm and ‖β‖1 =

∑p
k=1 |βk|. However, the Lasso has several

drawbacks in highly correlated settings (Zou and Hastie (2015)) such as the violation of
the Irrepresentable Condition (IC) defined in Zhao and Yu (2006). The authors of this
article prove that this condition is necessary and sufficient to recover the support of β,
namely to retrieve the null and non null components in the vector β and thus to provide
a sign consistent estimator. This condition is defined as follows. Let S = {j, βj 6= 0} be
the set of active variables, Sc the set of non-active variables and XA the submatrix of X
containing only the indices of columns which are in the set A. Then, the design matrix X
satisfies the IC if, for some constant η ∈ (0, 1],

(3)
∣∣∣(XT

ScXS(XT
SXS)−1sign(βS)

)
j

∣∣∣ ≤ 1− η, for all j,

where sign(x) = 1, if x > 0, -1 if x < 0 and 0 if x = 0. Intuitively, this condition means
that the correlation between the active and non active explanatory variables is smaller
that the correlation between the active explanatory variables. Hence, this condition is
most likely to be violated when the correlations between non active and active variables
are large. In high-dimensional genomic data, this condition is difficult to guarantee as the
correlation between biomarkers is usually high (Michalopoulos et al. (2012)). Wang et al.
(2019) tested the irrepresentable condition on several publicly available genomic data and
highlighted that the condition is violated in almost all the datasets investigated.

Methods have been proposed to deal with the issue of high correlations between the
biomarkers. Preconditioning the Lasso is one of them. It consists in transforming the
given data X and y before applying the Lasso criterion. For example, Jia and Rohe (2015)
and Wang and Leng (2016) proposed to left multiply X, y and thus ε in Model (1) by
specific matrices to remove the correlations between the columns of X. A major drawback
of the latter, called HOLP (High dimensional Ordinary Least squares Projection), is that
the preconditioning step may increase the variance of the error term and thus may alter
the variable selection performance. Another recently published method named Precision
Lasso (Wang et al. (2019)) proposes to handle the correlation issue by assigning similar
weights to correlated variables. This approach revealed better performance than the other
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methods when the biomarkers were highly correlated. However, it failed in more favorable
cases when the biomarkers are not correlated.

In this paper, we propose an alternative and novel approach, called Whitening Lasso
(WLasso), to take into account the correlations that may exist between the predictors
(biomarkers). Our method proposes to transform Model (1) in order to remove the cor-
relations existing between the columns of X and thus to “whiten” them and make the
IC valid but without changing the error term ε. This prevents us from noise inflation,
see (4). Then, the variable (biomarker) selection is performed thanks to the generalized
Lasso criterion devised by Tibshirani and Taylor (2011). The full details of our method
are provided in Section 2. An extensive simulation study is presented in Section 3 to assess
the selection performance of our approach and to compare it to other methods in different
settings. WLasso is also applied to a publicly available dataset in breast cancer in Section
4. Finally, we discuss our findings and give concluding remarks in Section 5.

2. Methods

In this section, we propose a novel variable selection approach called WLasso (Whiten-
ing Lasso) which consists in removing the correlations existing between the biomarkers
(columns of X) and in applying the generalized Lasso criterion proposed by Tibshirani
and Taylor (2011) for variable selection purpose.

2.1. Model Transformation. Inspired by the literature on preconditioning, we propose
to rewrite Model (1) in order to remove the correlation existing between the columns of

X. More precisely, let Σ−1/2 := UD−1/2UT where U and D are the matrices involved in
the spectral decomposition of the symmetric matrix Σ given by: Σ = UDUT . We then

denote X̃ = XΣ−1/2. Therefore, (1) can be rewritten as follows:

(4) y = X̃β̃ + ε,

where β̃ = Σ1/2β := UD1/2UTβ. With such a transformation, since the n rows x1, . . . ,xn
of X are assumed to be independent Gaussian random vectors with a covariance matrix

equal to Σ, the covariance matrix of the rows of X̃ is equal to identity and the columns

of X̃ are thus uncorrelated. The advantage of such a transformation with respect to the
preconditioning approach proposed by Wang and Leng (2016) is that the error term ε is
not modified thus avoiding an increase of the noise which can overwhelm the benefits of a
well conditioned design matrix.

To illustrate the benefits of our methodology, observations y were generated according
to Model (1) with p = 500, n = 50, β having 10 non null components which are equal to
2 and with Σ defined by

(5) Σ =

[
Σ11 Σ12

ΣT
12 Σ22

]
where Σ11 is the correlation matrix of active variables with off-diagonal entries equal to
α1, Σ22 is the one of non active variables with off-diagonal entries equal to α3 and Σ12 is
the correlation matrix between active and non active variables with entries equal to α2. In
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the case where (α1, α2, α3) = (0.3, 0.5, 0.7), Figure 1 displays the percentage of components
j for which the Irrepresentable Condition (3) is not satisfied from 100 replications. We
can see from this figure that our approach (WLasso) dramatically improves the number of
indices j for which the IC condition is satisfied. The results are even better than those
obtained by the transformation proposed by HOLP (Wang and Leng (2016)).

The following illustrations of Section 2 are obtained from observations y generated ac-
cording to the previous scenario.

2.2. Estimation of β̃. In order to estimate β̃ with a sparsity enforcing constraint on β,
we use the generalized Lasso criterion proposed by Tibshirani and Taylor (2011) which
consists in minimizing the following criterion with respect to β:

‖y −Xβ‖22 + λ ‖Dβ‖1 ,
where D is a specific matrix. Note that this criterion boils down to the classical Lasso
criterion if D is the identity matrix. In Model (4), we thus propose to minimize the

following criterion with respect to β̃:

(6) Lgen
λ (β̃) =

∥∥∥y − X̃β̃
∥∥∥2
2

+ λ
∥∥∥Σ−1/2β̃∥∥∥

1
,

which guarantees a sparsity enforcing constraint on β thanks to the `1 penalty. We thus
obtain ̂̃

β0(λ) = Argminβ̃ L
gen
λ (β̃).

To estimate β̃, we will not directly use
̂̃
β0(λ) but the following modified estimator which

can be seen as a thresholding of the components of
̂̃
β0(λ). For K in {1, . . . , p}, let TopK

be the set of indices corresponding to the K largest values of the components of |̂̃β0|, then

the estimator of β̃ is
̂̃
β = (

̂̃
β

(K̂)

j ) where
̂̃
β

(K)

j is defined by:

(7)
̂̃
β

(K)

j (λ) =


̂̃
β0j(λ), j ∈ TopK

Kth largest value of |̂̃β0j|, j 6∈ TopK .

Figure 1. Proportion of components j such that (3) is violated. These
results were obtained from 100 replications.
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The choice of K̂ is explained in Section 2.4.

Figure 2 displays the average of (|̂̃β(K̂)

j (λ)− β̃j(λ)|)1≤j≤p for all the values of λ that are
considered. We can see from this figure that the thresholding improves the estimation of

β̃.

2.3. Estimation of β. As previously, to estimate β, we will first consider β̂0 = Σ−1/2
̂̃
β

and then apply a thresholding strategy. Thus, we propose to estimate β by β̂ = (β̂
(M̂)

j )1≤j≤p

where β̂
(M)

j is defined by:

(8) β̂
(M)

j (λ) =

{
β̂0j(λ), j ∈ TopM
0, j 6∈ TopM .

The choice of M̂ is explained in Section 2.4.
As we can see from Figure 3, more true non null (active) components of β (true positive)

and more true null (non active) components of β (true negative) can be retrieved with β̂

than with β̂0.

Figure 2. Boxplots of the average of (|̂̃β0j(λ) − β̃j(λ)|)1≤j≤p (left) and

(|̂̃β(K̂)

j (λ)− β̃j(λ)|)1≤j≤p for all λ (right) obtained from 100 replications.

Figure 3. Number of True Positive and True Negative for β̂ in red and β̂0

in blue for a given vector of observations y.
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2.4. Choice of the parameters. To choose the parameters K and M in (7) and (8) for
each λ, we use a strategy based on the Mean Squared Error (MSE). We shall first explain

the strategy that we used for choosing K̂. Let

M̃SEK(λ) = ‖y − X̃
̂̃
β

(K)

(λ)‖22,

where y, X̃ and
̂̃
β

(K)

(λ) are defined in (1), (4) and (7), respectively and

K̂(λ) = Argmin

{
K ≥ 1 s.t.

M̃SEK+1(λ)

M̃SEK(λ)
≥ γ

}
, where γ ∈ (0, 1).

Large values of γ will lead to large values of K̂(λ) and thus to a weak thresholding of the

estimator of β̃. In practice, as it is shown in Section 3, taking γ in (0.9,0.99) provides
satisfactory and almost similar results.

For the choice of M̂(λ), we use the same procedure except that M̃SEK(λ) is replaced by

(9) MSEM(λ) = ‖y −Xβ̂
(M)

(λ)‖22,

where y, X and β̂
(M)

(λ) are defined in (1) and (8), respectively. Both criteria are displayed
in Figure 4 for a value of λ which is chosen according to the strategy explained in Section
3.2.

2.5. Estimation of Σ. Since the matrix Σ is unknown in practice, it has to be estimated.
In the particular situation where Σ has the block structure described in (5), we propose
the following strategy. Firstly, we compute the empirical correlation matrix as follows. Let
S be the sample p× p covariance matrix defined by

S =
1

n− 1

n∑
i=1

(xi − x) (xi − x)′ , with x =
1

n

n∑
i=1

xi,

Figure 4. M̃SEK(λ) (left) and MSEM(λ) (right) for λ chosen thanks to the
strategy explained in Section 3.2 for a given vector of observations y. The

vertical dotted lines correspond to K̂(λ) and M̂(λ), respectively.
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where xi denotes the ith row of X defined in (1). The corresponding p× p sample corre-
lation matrix R = (Ri,j) is defined by:

(10) Ri,j =
Si,j
σiσj

, ∀1 ≤ i, j ≤ p,

where

σ2
i =

1

n− 1

n∑
`=1

(X`,i −X i)
2, with X i =

1

n

n∑
`=1

X`,i, ∀1 ≤ i ≤ p.

Secondly, the two groups (or clusters) of active and non active biomarkers are obtained
by using a hierarchical clustering with the complete agglomeration method. Thirdly, the

entries of Σ̂ are computed by averaging the values of R within the groups. More precisely,
let ρi,j denote the value of the entries in the block having its rows corresponding to Cluster
i and its columns to Cluster j. Then, for a given clustering C:

(11) ρi,j =


1

#C(i)#C(j)

∑
k∈C(i),`∈C(j)

Rk,`, if C(i) 6= C(j)

1
#C(i)(#C(i)−1)

∑
k∈C(i),`∈C(i),k 6=`

Rk,`, if C(i) = C(j)

,

where C(i) denotes the cluster i, #C(i) denotes the number of elements in the cluster C(i)
and Rk,` is the (k, `) entry of the matrix R defined in (10).

We illustrate the performance of our method in Figure 5 in the case where Σ has the
structure (5) with (α1, α2, α3) = (0.3, 0.5, 0.7). We can see from this figure that the pro-

posed methodology for estimating the correlation coefficients within the blocks of Σ̂ is very
efficient.

2.6. Summary of the WLasso method. The WLasso method can be summarized as
follows:

• First step: Estimation of the matrix Σ by Σ̂, see Section 2.5.

Figure 5. Estimation of the parameters (α1, α2, α3) = (0.3, 0.5, 0.7). The
horizontal dotted lines correspond to the true values of the parameters.
These results are obtained from 100 replications for each value of p.
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• Second step: Transformation of Model (1) into Model (4) to remove the correlation

existing between the columns of X, see Section 2.1 where Σ is replaced by Σ̂.

• Third step: Estimation of β̃ defined in (4), see Section 2.2.
• Fourth step: Estimation of β defined in (1), see Section 2.3 and identification of its

null and non null components.

3. Numerical experiments

We performed numerical experiments to assess the performance of the WLasso and to
compare it with other recent approaches.

All simulated datasets were generated from Model (1) in which the number of predictors
(biomarkers) p is equal to 100, 200, 500, 1000 or 2000 and the sample size n is equal to
50 or 100. We randomly chose 10 non null coefficients among the p coefficients of β which
correspond to the active biomarkers, thus considering different sparsity levels. The value
b of the non null coefficients is equal to either 0.5 or 1 to consider different signal-to-noise
ratios.

Regarding the correlation matrix Σ which contains the correlation values between the
biomarkers, namely the correlations between the columns of the design matrix X, several
structures were considered:

• Block-wise correlation structure defined in (5) with parameters (α1, α2, α3) = (0.3, 0.5, 0.7)
and (0.5, 0.7, 0.9);
• Independent setting where Σ is the identity matrix.

The results that are presented hereafter are obtained from 100 replications.

3.1. Estimation of Σ. To evaluate the impact of the estimation of Σ, simulations were
performed to compare the performance of WLasso when Σ is known and when it is esti-
mated. The results are displayed in Figure 6 for several values of γ (0.9, 0.95, 0.97) which
is a parameter appearing in Section 2.4. In the top left part of this figure the largest dif-
ference between the True Positive Rate (TPR) and False Positive Rate (FPR) is displayed
for several values of p and for n = 50. In the top right and bottom parts of the figure, the
corresponding TPR and FPR are displayed, respectively. We can see from this figure that
for the value of λ maximizing the difference between TPR and FPR and for all the values
of γ, all the active variables are properly retrieved without selecting non active variables
when Σ is known. In the case where Σ is estimated by using the approach described in
Section 2.5, 75% of the active variables are recovered and less than 1% of non active vari-
ables are wrongly estimated as active variables. Note that the results displayed in Figure 6
are obtained when (b, n) = (0.5, 50) but we obtained similar conclusions for (b, n) = (1, 50),
(b, n) = (0.5, 100) and (1, 100).

3.2. Choice of λ. For tuning the parameter λ involved in our methodology, we propose
choosing the value which minimizes MSEM̂(λ)(λ) defined in (9). In Figure 13 of the Sup-

plementary material, we compare the performance of our approach with this choice of λ
(solid line) to the optimal one obtained when λ is chosen to yield the largest difference
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Figure 6. max(TPR-FPR) and the corresponding True Positive Rate
(TPR) and False Positive Rate (FPR) for (α1, α2, α3) = (0.3, 0.5, 0.7), b = 0.5

and n = 50. Dotted line: Σ, solid line: Σ̂.

between the TPR and the FPR (dotted line). We can observe from this figure that, for
the different values of γ, the TPR is a little bit smaller when λ is estimated but that the
FPR is quite similar. Similar results were obtained for (b, n) = (1, 50), (b, n) = (0.5, 100)
and (1, 100). However, for larger b or n, the difference between the performance obtained
by the optimal choice of λ and by our choice of λ is smaller.

3.3. Comparison with other methods. In this section, we compare our methodology
with other approaches: the classical Lasso described in Tibshirani (1996) and two recently
proposed methods aiming at handling the correlations between the columns of the design
matrix X: HOLP and Precision Lasso proposed by Wang and Leng (2016) and Wang et al.
(2019), respectively. This comparison is performed by computing the TPR and FPR of
these approaches for different values of the parameters involved in each of them.

The grid of λ for the classical Lasso and for our approach is provided by the glmnet

and genlasso R packages, respectively. Concerning the Precision Lasso, we found for each
value of n and p the λmin and λmax leading to p non null estimated coefficients and p null
estimated coefficients, respectively. Then, we chose 100 values of λ uniformly distributed
in the interval [λmin, λmax] and we used the light implementation of the Precision Lasso. As

for HOLP, β is estimated by β̂HOLP = XT (XXT )−1y. Then, for each s in {1, . . . , p}, the

components of β which are estimated as non null are the s largest among the |β̂HOLP,j|,
where β̂HOLP,j denotes the jth components of β̂HOLP. In this case, the parameter controlling
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the sparsity level of the estimator of β is s. It has a similar role as λ in the previous
approaches.

Figure 7. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and (TPR-FPR) for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 (solid line). Results obtained for the optimal choice
of λ for WLasso (dotted line). Corresponding TPR (top right) and FPR
(bottom) when Σ has the block-wise correlation structure defined in (5)
with parameters (α1, α2, α3) = (0.3, 0.5, 0.7), b = 0.5 and n = 50.

The corresponding results are displayed in Figures 7 and 8 in the case where n = 50
and b = 0.5 and Σ has the block-wise correlation structure defined in (5) with parameters
(α1, α2, α3) = (0.3, 0.5, 0.7) and (0.5, 0.7, 0.9), respectively. The top left part of these
figures displays the largest difference between TPR and FPR for different values of p,
which corresponds to an optimal choice of the parameters. For WLasso, we also display
the results obtained when the parameter λ is chosen by using the strategy proposed in
Section 3.2, γ = 0.95 and Σ is estimated using the procedure explained in Section 2.5.
The corresponding TPR and FPR for each method are displayed in the top right part and
bottom part of the figures, respectively. Note that we also conducted experiments in the
case where b = 1. Since the conclusions are very similar, the corresponding figures are
given in the Supplementary material.

We can see from Figures 7 and 8 that WLasso outperforms the other methods: the TPR
is one of the largest while the FPR is the smallest. HOLP has a larger TPR than WLasso.
However, the associated FPR is much larger. It has moreover to be noticed that Lasso,
HOLP and Precision Lasso are favored with respect to WLasso since their parameters were



A VARIABLE SELECTION APPROACH FOR HIGHLY CORRELATED PREDICTORS 11

Figure 8. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and (TPR-FPR) for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 (solid line). Results obtained for the optimal choice
of λ for WLasso (dotted line). Corresponding TPR (top right) and FPR
(bottom) when Σ has the block-wise correlation structure defined in (5)
with parameters (α1, α2, α3) = (0.5, 0.7, 0.9), b = 0.5 and n = 50.

chosen to optimize their performance in terms of TPR and FPR whereas, in WLasso, the
parameter λ was chosen by using the strategy of Section 3.2 and Σ was estimated.

Figure 9 displays the results when the sample size n is increased and equal to 100. We
observe from this figure that the overall performance has been improved and that our
approach outperforms the others especially in the case where p is large. Similar results are
obtained in the case where b = 1 and (α1, α2, α3) = (0.5, 0.7, 0.9). We refer the reader to
the Supplementary material for further details.

Figure 10 displays the performance of the different methodologies in the case where
Σ = Id, n = 50 and b = 0.5, that is in the case where there is no correlation between
the biomarkers (columns of X). We can see from this figure that even in this case, our
method, which is designed for handling the correlation between the biomarkers, obtains
similar results as the Lasso except for small values of p. However, when λ is chosen to obtain
optimal results in terms of the difference between TPR and FPR, our approach achieves
the best performance with HOLP. In the case where n = 100, our approach obtains the
best results, see the Supplementary material.

3.4. Numerical performance. Figure 11 displays the computational times of our ap-
proach implemented in the R package WLasso for different values of p and of the parameter
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Figure 9. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and (TPR-FPR) for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 (solid line). Results obtained for the optimal choice
of λ for WLasso (dotted line). Corresponding TPR (top right) and FPR
(bottom) when Σ has the block-wise correlation structure defined in (5)
with parameters (α1, α2, α3) = (0.3, 0.5, 0.7), b = 0.5 and n = 100.

“maxsteps” (maximum number of steps/λs considered in the algorithm) involved in the
genlasso R package. The timings were obtained on a workstation with 8GB of RAM and
Intel Core i5 (2.4GHz) CPU. We can see from this figure that it takes only 6 minutes for
processing data with our approach when n = 50 and p = 2000.

Moreover, we can observe from Figure 12 that the most time consuming step of WLasso
is the one where the generalized Lasso criterion is used (blue part in Figure 12). However,
the computational time of this step was divided by two when the parameter “maxsteps” was
changed from 2000 (default value) to 500 without changing the variable selection results.

4. Application to gene expression data in breast cancer

We applied the previously detailed methods to publicly available data at Gene Expression
Omnibus database (www.ncbi.nlm.nih.gov/geo), with accession code GSE2990, see Sotiriou
et al. (2006). A total of n = 189 tumor samples from patients with breast cancer were
available and their microarray data have been collected on 2,283 probes. Expression data
has been preprocessed and normalized as in the original publication. A filtering step based
on the interquartile range (IQR) was considered to remove some probes as in Gentleman
et al. (2005). We removed probes with IQR < 1.5 and those which lack of annotation.



A VARIABLE SELECTION APPROACH FOR HIGHLY CORRELATED PREDICTORS 13

Figure 10. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and (TPR-FPR) for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 (solid line). Results obtained for the optimal choice
of λ for WLasso (dotted line). Corresponding TPR (top right) and FPR
(bottom) when Σ = Id, b = 0.5 and n = 50.

Figure 11. Computational time of our approach WLasso when the param-
eter “maxsteps” has the default value, namely 2000 (dotted line) and when
maxsteps=500 (solid line).

The remaining p = 1, 112 probes were then standardized. The goal of the application
is to identify genes associated with the development of breast cancer. To this end, the
expression of the gene BRCA1 (BReast CAncer gene 1) was considered as the variable y
to explain (response variable). BRCA1 is a well known human tumor suppressor gene that
helps to repair damaged DNA, thus the mutation of this gene can notably increase the risk
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Figure 12. Time allocation for each part of our method WLasso for p =
2000 and two values of the parameter “maxsteps”. The time spent in the
first three steps described in Section 2.6 is displayed in the first three bars
in red, green, blue, respectively except the correction stage of Steps 3 and 4
(Equations (7) and (8)) which is given in the fourth bar in purple.

of breast cancer, see Rosen et al. (2003). The standardized 1,112 probes were considered
as explanatory variables and their correlation is displayed in the Supplementary material.

We compared the performance of the approaches investigated in Section 3 in terms of
genes selection. For our approach WLasso, we used the methodology described in Section
2.5 for estimating the correlation matrix Σ. Assuming that it has the block-wise correlation
structure (5), we estimated the coefficients α1, α2 and α3 by α̂1 = 0.17, α̂2 = 0.21 and
α̂3 = 0.52, respectively. As for the Lasso method, the parameter λ was chosen by cross-
validation and the number of variables to be selected was fixed to 50 for Precision Lasso
and HOLP in order to select approximately the same number of variables as with the
Lasso.

Table 1 given in the Supplementary material provides the list of genes corresponding to
the selected probes for each method. Unfortunately, HOLP could not provide any results
since it requires the computation of the inverse of the matrix XXT which is not invertible
in this case. The matrix XT is indeed not full rank in this dataset. The database for
annotation, visualization and integrated discovery (DAVID) version 6.8 proposed by Dennis
et al. (2003) was used to highlight the genes potentially related to the development of breast
cancer, which correspond to true positives. Based on this tool, 8 genes were considered as
true positives for WLasso and Lasso which have only one common gene: GSTT1. However,
Lasso selected more false positives than WLasso (44 vs. 26). Among the 50 variables
selected by Precision Lasso, 6 are identified as true positives by DAVID including the well-
known ESR1 gene in breast cancer. Based on this annotation, Precision Lasso detected less
true positives than Lasso. Moreover, Wlasso identified more true positives with less false
positives than Precision Lasso. Nevertheless, this application is for illustration purpose
only and not for a fair evaluation or comparison of the methods.

5. Conclusion

In this paper, we proposed an innovative, efficient and fully data-driven method to deal
with the variable selection issue in high-dimensional frameworks where the active variables
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are highly correlated with the non-active ones which is implemented in the WLasso R
package available from the CRAN. The proposed WLasso method has been assessed and
compared with other methods in a simulation study with several scenarios. In the highly
correlated setting, WLasso successfully identifies more true positives with limited false
positives as compared with the classical Lasso. Contrary to HOLP, WLasso still works
when several columns are linearly dependent and does not suffer from the inflation of noise
introduced by the preconditioning. Compared with the recent Precision Lasso approach,
which aims to deal with the same issue, WLasso obtained better results in terms of selection
accuracy in the different settings considered. WLasso is also very computationally efficient
and demonstrated its abilities to properly identify genes related to breast cancer from
a publicly available gene expression dataset. However, the following directions could be
considered to improve its performance.

Firstly, the method that we used for estimating Σ could be improved by using more
sophisticated approaches such as Perrot-Dockès et al. (2020). Secondly, our way of choosing
the parameter λ for the final model selection could also be improved by considering cross-
validation or stability selection. Until now, a simple approach has been considered to avoid
computation time and performed quite well especially for moderate to high simple size.
Thirdly, most of the computational time of our approach is spent in the application of the
generalized Lasso criterion. Hence, for an application to genomic datasets having more
than twenty thousands of variables, it could be worth speeding it up. This will be the
subject of future work.
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Perrot-Dockès, M., C. Lévy-Leduc, and L. Rajjou (2020). Estimation of large block struc-
tured covariance matrices: Application to ”multi-omic” approaches to study seed quality.
arXiv:1806.10093.

Rosen, E., S. Fan, R. Pestell, and I. Goldberg (2003, 07). BRCA1 gene in breast cancer.
Journal of cellular physiology 196(1), 19–41.

Saeys, Y., I. Inza, and P. Larranaga (2007). A review of feature selection techniques in
bioinformatics. Bioinformatics 23(19), 2507–2517.

Smith, G. (2018, 09). Step away from stepwise. J. Big Data 5(32), 1–12.
Sotiriou, C., P. Wirapati, S. Loi, A. Harris, S. Fox, J. Smeds, H. Nordgren, P. Farmer,

V. Praz, B. Haibe-Kains, C. Desmedt, D. Larsimont, F. Cardoso, H. Peterse, D. Nuyten,
M. Buyse, M. J. Van de Vijver, J. Bergh, M. Piccart, and M. Delorenzi (2006, 02). Gene
Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic
Grade To Improve Prognosis. JNCI: Journal of the National Cancer Institute 98(4),
262–272.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Ser. B (Stat. Methodol.) 58(1), 267–288.

Tibshirani, R. J. and J. Taylor (2011, 06). The solution path of the generalized lasso. Ann.
Stat. 39(3), 1335–1371.

Wang, H., B. Lengerich, B. Aragam, and E. Xing (2019, 09). Precision lasso: Ac-
counting for correlations and linear dependencies in high-dimensional genomic data.
Bioinformatics 35(7), 1181–1187.

Wang, X. and C. Leng (2016). High dimensional ordinary least squares projection for
screening variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 78(3), 589–611.

Zhao, P. and B. Yu (2006, 12). On model selection consistency of lasso. J. Machine Learn.
Res. 7, 2541–2563.

Zou, H. and T. Hastie (2015, 01). Regularization and variable selection via the elastic nets.
J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 301–320.



A VARIABLE SELECTION APPROACH FOR HIGHLY CORRELATED PREDICTORS 17

Supplementary material

This supplementary material provides additionnal figures and a table for the paper: “A
variable selection approach for highly correlated predictors in high-dimensional genomic
data”.

Figure 13 illustrates Section 3.2.
Figures 14, 15, 16, 17, 18, 19, 20 and 21 provide similar results as those displayed in

Figure 7 of the paper in the following cases:

• Block-wise correlation structure for Σ with (α1, α2, α3) = (0.3, 0.5, 0.7) with
– b = 1 and n = 50
– b = 1 and n = 100

• Block-wise correlation structure for Σ with (α1, α2, α3) = (0.5, 0.7, 0.9) with
– b = 1 and n = 50
– b = 0.5 and n = 100
– b = 1 and n = 100

• Σ is equal to identity with
– b = 1 and n = 50
– b = 0.5 and n = 100
– b = 1 and n = 100

Figures 22 and Table 1 give additionnal information for the Application Section.

Figure 13. (TPR-FPR) and the corresponding True Positive Rate and
False Positive Rate for (α1, α2, α3) = (0.3, 0.5, 0.7), b = 0.5 and n = 50.
Dotted line: optimal choice of λ, solid line: choice of λ explained in Section
3.2 of the paper.
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Figure 14. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and (TPR-FPR) for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 of the paper (solid line). Results obtained for the
optimal choice of λ for WLasso (dotted line). Corresponding TPR (top right)
and FPR (bottom) when Σ has the block-wise correlation structure defined
in (5) of the paper with parameters (α1, α2, α3) = (0.3, 0.5, 0.7), b = 1 and
n = 50.
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Figure 15. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and (TPR-FPR) for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 (solid line). Results obtained for the optimal choice
of λ for WLasso (dotted line). Corresponding TPR (top right) and FPR
(bottom) when Σ has the block-wise correlation structure defined in (5)
with parameters (α1, α2, α3) = (0.3, 0.5, 0.7), b = 1 and n = 100.
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Figure 16. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and (TPR-FPR) for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 (solid line). Results obtained for the optimal choice
of λ for WLasso (dotted line). Corresponding TPR (top right) and FPR
(bottom) when Σ has the block-wise correlation structure defined in (5)
with parameters (α1, α2, α3) = (0.5, 0.7, 0.9), b = 1 and n = 50.
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Figure 17. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and (TPR-FPR) for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 of the paper (solid line). Results obtained for the
optimal choice of λ for WLasso (dotted line). Corresponding TPR (top right)
and FPR (bottom) when Σ has the block-wise correlation structure defined
in (5) of the paper with parameters (α1, α2, α3) = (0.5, 0.7, 0.9), b = 0.5 and
n = 100.
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Figure 18. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and (TPR-FPR) for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 of the paper (solid line). Results obtained for the
optimal choice of λ for WLasso (dotted line). Corresponding TPR (top right)
and FPR (bottom) when Σ has the block-wise correlation structure defined
in (5) of the paper with parameters (α1, α2, α3) = (0.5, 0.7, 0.9), b = 1 and
n = 100.
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Figure 19. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and TPR-FPR for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 of the paper (solid line). Results obtained for the
optimal choice of λ for WLasso (dotted line). Corresponding TPR (top right)
and FPR (bottom) when Σ = Id, b = 1 and n = 50.
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Figure 20. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and TPR-FPR for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 of the paper (solid line). Results obtained for the
optimal choice of λ for WLasso (dotted line). Corresponding TPR (top right)
and FPR (bottom) when Σ = Id, b = 0.5 and n = 100.
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Figure 21. Top left: max(TPR-FPR) for Lasso, HOLP, Precision Lasso
(PL) and TPR-FPR for WLasso obtained for the λ chosen by the strategy
proposed in Section 3.2 of the paper (solid line). Results obtained for the
optimal choice of λ for WLasso (dotted line). Corresponding TPR (top right)
and FPR (bottom) when Σ = Id, b = 1 and n = 100.

Figure 22. Heatmap of correlations between the probes.
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Table 1. Selected genes from each method, genes related to breast cancer
are in bold.

selected genes

WLasso

TOP2A, NPEPPS, INSIG1, PLK2, TRIM2,
CYP1B1, KIF5C, ATXN1, PTTG1, NUCB2,
SEMA3C, GSTT1, LGALS4, KIF11, NEK2,

RAD51, DNALI1, AGFG2, IAPP, IFI16,
CITED2, SLC19A2, WSB1, RET, FRMD4B,

MYBL1, SELENBP1, CALU, ZNF451, IGHM,
AZGP1, NCAPG, ANO1, ZNF226

Lasso

CCL5, WSB1, MAPKAPK2, FHL1, TNC,
ALCAM, ATP6V1A, RIOK3, RGS2, USP1,

TRIM14, LPL, GGH, GSTT1, SMN1,
MMP11, PSMB9, DST, RAD54L, TFAP2A,

DSC2, GABRP, INPP4B, GHR, CD36,
PTP4A3, ASS1, H2BFS, ANXA3, CXCL12,
TPX2, CACNA1D, GOLGA8A, ATG5, SC5D,

PTN, C1R, WWP1, DPT, MUC1,
LRRC15, SMA4, CCZ1B, ASNSD1, COPS4,

PSD3, VAV3, MS4A4A, KLF13, QPCTL,
PLA2G12A, MUM1

PL

H2AFZ, BTG2, SDC1,IGF2R, INSIG1,
ALCAM, SDHD, ACADM, FBLN1, SNRPE,

N4BP2L2 , SLC25A37, IGF1R, PPFIBP1, SYT1,
SORBS2, AGA, IFI44L, TFF3, DSC2,

MYB,ESR1, SETBP1, FGFR2, GOLGA8A,
DNAJB6 , CD24,HLA-DQB1, JUP, SULF1,
RDX, COL14A1, NFIB, COL6A1, KRT6B,

NBPF10, N4BP2L2, DGKH, RGS1, ZSCAN18,
LZTFL1, GREM1, C1orf115, DUSP12, KLHL2,
ARMC9, DENND1B, TMPRSS3, WIZ, NTRK2

HOLP
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