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Abstract

This paper considers the factor modelling for high-dimensional time series con-
taminated by additive outliers. We propose a robust variant of the estimation
method given in Lam and Yao [12]. The estimator of the number of factors is
obtained by an eigenanalysis of a robust non-negative definite covariance matrix.
Asymptotic properties of the robust eigenvalues are derived and we show that
the resulting estimators have the same convergence rates as those found for the
standard eigenvalues estimators. Simulations are carried out to analyse the finite
sample size performance of the robust estimator of the number of factors under
the scenarios of multivariate time series with and without additive outliers. In the
application, the robust factor analysis is performed to reduce the dimensionality of
the data and, therefore, to identify the pollution behaviour of the pollutant PM10.
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1. Introduction

In the last fifty years, issues related to air pollution have grown into a major
problem, specially in developing countries, where the air quality has been de-
graded as a result of industrialization, population growth, high rates of urbaniza-
tion and inadequate or non-existent policies to control air pollution. The problems
caused by air pollution produce local, regional and global impacts. Among differ-
ent environmental problems, air pollution is reported to cause the greatest damage
to health and loss of quality of life see, for example, WHO [33]. The most com-
mon health problems caused by air pollution are asthma, rhinitis, burning eyes,
fatigue, dry cough, heart and lung diseases and heart failure. The main pollutants
are carbon monoxide (CO), sulphur dioxide (SO2), nitrogen oxides (NOx), ozone
(O3) and inhalable particles with diameter smaller than 10 µm (PM10). The pa-
pers by Brunekreef and Holgate [3], Maynard [20], WHO [32], Curtis et al. [7]
and Souza et al. [26] discuss the relationship between these pollutants and health
problems. In addition, air pollution contributes to the degradation of the environ-
ment, the greenhouse effect among many others problems.

In recent studies related to air pollution, much attention has been paid to
mathematical receptor models with the aim to measure and analyse the pollutant
concentrations at the source of emission. For this, mathematical and statistical
tools are used to provide the identification of the pollutant emission sources from
chemical characteristics of the particles on the receiver and the pollutant emission
sources see, for example, Seinfeld and Pandis [25]. In the literature, the most
studied receptor models are: chemical mass balance (CMB), multivariate analy-
sis, principal component analysis techniques (PCA), factor analysis model (FA),
multiple linear regression, cluster analysis and positive matrix factorization (PMF)
(Watson et al. [31]). In particular, the classical factor analysis methodology has
been widely used in air pollution analysis specially for the identification of emis-
sion sources, the management of monitoring networks, regression analysis, cluster
analysis and prediction.

In many practical problems, it is quite common to have observations which
accommodate the serial dependence of each component and the interdependence
between different components, that is, the data are time-dependent. However, it
should be noted that, among the studies that adopted the classical PCA and fac-
tor analysis techniques, the time dependence of the data is a commonly neglected
feature. A basic assumption of the multivariate statistical tools is that the data
are independent in time (see for example Anderson [1] and Johnson and Wichern
[11]). To deal with autocorrelated data in factorial analysis, Peña and Box [22],
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Stock and Watson [27], Lam et al. [13] and Lam and Yao [12] studied the factor
modelling for multivariate time series from a dimension-reduction point of view.
Contrarily to the PCA and factor analysis for independent observations, these pa-
pers look for factors which drive the serial dependence of the original time series.
Further discussions and additional references can be found in Lam and Yao [12].

Since factor analysis allows to reduce the order of the estimated model, this
technique has been widely used for forecasting. According to Stock and Watson
[27], the dimension reduction becomes a central concern for forecasting when
the number of candidate predictor series is very large. This issue can make the
forecast investigation impractical in a real application, for example in the use of
vector autoregressive moving average (VARMA) models with a large number of
variables. This high-dimensional problem is simplified by modelling the com-
mon dynamics in terms of a relatively small number of unobserved latent factors.
Then, forecasting can be carried out in two-step approach: first, a time series of
the factors is estimated from the predictors; second, the relationship between the
variable to be forecast and the factors is estimated, for example, using a linear
regression.

Environmental time series are often of high dimension due to the large num-
ber of measurements recorded across many different locations. These data may
also present interesting phenomena to be considered from an applied and theo-
retical point of view. Indeed, the concentration of pollutant may present high
peaks, which can be seen as outlying values from an aspect of statistical analysis.
Outliers and high dimension data are common in many areas of applied mathe-
matics. Therefore, the methodology proposed here can be widely used in many
other areas where the multivariate techniques are the main tools to describe and
interpret the data. This is the case of the health science area (Perc [23], Gosak
et al. [8], Souza et al. [26]), air route network problems (Zhang et al. [35], Lordan
et al. [17]), environmental engineering (Zamprogno [34]) and statistical process
controls (Vanhatalo and Kulahci [30]), to name a few.

As is well known, outliers can destroy the statistical properties of the estimates
such as the sample mean and sample covariance (see, for example, Chang et al.
[4], Tsay [28], Chen and Liu [5] and the references therein). Since the parameter
estimation is connected with these sample functions, the final estimated time se-
ries model can be strongly affected by the outliers. When the series has additive
outliers, one way to deal with model estimation is to use robust estimates of these
statistics. For a univariate time series, Ma and Genton [19] proposed a robust
sample autocorrelation function (ACF) based on the robust scale estimate Qn(.)
suggested in Rousseeuw and Croux [24]. This robust ACF estimator was recently
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studied by Lévy-Leduc et al. [14], Lévy-Leduc et al. [15] and Lévy-Leduc et al.
[16].

This paper considers multivariate time series with additive outliers using the
factor analysis technique for dimension reduction. In this context, a robust ver-
sion of the dimension reduction estimator given in Lam and Yao [12] is proposed
here. Theoretical results are discussed, and the method performance is investi-
gated through Monte Carlo simulations. The proposed methodology is applied to
PM10 concentrations measured at the Air Quality Automatic Monitoring Network
(AQAMN), Vitória, Brazil.

The rest of the paper is organized as follows. In Section 2, the model and the
estimation methods are presented. Section 3 discusses the asymptotic properties
of the robust eigenvalues. Section 4 presents some Monte Carlo experiments. Sec-
tion 5 considers an application of the proposed methodology and some concluding
remarks are provided in Section 6.

2. Factor model in time series and estimation methods

2.1. The factor model and the estimate of the number of factors
Let k be the number of candidate predictor series. Let Zt, t ∈ Z, be a k-

dimensional zero-mean vector of an observed time series. Let also Xt be an unob-
served r-dimensional vector of common factors (r ≤ k). It is assumed that Zt is
generated by

Zt = PXt + εt, (1)

where P is an unknown k × r matrix of parameters of rank r, denoted by the
factor-loading matrix, and εt is a k-dimensional white-noise sequence with full-
rank covariance matrix Σε. When r is small relative to k, the model presented
in Equation (1) is most useful, since it will result in a multivariate time series
model with a reduced dimension and, consequently, can lead to a much simpler
multivariate time series model for forecasting.

In the sequel, the following assumption is made.

(A1) Xt, t ∈ Z, is a multivariate stationary process and εt ∼ WN(0,Σε). More-
over, Xt and εt are assumed to be uncorrelated and P′P = Ir, where Ir

denotes the r × r identity matrix.

Note that Assumption 1 is to ensure identifiability in Equation (1); see Lam and
Yao [12] and Peña and Box [22] for further details.

4



It follows from Equation (1) and under Assumption (A1) that the covariance
matrices of Zt are given by

ΓZ(0) = PΓX(0)P′ + Σε, (2)

ΓZ(h) = PΓX(h)P′, h ≥ 1, (3)

where ΓX(h) = E[Xt−hX′t ] is the covariance matrix of Xt.
Based on the observations Z1, ..., Zn, the first step in Equation (1) is to estimate

the number of factors r in order to compute the estimate of the k× r factor loading
matrix P. Once P̂ is obtained, the estimator for the factor process and the residuals
are respectively given by

X̂t = P̂′Zt, (4)

and
ε̂t = (Id − P̂P̂′)Zt. (5)

For further details on the estimation of P, see Lam and Yao [12].
Let Γ̂Z(h) denote the sample covariance matrix of Zt at lag h and let

M̂ =

h0∑
h=1

Γ̂Z(h)Γ̂Z(h)′ (6)

for a prescribed integer h0 ≥ 1. Following the lines of Lam and Yao [12], the
estimator for the number of factors r is given by:

r̂ = argmin
1≤i≤R

λ̂i+1/λ̂i, (7)

where r < R < k is a constant, λ̂1 ≥ . . . ≥ λ̂k are the eigenvalues of M̂. Under some
assumptions, Lam and Yao [12] derive the asymptotic properties of the above
results. According to Lam and Yao [12], in practice, for example, R = p/2 may be
used. Note that, there is no need to extend the test up to p since it is expected that
the minimum eigenvalue of M̂ be practically 0, specially for a small n and a large
p. It is important to say that when p and n are of the same order, the estimators for
eigenvalues are no longer consistent, although the ratio based estimator still can
be used, see Lam and Yao [12].

As previously stated, the aim of this paper is to propose robust estimators of
M and r which are based on a robust covariance matrix estimator for Zt. These
issues are discussed in the following section.
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2.1.1. The robust estimator of the number of factors
Let (Yi)i≥1 be a stationary Gaussian process. Given the observations Y1:n =

(Y1, . . . ,Yn), the estimator of scale proposed by Rousseeuw and Croux [24] is
defined by

Qn(Y1:n) = c
{∣∣∣Yi − Y j

∣∣∣ ; 1 ≤ i, j ≤ n
}

(bn2/4c)
, (8)

where c = 2.21914.
Now, consider the following assumption on Xt.

(A2) Xt = (X1,t, X2,t, . . . , Xr,t)′ is a multivariate stationary zero-mean Gaussian
process satisfying∑

h≥1

|γX
i, j(h)| < ∞, for all i, j ∈ {1, . . . , r},

where γX
i, j(h) = Cov[Xi,t, X j,t+h].

By using Equations (1) and (3), (Zt) is also a multivariate stationary zero-mean
Gaussian process satisfying∑

h≥1

|γi, j(h)| < ∞, for all i, j ∈ {1, . . . , k}, (9)

where γi, j(h) = Cov[Zi,t,Z j,t+h].
From the estimator Qn defined in Equation (8) and from the observations

(Z1, . . . , Zn), it is proposed here a robust estimator of γi, j(h) = Cov(Zi,t,Z j,t+h)
for all i, j in {1, . . . , k} defined as follows

γ̂Q
i, j(h) =

1
4

[
Q2

n−h(Zi,1:n−h + Z j,h+1:n) − Q2
n−h(Zi,1:n−h − Z j,h+1:n)

]
, (10)

where Zi,1:n−h = (Zi,1, . . . ,Zi,n−h) and Z j,h+1:n = (Z j,h+1, . . . ,Z j,n). γ̂Q
i, j(h) is the multi-

variate estimator of the univariate case suggested by Ma and Genton [18].
From Equation (10), the robust estimator of the covariance matrix of Zt is

given by

Γ̂Q(h) =


γ̂Q

1,1(h) γ̂Q
1,2(h) . . . γ̂Q

1,k(h)
...

...
. . .

...

γ̂Q
k,1(h) γ̂Q

k,2(h) . . . γ̂Q
k,k(h)

 . (11)
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Based on Equations (6) and (11), the robust version of the estimator M̂ is sug-
gested here as follows

M̂Q =

h0∑
h=1

Γ̂Q(h)Γ̂Q(h)′. (12)

Therefore, the robust estimator r̂Q of r is similarly obtained from Equation
(7) by replacing λ̂i+1 and λ̂i by λ̂Q

i+1 and λ̂Q
i , respectively, where (λ̂Q

i )1≤i≤k are the
eigenvalues of M̂Q.

3. Theoretical results

This section provides some analytical results to theoretically support the robust
approach discussed in the previous section.

Theorem 1. Let h be a fixed positive integer and
(
Γ̂Q(h)

)
1≤i, j≤k

=
(
γ̂Q

i, j(h)
)

1≤i, j≤k
,

where γ̂Q
i, j(h) is defined in Equation (10). Assume that Assumptions (A1) and (A2)

hold, then
√

n sup
1≤ j≤k

∣∣∣∣λ̂Q
j − λ j

∣∣∣∣ = Op(1), as n→ ∞,

where (λ̂Q
j )1≤ j≤k and (λ j)1≤ j≤k denote the eigenvalues of

(∑h0
h=1 Γ̂Q(h)Γ̂Q(h)′

)
and(∑h0

h=1 Γ(h)Γ(h)′
)
, respectively, where (Γ(h))1≤i, j≤k =

(
γi, j(h)

)
1≤i, j≤k

and h0 is a fixed
integer larger than 1.

The proof of this theorem directly follows from Lemmas 1, 2 and 3 given
below and proved in Section 8.

Remark 1. By Theorem 1 and Lam and Yao [12, Proposition 1], it can be seen
that the eigenvalues of the robust estimator covariance matrix of Zt have the same
rate of convergence as the eigenvalues of the standard estimator of the covariance
matrix of Zt.

Lemma 1. Let Ân be a sequence of k × k symmetric matrices and A be a k × k
symmetric matrix such that un(Ân−A) = Op(1), where un is a sequence of positive
numbers tending to infinity as n tends to infinity, then

un sup
1≤ j≤p

|λ j(Â) − λ j(A)| = Op(1), as n→ ∞,

where (λ j(Â))1≤ j≤k and (λ j(A))1≤ j≤k are the eigenvalues of Ân and A, respectively.
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Lemma 2. Let Ân(h) be a sequence of k × k symmetric matrices and A(h) be
a k × k symmetric matrix such that un(Ân(h) − A(h)) = Op(1), for each fixed
h ∈ {1, . . . , hmax}, where un is a sequence of positive numbers tending to infinity as
n tends to infinity, then

un

hmax∑
h=1

Ân(h)Ân(h)′ −
hmax∑
h=1

A(h)A(h)′
 = Op(1).

Lemma 3. Let h be a non negative integer and i and j be two integers in {1, . . . , k}.
Assume that Assumptions (A1) and (A2) hold, then the robust autocovariance esti-
mator γ̂Q

i, j(h) defined in Equation (10) satisfies the following central limit theorem

√
n(γ̂Q

i, j(h) − γi, j(h))
d
−→ N(0, σ̃2

i, j(h)), as n→ ∞,

where

σ̃2
i, j(h) = E[ψ(Zi,1,Z j,1+h)2] + 2

∑
`≥1

E[ψ(Zi,1,Z j,1+h)ψ(Zi,`+1,Z j,`+1+h)],

where ψ is defined in Equation (15).

4. Monte Carlo studies

This section reports simulation results related to the performance of the pro-
posed methodology previously discussed for finite sample size. In this context,
the empirical study considered Xt as a VAR(1) model with r = 3. The VAR(1)
model was generated with independent white noise vector from N(0, I) and the
matrix of the coefficients Φ1. This matrix is displayed in Table 1. Note that the
Φ coefficients corresponds to a process with no temporal correlation outside the
main diagonal. The sample sizes are n = 50, 100, 200, 400, 800 and 1600, and
k = 0.2n, 0.5n, 0.8n, and h0 = 1 (these are also considered in Lam and Yao [12]).
The factor model (Equation (1)) was generated as follows: first, all k × r elements
of matrix P were generated as independent observations from the uniform dis-
tribution on the interval [−1, 1] (see, also, Lam and Yao [12]). The process εt

in Equation (1) consists of N(0, 1) components independent between each other
and across t. The statistical quantities were computed based on 1000 replications.
These simulations were ran using the R programming language and the code is
available upon request.

[Table 1 about here.]
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The main interest in this empirical study is to verify the performance of the
statistics r̂ and r̂Q in the context of VAR(1) models with and without outliers. For
this, the estimate of P(r̂ = r) is obtained by computing the relative frequencies of
r̂ = r, denoted here as f f req.(r̂ = r), where r̂ is the estimator of r. The r̂Q estimator
was similarly computed.

Table 2 reports the relative frequency estimates ( f f req.(r̂ = 3)) for P(r̂ = 3) of
the model in the study. From this, it is observed that the ratio-based estimator of
r improves when n is increased. Similar performance of the ratio is also observed
when the dimension k increases. These are in accordance with the results given in
Table 1 of Lam and Yao [12], that is, the asymptotic properties of r̂ is corroborated
with these finite sample size investigations.

The results related to the alternative method r̂Q are displayed in Table 3. It
shows that this estimator presents similar empirical performance of r̂, which is an
expected result based on the asymptotic theory of both estimators of the ratio (see
Remark 1). Therefore, this simple empirical study together with the theoretical
results discussed in the previous section give support to using r̂Q as an alternative
method to estimate the number of the factors in the model presented in Equation
(1).

[Table 2 about here.]

[Table 3 about here.]
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Now, let X∗t, t ∈ Z, be a vector process contaminated by additive outliers
defined as follows

X∗t = Xt + ω ◦ δt, (13)

where "◦" is the Hadamard product (Johnson [10]). The vector ω = (ω1, ..., ωk)′

is a magnitude vector of additive outliers and the random vector δt = (δ1,t, ..., δk,t)′

indicates the occurrence of an outlier at time t, in variable i, i = 1, ..., k, such as
P(δi,t = −1) = P(δi,t = 1) = p/2 and P(δi,t = 0) = 1 − p, where E[δi,t] = 0
and E[δ2

i,t] = Var[δi,t] = p. The model described above assumes that X∗t and
δt are independent processes. Also, it is assumed that the elements of δt are not
correlated and temporally uncorrelated, i.e., E[δtδ

′

t] = Σδ = diag(p, ..., p) and
E[δtδ

′

t+h] = 0 for h , 0.

Remark 2. δi,t, i = 1, ..., k, is the product of Bernoulli(p) random variable with
Rademacher random variable, the latter equals 1 or -1, both with probability 1/2.

In this empirical investigation, the probability of an outlier occurring at time t
is p = 0.05 and, without loss of generality, it is also assumed that ω = [ω1, 0, 0]′;
that is, X∗1,t, t = 1, ..., n, is the only process in X∗t = (X∗1,t, X

∗
2,t, X

∗
3,t)

′

contaminated
with outliers and ω1 = 15.

Table 4 shows the relative frequency estimates, r̂ and r̂Q, for the dimensional
reduction for Model 1, when r = 3 and in the presence of outliers. The standard
case, that is, Γ̂X∗ and p = 0, is in accordance with the results given by Tables 2
and 3 for r̂ and r̂Q, respectively.

From the cases where there are outliers (column of Table 4 in which p , 0), it
is clearly perceived that the standard method is destroyed by a single outlier at the
time t by presenting a substantial reduction of the correct estimated ratio. This is
an expected result since r̂ is based on the standard sample matrix of autocorrela-
tion. Note that, according the simulation plan, the expected number of outliers in
the whole series X∗1,t is 5. The conclusions of the empirical study in this section
corroborate the Proposition 1 in Cotta et al. [6], which demonstrates theoretically
that one outlier is enough to destroy the properties of the sample autocorrelation
function of multivariate processes.

In contrast with the empirical performance of r̂, r̂Q keeps almost unchanged
with the proportion of the outliers in the present study. The estimated ratios are
very close in the contaminated and uncontaminated series. Therefore, the per-
centage of outliers in this empirical example seems to be, in general, not strong
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enough to destroy the robustness property of r̂Q and this indicates that the method-
ology proposed here may be used when the presence of outliers in the series is
uncertain. Other simulation cases with different degrees of contamination present
similar conclusions and are available upon request.

[Table 4 about here.]

5. Application to the pollutant PM10

This section presents an application of the methodology discussed previously
for PM10 pollutant concentrations measured at the Automatic Quality Monitoring
Network (AAQMN) in the Greater Vitória Area (GVR), Espírito Santo, Brazil.
GVR is comprised of seven cities with a population of approximately 1.9 million
inhabitants in the area of 2,319 km2. The AAQMN consists of eight monitoring
stations distributed in the cities of GVR; Laranjeiras, Carapina, Camburi, Suá,
Vitória (center), Vila Velha (center), Ibes and Cariacica. The pollutant PM10,
expressed in µg/m3 and was hourly measured from January 2008 to December
2009, k = 8, though the daily average values (n = 731) are used in this empirical
study. This follows the same lines of the application given in Lam and Yao [12].
Now let Zt, t = 1, ..., 731, be the vector of the PM10 concentrations, that is, Zt =

(Z1,t, ...,Z8,t)
′

] where Zi,t corresponds to PM10 concentration at location i.
Figure 1 shows the plots of the PM10 concentrations for the eight stations.

Based on this figure, the series indicated that they present high levels of pollu-
tant concentrations which can be identified, from the statistical point of view, as
additive outliers. This is justified by the fact that they produce similar impact on
the sample ACF caused by additive outliers, that is, they lead to a reduction of
the sample autocorrelation values. Therefore, the high values can be seen as (ad-
ditive) outliers. Hence, both methods, the robust and non-robust approaches dis-
cussed previously, are used here to verify whether or not these high levels make
any impact on the factor model estimation.

The sample ACFs displayed in Figures 2 (the classical ACF estimator) and 3
(the robust ACF estimator) show possible seasonal pattern of period s = 7 which is
an expected evidence since the data are daily averaged. In terms of the comparison
between the sample ACF estimates, as a simple case, the classical sample ACF
values at VVCentro station are 0.47, 0.12, 0.15 and 0.13 for lags h = 1, 3, 5, 10,
respectively, while the ACF based on the Qn function are 0.54, 0.25, 0.20 and 0.19.
This simple case shows that the high levels of PM10 at VVCentro station indicated
an reduction of the sample ACFs values of the classical autocorrelation estimator.
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The effect of atypical observations on the estimation of the ACF function is well
discussed in Molinares et al. [21] for a single time series. The comparison between
the sample ACFs of PM10 concentrations from the other stations presented similar
conclusions.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

From the above discussion, it is expected that the FA estimated model will
show different performance for the two methodologies, that is, for the standard
and robust ones. The estimates of the number of factors r were computed by per-
forming an eigenanalysis on M̂ and on M̂Q of Equations (6) and (12), respectively,
with h0 = 7, to capture the seasonality feature of the data set. The eigenvalues (the
scree plot), in decreasing order, and their ratios obtained using Γ̂Z are shown in
Figure 4 (a) and (b), respectively. The corresponding robust versions, i.e., using
Γ̂Q, are shown in Figure 5 (a) and (b), respectively. As can be seen, the robust
and the classical ACF estimators suggest r̂ = 2 and r̂ = 1, respectively. This con-
firms the expected result previously stated. The reduction was not affected when
varying the value of h0.

[Figure 4 about here.]

[Figure 5 about here.]

Figure 6 (a) and (b) display the time series plots of the two components series
X̂1,t and X̂2,t, respectively, of the estimated factors X̂t = (X̂1,t, X̂2,t)

′

for Γ̂Z,Q (see
Equation (4)).

Following similar lines as in the application section of Lam and Yao [12],
it is now addressed the study to verify the percentage of the variability of the
pollutant vector Zt explained by P̂X̂t. For this, the PM10 concentration measured
at the Laranjeiras station is used and the original data and the estimated one are
displayed in Figures 6 (c) and (d), respectively. From the plots of Figure 6, it
is possible to note that the behaviour of the two factors is similar to the ones of
the Laranjeiras station, including the high volatility and the periods with peaks
of PM10 concentrations. The estimated PM10 concentrations (Figure 6(d)) are
a linear combination of the estimated factor coefficients with values 0.4753 and
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0.8231, for the first and second factor, respectively. This estimated series behaves
similarly to the observed values (Figure 6 (c)).

The quantity ||Bu||2/||u||2 = 0.0015 where u is the 731 × 1 vector consisting
of the PM10 concentrations of Laranjeiras station index over the same period of
time, and B denotes the projection matrix onto the orthogonal complement of
the linear space spanned by the two components series X̂1,t and X̂2,t. From this,
99,85% of the PM10 concentrations of Laranjeiras station can be explained by a
linear combination X̂1,t and X̂2,t. Therefore, these analyses suggest the following
factor model for the PM10 concentrations vector

Zt = p1X1,t + p2X2,t + εt, (14)

where X1,t denotes the first factor, X2,t is the second factor, and εt is a vector white-
noise process.

Finally, for forecasting purpose, Equation (14) is a simpler model than a K-
multivariate stationary time series model with dimension k = 8, that is, the h-step
ahead forecast for the Zt series is simplified using the formula Ẑ(h)

T+h = P̂X̂(h)
T+h,

where X̂(h)
T+h is an h-step ahead forecast for {Xt}, based on the estimated past values

X̂1, . . . , X̂T (see, Lam et al. [13]).

[Figure 6 about here.]

6. Conclusions

In this paper, a robust method for high-dimensional time series with additive
outliers is proposed. Some theoretical results are discussed and verified through
Monte Carlo experiments under different scenarios of outliers contamination. The
simulations illustrated the effect of the additive outliers on the reduction of the
factor dimension. The empirical investigation showed that the robust method pre-
sented better performance compared to the classic procedure of identifying the
number of factors being an alternative method when there is any evidence of atyp-
ical observations in the multivariate time series data, such as high levels of the
pollutants in the pollution area. In addition, the proposed methodology was used
to identify pollution behaviour of the pollutant PM10, which can be very useful for
the management of the air quality network. The results in this paper will hopefully
stimulate further research on this topic.
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8. Proofs

Proof of Lemma 1. By Weyl’s Theorem, see Horn and Johnson [9, p. 239], for all
j ∈ {1, . . . , k}, it follows that

λ j(Â) − λ j(A) ≤ λk(Â − A) ≤ sup
1≤`≤k

|λ`(Â − A)|.

By exchanging the role of Â and A, for all j ∈ {1, . . . , k}, it follows that

λ j(A) − λ j(Â) ≤ sup
1≤`≤k

|λ`(Â − A)|.

Hence,
sup

1≤ j≤k
|λ j(Â) − λ j(A)| ≤ sup

1≤`≤k
|λ`(Â − A)| = ‖Â − A‖2,

where ‖X‖2 denotes the largest absolute value of the eigenvalues of a matrix X.
Since un(Ân − A) = Op(1), the result follows.

Proof of Lemma 2. The proof of this lemma directly follows from the application
of the continuous mapping theorem; see van der Vaart [29, Theorem 2.3].

Proof of Lemma 3. Observe that the autocovariance of the process (Zi,t + Z j,t+h)t≥1

at lag ` is equal to

γ(+)
i, j (`) = Cov[Zi,t + Z j,t+h,Zi,t+` + Z j,t+h+`] = γi,i(`) + γi, j(h + `) + γ j,i(`− h) + γ j, j(`),

and that the autocovariance of the process (Zi,t − Z j,t+h)t≥1 at lag ` is equal to

γ(−)
i, j (`) = Cov[Zi,t − Z j,t+h,Zi,t+` − Z j,t+h+`] = γi,i(`)− γi, j(h + `)− γ j,i(`− h) + γ j, j(`).
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By A2 and Equation (9),
∑
`≥1 |γ

(+)
i, j (`)| < ∞ and

∑
`≥1 |γ

(−)
i, j (`)| < ∞. The proof

of this lemma, thus, follows the same lines as the ones of Lévy-Leduc et al. [16,
Theorem 2] by replacing Xi and Xi+h by Zi,t and Z j,t+h, respectively, and the sum-
mations on i by summations on t which leads to

√
n − h

(
γ̂Q

i, j(h) − γi, j(h)
)

=
1

√
n − h

n−h∑
t=1

ψ(Zi,t,Z j,t+h) + oP(1),

where

ψ(x, y) =

1
2

(
γi,i(0) + γ j, j(0) + γi, j(h) + γ j,i(−h)

)
IF

 x + y√
γi,i(0) + γ j, j(0) + γi, j(h) + γ j,i(−h)

,Q,Φ


−

1
2

(
γi,i(0) + γ j, j(0) − γi, j(h) − γ j,i(−h)

)
IF

 x − y√
γi,i(0) + γ j, j(0) − γi, j(h) − γ j,i(−h)

,Q,Φ

 ,
(15)

where IF is defined in Equation (20) of Lévy-Leduc et al. [16]. By applying
Arcones [2, Theorem 4], the result is obtained.
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Figure 1: PM10 pollutant concentrations of the eight stations of AQAMN (k = 8).
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Figure 2: Classical ACF estimates of the PM10 pollutant concentrations.
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Figure 3: Robust ACF estimates of the PM10 pollutant concentrations.
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Figure 4: A scree plot (a) and the plot of the ratios (b) of the estimated eigenvalues of M̂.
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Figure 5: A scree plot (a) and the plot of the ratios (b) of the estimated eigenvalues of M̂Q.
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Figure 6: The time series plots of the two estimated factors by means of the robust method, (a)
and (b), respectively. The observed concentrations of Laranjeiras station (c) and the estimated
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Table 1: Φ1 coefficients matrix of the VAR(1) process.
Φ1

0.60 0.00 0.00
0.00 -0.50 0.00
0.00 0.00 0.30
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Table 2: Relative frequency estimates for P(r̂ = 3).
n 50 100 200 400 800 1600

k = 0.2n 0.170 0.585 0.870 0.995 1 1
k = 0.5n 0.395 0.710 0.975 1 1 1
k = 0.8n 0.435 0.740 0.960 1 1 1
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Table 3: Relative frequency estimates for P(r̂Q = 3).
n 50 100 200 400 800 1600

k = 0.2n 0.150 0.450 0.850 0.980 1 1
k = 0.5n 0.320 0.680 0.950 1 1 1
k = 0.8n 0.390 0.690 0.950 1 1 1
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Table 4: Relative frequency estimates for dimensional reduction, n = 100.
p = 0 p = 0.05 and ω = 15 p = 0 p = 0.05 and ω = 15

r̂ = 1 r̂ = 2 r̂ = 3 r̂ = 1 r̂ = 2 r̂ = 3 r̂Q = 1 r̂Q = 2 r̂Q = 3 r̂Q = 1 r̂Q = 2 r̂Q = 3
k = 0.2n 0.110 0.330 0.585 0.250 0.230 0.290 0.140 0.410 0.450 0.180 0.380 0.440
k = 0.5n 0.100 0.280 0.710 0.240 0.240 0.260 0.100 0.220 0.680 0.160 0.310 0.530
k = 0.8n 0.040 0.200 0.785 0.130 0.120 0.210 0.040 0.270 0.690 0.060 0.290 0.650

30


	Introduction
	Factor model in time series and estimation methods
	The factor model and the estimate of the number of factors
	The robust estimator of the number of factors


	Theoretical results
	Monte Carlo studies
	Application to the pollutant PM10
	Conclusions
	Acknowledgements
	Proofs

