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Introduction

In the last fifty years, issues related to air pollution have grown into a major problem, specially in developing countries, where the air quality has been degraded as a result of industrialization, population growth, high rates of urbanization and inadequate or non-existent policies to control air pollution. The problems caused by air pollution produce local, regional and global impacts. Among different environmental problems, air pollution is reported to cause the greatest damage to health and loss of quality of life see, for example, WHO [START_REF]Air pollution estimates[END_REF]. The most common health problems caused by air pollution are asthma, rhinitis, burning eyes, fatigue, dry cough, heart and lung diseases and heart failure. The main pollutants are carbon monoxide (CO), sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), ozone (O 3 ) and inhalable particles with diameter smaller than 10 µm (PM 10 ). The papers by Brunekreef and Holgate [START_REF] Brunekreef | Air pollution and health[END_REF], Maynard [START_REF] Maynard | Key airborne pollutants: the impact on health[END_REF], WHO [START_REF]Air quality guidelines: global update 2005[END_REF], Curtis et al. [START_REF] Curtis | Adverse health effects of outdoor air pollutants[END_REF] and Souza et al. [START_REF] Souza | Generalized additive model with principal component analysis: An application to time series of respiratory disease and air pollution data[END_REF] discuss the relationship between these pollutants and health problems. In addition, air pollution contributes to the degradation of the environment, the greenhouse effect among many others problems.

In recent studies related to air pollution, much attention has been paid to mathematical receptor models with the aim to measure and analyse the pollutant concentrations at the source of emission. For this, mathematical and statistical tools are used to provide the identification of the pollutant emission sources from chemical characteristics of the particles on the receiver and the pollutant emission sources see, for example, Seinfeld and Pandis [START_REF] Seinfeld | Atmospheric chemistry and physics: from air pollution to climate change[END_REF]. In the literature, the most studied receptor models are: chemical mass balance (CMB), multivariate analysis, principal component analysis techniques (PCA), factor analysis model (FA), multiple linear regression, cluster analysis and positive matrix factorization (PMF) (Watson et al. [START_REF] Watson | Receptor modeling application framework for particle source apportionment[END_REF]). In particular, the classical factor analysis methodology has been widely used in air pollution analysis specially for the identification of emission sources, the management of monitoring networks, regression analysis, cluster analysis and prediction.

In many practical problems, it is quite common to have observations which accommodate the serial dependence of each component and the interdependence between different components, that is, the data are time-dependent. However, it should be noted that, among the studies that adopted the classical PCA and factor analysis techniques, the time dependence of the data is a commonly neglected feature. A basic assumption of the multivariate statistical tools is that the data are independent in time (see for example Anderson [START_REF] Anderson | An introduction to multivariate statistical analysis[END_REF] and Johnson and Wichern [START_REF] Johnson | Applied multivariate statistical analysis[END_REF]). To deal with autocorrelated data in factorial analysis, Peña and Box [START_REF] Peña | Identifying a simplifying structure in time series[END_REF],

Stock and Watson [START_REF] Stock | Forecasting using principal components from a large number of predictors[END_REF], Lam et al. [START_REF] Lam | Estimation of latent factors for high-dimensional time series[END_REF] and Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF] studied the factor modelling for multivariate time series from a dimension-reduction point of view. Contrarily to the PCA and factor analysis for independent observations, these papers look for factors which drive the serial dependence of the original time series. Further discussions and additional references can be found in Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF].

Since factor analysis allows to reduce the order of the estimated model, this technique has been widely used for forecasting. According to Stock and Watson [START_REF] Stock | Forecasting using principal components from a large number of predictors[END_REF], the dimension reduction becomes a central concern for forecasting when the number of candidate predictor series is very large. This issue can make the forecast investigation impractical in a real application, for example in the use of vector autoregressive moving average (VARMA) models with a large number of variables. This high-dimensional problem is simplified by modelling the common dynamics in terms of a relatively small number of unobserved latent factors. Then, forecasting can be carried out in two-step approach: first, a time series of the factors is estimated from the predictors; second, the relationship between the variable to be forecast and the factors is estimated, for example, using a linear regression.

Environmental time series are often of high dimension due to the large number of measurements recorded across many different locations. These data may also present interesting phenomena to be considered from an applied and theoretical point of view. Indeed, the concentration of pollutant may present high peaks, which can be seen as outlying values from an aspect of statistical analysis. Outliers and high dimension data are common in many areas of applied mathematics. Therefore, the methodology proposed here can be widely used in many other areas where the multivariate techniques are the main tools to describe and interpret the data. This is the case of the health science area (Perc [23], Gosak et al. [START_REF] Gosak | The relationship between node degree and dissipation rate in networks of diffusively coupled oscillators and its significance for pancreatic beta cells[END_REF], Souza et al. [START_REF] Souza | Generalized additive model with principal component analysis: An application to time series of respiratory disease and air pollution data[END_REF]), air route network problems (Zhang et al. [START_REF] Zhang | Analysis of flight conflicts in the chinese air route network[END_REF], Lordan et al. [START_REF] Lordan | Robustness of airline route networks[END_REF]), environmental engineering (Zamprogno [START_REF] Zamprogno | PCA applied in time series data with applications to air quality data[END_REF]) and statistical process controls (Vanhatalo and Kulahci [30]), to name a few.

As is well known, outliers can destroy the statistical properties of the estimates such as the sample mean and sample covariance (see, for example, Chang et al. [START_REF] Chang | Estimation of time series parameters in the presence of outliers[END_REF], Tsay [START_REF] Tsay | Outliers, level shifts, and variance changes in time series[END_REF], Chen and Liu [START_REF] Chen | Joint estimation of model parameters and outlier effects in time series[END_REF] and the references therein). Since the parameter estimation is connected with these sample functions, the final estimated time series model can be strongly affected by the outliers. When the series has additive outliers, one way to deal with model estimation is to use robust estimates of these statistics. For a univariate time series, Ma and Genton [START_REF] Ma | Highly robust estimation of dispersion matrices[END_REF] proposed a robust sample autocorrelation function (ACF) based on the robust scale estimate Q n (.) suggested in Rousseeuw and Croux [START_REF] Rousseeuw | Alternatives to the median absolute deviation[END_REF]. This robust ACF estimator was recently studied by Lévy-Leduc et al. [START_REF] Lévy-Leduc | Asymptotic properties of U-processes under long-range dependence[END_REF], Lévy-Leduc et al. [START_REF] Lévy-Leduc | Large sample behaviour of some well-known robust estimators under long-range dependence[END_REF] and Lévy-Leduc et al. [START_REF] Lévy-Leduc | Robust estimation of the scale and the autocovariance function of Gaussian short and long-range dependent processes[END_REF].

This paper considers multivariate time series with additive outliers using the factor analysis technique for dimension reduction. In this context, a robust version of the dimension reduction estimator given in Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF] is proposed here. Theoretical results are discussed, and the method performance is investigated through Monte Carlo simulations. The proposed methodology is applied to PM 10 concentrations measured at the Air Quality Automatic Monitoring Network (AQAMN), Vitória, Brazil.

The rest of the paper is organized as follows. In Section 2, the model and the estimation methods are presented. Section 3 discusses the asymptotic properties of the robust eigenvalues. Section 4 presents some Monte Carlo experiments. Section 5 considers an application of the proposed methodology and some concluding remarks are provided in Section 6.

Factor model in time series and estimation methods

The factor model and the estimate of the number of factors

Let k be the number of candidate predictor series. Let Z t , t ∈ Z, be a kdimensional zero-mean vector of an observed time series. Let also X t be an unobserved r-dimensional vector of common factors (r ≤ k). It is assumed that Z t is generated by

Z t = PX t + ε t , (1) 
where P is an unknown k × r matrix of parameters of rank r, denoted by the factor-loading matrix, and ε t is a k-dimensional white-noise sequence with fullrank covariance matrix Σ ε . When r is small relative to k, the model presented in Equation ( 1) is most useful, since it will result in a multivariate time series model with a reduced dimension and, consequently, can lead to a much simpler multivariate time series model for forecasting.

In the sequel, the following assumption is made.

(A1) X t , t ∈ Z, is a multivariate stationary process and ε t ∼ WN(0, Σ ε ). Moreover, X t and ε t are assumed to be uncorrelated and P P = I r , where I r denotes the r × r identity matrix.

Note that Assumption 1 is to ensure identifiability in Equation (1); see Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF] and Peña and Box [START_REF] Peña | Identifying a simplifying structure in time series[END_REF] for further details.

It follows from Equation ( 1) and under Assumption (A1) that the covariance matrices of Z t are given by

Γ Z (0) = PΓ X (0)P + Σ ε , (2) 
Γ Z (h) = PΓ X (h)P , h ≥ 1, (3) 
where

Γ X (h) = E[X t-h X t ] is the covariance matrix of X t .
Based on the observations Z 1 , ..., Z n , the first step in Equation ( 1) is to estimate the number of factors r in order to compute the estimate of the k × r factor loading matrix P. Once P is obtained, the estimator for the factor process and the residuals are respectively given by Xt

= P Z t , (4) 
and

ˆ t = (I d -P P )Z t . (5) 
For further details on the estimation of P, see Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF].

Let ΓZ (h) denote the sample covariance matrix of Z t at lag h and let

M = h 0 h=1 ΓZ (h) ΓZ (h) (6) 
for a prescribed integer h 0 ≥ 1. Following the lines of Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF], the estimator for the number of factors r is given by:

r = argmin 1≤i≤R λi+1 / λi , (7) 
where r < R < k is a constant, λ1 ≥ . . . ≥ λk are the eigenvalues of M. Under some assumptions, Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF] derive the asymptotic properties of the above results. According to Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF], in practice, for example, R = p/2 may be used. Note that, there is no need to extend the test up to p since it is expected that the minimum eigenvalue of M be practically 0, specially for a small n and a large p. It is important to say that when p and n are of the same order, the estimators for eigenvalues are no longer consistent, although the ratio based estimator still can be used, see Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF]. As previously stated, the aim of this paper is to propose robust estimators of M and r which are based on a robust covariance matrix estimator for Z t . These issues are discussed in the following section.

The robust estimator of the number of factors

Let (Y i ) i≥1 be a stationary Gaussian process. Given the observations Y 1:n = (Y 1 , . . . , Y n ), the estimator of scale proposed by Rousseeuw and Croux [START_REF] Rousseeuw | Alternatives to the median absolute deviation[END_REF] is defined by

Q n (Y 1:n ) = c Y i -Y j ; 1 ≤ i, j ≤ n ( n 2 /4 ) , (8) 
where c = 2.21914. Now, consider the following assumption on X t .

(A2) X t = (X 1,t , X 2,t , . . . , X r,t ) is a multivariate stationary zero-mean Gaussian process satisfying

h≥1 |γ X i, j (h)| < ∞, for all i, j ∈ {1, . . . , r}, where γ X i, j (h) = Cov[X i,t , X j,t+h ]
. By using Equations ( 1) and ( 3), (Z t ) is also a multivariate stationary zero-mean Gaussian process satisfying

h≥1 |γ i, j (h)| < ∞, for all i, j ∈ {1, . . . , k}, (9) 
where

γ i, j (h) = Cov[Z i,t , Z j,t+h ].
From the estimator Q n defined in Equation ( 8) and from the observations (Z 1 , . . . , Z n ), it is proposed here a robust estimator of γ i, j (h) = Cov(Z i,t , Z j,t+h ) for all i, j in {1, . . . , k} defined as follows

γQ i, j (h) = 1 4 Q 2 n-h (Z i,1:n-h + Z j,h+1:n ) -Q 2 n-h (Z i,1:n-h -Z j,h+1:n ) , (10) 
where Z i,1:n-h = (Z i,1 , . . . , Z i,n-h ) and Z j,h+1:n = (Z j,h+1 , . . . , Z j,n ). γQ i, j (h) is the multivariate estimator of the univariate case suggested by Ma and Genton [START_REF] Ma | Highly robust estimation of the autocovariance function[END_REF].

From Equation [START_REF] Johnson | Matrix theory and applications[END_REF], the robust estimator of the covariance matrix of Z t is given by

ΓQ (h) =             γQ 1,1 (h) γQ 1,2 (h) . . . γQ 1,k (h) . . . . . . . . . . . . γQ k,1 (h) γQ k,2 (h) . . . γQ k,k (h)             . ( 11 
)
Based on Equations ( 6) and [START_REF] Johnson | Applied multivariate statistical analysis[END_REF], the robust version of the estimator M is suggested here as follows

MQ = h 0 h=1 ΓQ (h) ΓQ (h) . (12) 
Therefore, the robust estimator rQ of r is similarly obtained from Equation ( 7) by replacing λi+1 and λi by λQ i+1 and λQ i , respectively, where ( λQ i ) 1≤i≤k are the eigenvalues of MQ .

Theoretical results

This section provides some analytical results to theoretically support the robust approach discussed in the previous section.

Theorem 1. Let h be a fixed positive integer and ΓQ (h

) 1≤i, j≤k = γQ i, j (h) 1≤i, j≤k 
, where γQ i, j (h) is defined in Equation [START_REF] Johnson | Matrix theory and applications[END_REF]. Assume that Assumptions (A1) and (A2) hold, then

√ n sup 1≤ j≤k λQ j -λ j = O p (1), as n → ∞,
where ( λQ j ) 1≤ j≤k and (λ j ) 1≤ j≤k denote the eigenvalues of h 0 h=1 ΓQ (h) ΓQ (h) and h 0 h=1 Γ(h)Γ(h) , respectively, where (Γ(h)) 1≤i, j≤k = γ i, j (h) 1≤i, j≤k and h 0 is a fixed integer larger than 1.

The proof of this theorem directly follows from Lemmas 1, 2 and 3 given below and proved in Section 8.

Remark 1. By Theorem 1 and Lam and Yao [12, Proposition 1], it can be seen that the eigenvalues of the robust estimator covariance matrix of Z t have the same rate of convergence as the eigenvalues of the standard estimator of the covariance matrix of Z t .

Lemma 1. Let Ân be a sequence of k × k symmetric matrices and A be a k × k symmetric matrix such that u n ( Ân -A) = O p [START_REF] Anderson | An introduction to multivariate statistical analysis[END_REF], where u n is a sequence of positive numbers tending to infinity as n tends to infinity, then

u n sup 1≤ j≤p |λ j ( Â) -λ j (A)| = O p (1), as n → ∞,
where (λ j ( Â)) 1≤ j≤k and (λ j (A)) 1≤ j≤k are the eigenvalues of Ân and A, respectively. Lemma 2. Let Ân (h) be a sequence of k × k symmetric matrices and A(h) be a k × k symmetric matrix such that u n ( Ân (h) -A(h)) = O p (1), for each fixed h ∈ {1, . . . , h max }, where u n is a sequence of positive numbers tending to infinity as n tends to infinity, then

u n         h max h=1 Ân (h) Ân (h) - h max h=1 A(h)A(h)         = O p (1).
Lemma 3. Let h be a non negative integer and i and j be two integers in {1, . . . , k}. Assume that Assumptions (A1) and (A2) hold, then the robust autocovariance estimator γQ i, j (h) defined in Equation ( 10) satisfies the following central limit theorem

√ n(γ Q i, j (h) -γ i, j (h)) d -→ N(0, σ 2 i, j (h)), as n → ∞,
where

σ 2 i, j (h) = E[ψ(Z i,1 , Z j,1+h ) 2 ] + 2 ≥1 E[ψ(Z i,1 , Z j,1+h )ψ(Z i, +1 , Z j, +1+h )],
where ψ is defined in Equation ( 15).

Monte Carlo studies

This section reports simulation results related to the performance of the proposed methodology previously discussed for finite sample size. In this context, the empirical study considered X t as a VAR(1) model with r = 3. The VAR(1) model was generated with independent white noise vector from N(0, I) and the matrix of the coefficients Φ 1 . This matrix is displayed in Table 1. Note that the Φ coefficients corresponds to a process with no temporal correlation outside the main diagonal. The sample sizes are n = 50, 100, 200, 400, 800 and 1600, and k = 0.2n, 0.5n, 0.8n, and h 0 = 1 (these are also considered in Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF]). The factor model (Equation ( 1)) was generated as follows: first, all k × r elements of matrix P were generated as independent observations from the uniform distribution on the interval [-1, 1] (see, also, Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF]). The process ε t in Equation (1) consists of N(0, 1) components independent between each other and across t. The statistical quantities were computed based on 1000 replications. These simulations were ran using the R programming language and the code is available upon request.

[Table 1 

about here.]

The main interest in this empirical study is to verify the performance of the statistics r and rQ in the context of VAR(1) models with and without outliers. For this, the estimate of P(r = r) is obtained by computing the relative frequencies of r = r, denoted here as f f req. (r = r), where r is the estimator of r. The rQ estimator was similarly computed.

Table 2 reports the relative frequency estimates ( f f req. (r = 3)) for P(r = 3) of the model in the study. From this, it is observed that the ratio-based estimator of r improves when n is increased. Similar performance of the ratio is also observed when the dimension k increases. These are in accordance with the results given in Table 1 of Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF], that is, the asymptotic properties of r is corroborated with these finite sample size investigations.

The results related to the alternative method rQ are displayed in Table 3. It shows that this estimator presents similar empirical performance of r, which is an expected result based on the asymptotic theory of both estimators of the ratio (see Remark 1). Therefore, this simple empirical study together with the theoretical results discussed in the previous section give support to using rQ as an alternative method to estimate the number of the factors in the model presented in Equation ( 1).

[Table 2 

about here.]

[Table 3 about here.] Now, let X * t , t ∈ Z, be a vector process contaminated by additive outliers defined as follows

X * t = X t + ω • δ t , (13) 
where "•" is the Hadamard product (Johnson [START_REF] Johnson | Matrix theory and applications[END_REF]). The vector ω = (ω 1 , ..., ω k ) is a magnitude vector of additive outliers and the random vector δ t = (δ 1,t , ..., δ k,t ) indicates the occurrence of an outlier at time t, in variable i, i = 1, ..., k, such as P(δ i,t = -1) = P(δ i,t = 1) = p/2 and P(δ i,t = 0) = 1p, where E[δ i,t ] = 0 and E[δ 2 i,t ] = Var[δ i,t ] = p. The model described above assumes that X * t and δ t are independent processes. Also, it is assumed that the elements of δ t are not correlated and temporally uncorrelated, i.e., E[δ t δ t ] = Σ δ = diag(p, ..., p) and E[δ t δ t+h ] = 0 for h 0.

Remark 2. δ i,t , i = 1, ..., k, is the product of Bernoulli(p) random variable with Rademacher random variable, the latter equals 1 or -1, both with probability 1/2.

In this empirical investigation, the probability of an outlier occurring at time t is p = 0.05 and, without loss of generality, it is also assumed that ω = [ω 1 , 0, 0] ; that is, X * 1,t , t = 1, ..., n, is the only process in X * t = (X * 1,t , X * 2,t , X * 3,t ) contaminated with outliers and ω 1 = 15.

Table 4 shows the relative frequency estimates, r and rQ , for the dimensional reduction for Model 1, when r = 3 and in the presence of outliers. The standard case, that is, ΓX * and p = 0, is in accordance with the results given by Tables 2 and3 for r and rQ , respectively.

From the cases where there are outliers (column of Table 4 in which p 0), it is clearly perceived that the standard method is destroyed by a single outlier at the time t by presenting a substantial reduction of the correct estimated ratio. This is an expected result since r is based on the standard sample matrix of autocorrelation. Note that, according the simulation plan, the expected number of outliers in the whole series X * 1,t is 5. The conclusions of the empirical study in this section corroborate the Proposition 1 in Cotta et al. [START_REF] Cotta | Robust estimation of covariance and correlation functions of a stationary multivariate process[END_REF], which demonstrates theoretically that one outlier is enough to destroy the properties of the sample autocorrelation function of multivariate processes.

In contrast with the empirical performance of r, rQ keeps almost unchanged with the proportion of the outliers in the present study. The estimated ratios are very close in the contaminated and uncontaminated series. Therefore, the percentage of outliers in this empirical example seems to be, in general, not strong enough to destroy the robustness property of rQ and this indicates that the methodology proposed here may be used when the presence of outliers in the series is uncertain. Other simulation cases with different degrees of contamination present similar conclusions and are available upon request.

[Table 4 about here.]

Application to the pollutant PM 10

This section presents an application of the methodology discussed previously for PM 10 pollutant concentrations measured at the Automatic Quality Monitoring Network (AAQMN) in the Greater Vitória Area (GVR), Espírito Santo, Brazil. GVR is comprised of seven cities with a population of approximately 1.9 million inhabitants in the area of 2,319 km 2 . The AAQMN consists of eight monitoring stations distributed in the cities of GVR; Laranjeiras, Carapina, Camburi, Suá, Vitória (center), Vila Velha (center), Ibes and Cariacica. The pollutant PM 10 , expressed in µg/m 3 and was hourly measured from January 2008 to December 2009, k = 8, though the daily average values (n = 731) are used in this empirical study. This follows the same lines of the application given in Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF]. Now let Z t , t = 1, ..., 731, be the vector of the PM 10 concentrations, that is, Z t = (Z 1,t , ..., Z 8,t ) ] where Z i,t corresponds to PM 10 concentration at location i.

Figure 1 shows the plots of the PM 10 concentrations for the eight stations. Based on this figure, the series indicated that they present high levels of pollutant concentrations which can be identified, from the statistical point of view, as additive outliers. This is justified by the fact that they produce similar impact on the sample ACF caused by additive outliers, that is, they lead to a reduction of the sample autocorrelation values. Therefore, the high values can be seen as (additive) outliers. Hence, both methods, the robust and non-robust approaches discussed previously, are used here to verify whether or not these high levels make any impact on the factor model estimation.

The sample ACFs displayed in Figures 2 (the classical ACF estimator) and 3 (the robust ACF estimator) show possible seasonal pattern of period s = 7 which is an expected evidence since the data are daily averaged. In terms of the comparison between the sample ACF estimates, as a simple case, the classical sample ACF values at VVCentro station are 0.47, 0.12, 0.15 and 0.13 for lags h = 1, 3, 5, 10, respectively, while the ACF based on the Q n function are 0.54, 0.25, 0.20 and 0.19. This simple case shows that the high levels of PM 10 at VVCentro station indicated an reduction of the sample ACFs values of the classical autocorrelation estimator.

The effect of atypical observations on the estimation of the ACF function is well discussed in Molinares et al. [START_REF] Molinares | Robust estimation in longmemory processes under additive outliers[END_REF] for a single time series. The comparison between the sample ACFs of PM 10 concentrations from the other stations presented similar conclusions.

[Figure 1 From the above discussion, it is expected that the FA estimated model will show different performance for the two methodologies, that is, for the standard and robust ones. The estimates of the number of factors r were computed by performing an eigenanalysis on M and on MQ of Equations ( 6) and ( 12), respectively, with h 0 = 7, to capture the seasonality feature of the data set. The eigenvalues (the scree plot), in decreasing order, and their ratios obtained using ΓZ are shown in Figure 4 (a) and (b), respectively. The corresponding robust versions, i.e., using ΓQ , are shown in Figure 5 (a) and (b), respectively. As can be seen, the robust and the classical ACF estimators suggest r = 2 and r = 1, respectively. This confirms the expected result previously stated. The reduction was not affected when varying the value of h 0 .

[Figure 4 about here.]

[Figure 5 about here.] Figure 6 (a) and (b) display the time series plots of the two components series X1,t and X2,t , respectively, of the estimated factors Xt = ( X1,t , X2,t ) for ΓZ,Q (see Equation ( 4)).

Following similar lines as in the application section of Lam and Yao [START_REF] Lam | Factor modeling for high-dimensional time series: inference for the number of factors[END_REF], it is now addressed the study to verify the percentage of the variability of the pollutant vector Z t explained by P Xt . For this, the PM 10 concentration measured at the Laranjeiras station is used and the original data and the estimated one are displayed in Figures 6 (c) and (d), respectively. From the plots of Figure 6, it is possible to note that the behaviour of the two factors is similar to the ones of the Laranjeiras station, including the high volatility and the periods with peaks of PM 10 concentrations. The estimated PM 10 concentrations (Figure 6(d)) are a linear combination of the estimated factor coefficients with values 0.4753 and 0.8231, for the first and second factor, respectively. This estimated series behaves similarly to the observed values (Figure 6 (c)).

The quantity ||Bu|| 2 /||u|| 2 = 0.0015 where u is the 731 × 1 vector consisting of the PM 10 concentrations of Laranjeiras station index over the same period of time, and B denotes the projection matrix onto the orthogonal complement of the linear space spanned by the two components series X1,t and X2,t . From this, 99,85% of the PM 10 concentrations of Laranjeiras station can be explained by a linear combination X1,t and X2,t . Therefore, these analyses suggest the following factor model for the PM 10 concentrations vector

Z t = p 1 X 1,t + p 2 X 2,t + ε t , (14) 
where X 1,t denotes the first factor, X 2,t is the second factor, and ε t is a vector whitenoise process. Finally, for forecasting purpose, Equation ( 14) is a simpler model than a Kmultivariate stationary time series model with dimension k = 8, that is, the h-step ahead forecast for the Z t series is simplified using the formula Ẑ(h)

T +h = P X(h) T +h , where X(h)

T +h is an h-step ahead forecast for {X t }, based on the estimated past values X1 , . . . , XT (see, Lam et al. [START_REF] Lam | Estimation of latent factors for high-dimensional time series[END_REF]).

[Figure 6 about here.]

Conclusions

In this paper, a robust method for high-dimensional time series with additive outliers is proposed. Some theoretical results are discussed and verified through Monte Carlo experiments under different scenarios of outliers contamination. The simulations illustrated the effect of the additive outliers on the reduction of the factor dimension. The empirical investigation showed that the robust method presented better performance compared to the classic procedure of identifying the number of factors being an alternative method when there is any evidence of atypical observations in the multivariate time series data, such as high levels of the pollutants in the pollution area. In addition, the proposed methodology was used to identify pollution behaviour of the pollutant PM 10 , which can be very useful for the management of the air quality network. The results in this paper will hopefully stimulate further research on this topic. By A2 and Equation ( 9), ≥1 |γ (+) i, j ( )| < ∞ and ≥1 |γ (-) i, j ( )| < ∞. The proof of this lemma, thus, follows the same lines as the ones of Lévy-Leduc et al. [START_REF] Lévy-Leduc | Robust estimation of the scale and the autocovariance function of Gaussian short and long-range dependent processes[END_REF]Theorem 2] by replacing X i and X i+h by Z i,t and Z j,t+h , respectively, and the summations on i by summations on t which leads to

√ n -h γQ i, j (h) -γ i, j (h) = 1 √ n -h n-h t=1
ψ(Z i,t , Z j,t+h ) + o P (1), where ψ(x, y) = 1 2 γ i,i (0) + γ j, j (0) + γ i, j (h) + γ j,i (-h) IF

      
x + y γ i,i (0) + γ j, j (0) + γ i, j (h) + γ j,i (-h)

, Q, Φ        - 1 2 γ i,i (0) + γ j, j (0) -γ i, j (h) -γ j,i (-h) IF       
xy γ i,i (0) + γ j, j (0) -γ i, j (h) -γ j,i (-h) , Q, Φ

       , (15) 
where IF is defined in Equation ( 20) of Lévy-Leduc et al. [START_REF] Lévy-Leduc | Robust estimation of the scale and the autocovariance function of Gaussian short and long-range dependent processes[END_REF]. By applying Arcones [2, Theorem 4], the result is obtained. Table 1: Φ 1 coefficients matrix of the VAR(1) process.

Φ 1 0.60 0.00 0.00 0.00 -0.50 0.00 0.00 0.00 0.30

  about here.] [Figure 2 about here.] [Figure 3 about here.]
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 345 Figure 3: Robust ACF estimates of the PM 10 pollutant concentrations.
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Proofs

Proof of Lemma 1. By Weyl's Theorem, see Horn and Johnson [9,p. 239], for all j ∈ {1, . . . , k}, it follows that

By exchanging the role of  and A, for all j ∈ {1, . . . , k}, it follows that

Hence, sup

1≤ j≤k

where X 2 denotes the largest absolute value of the eigenvalues of a matrix X. Since u n ( Ân -A) = O p (1), the result follows.

Proof of Lemma 2. The proof of this lemma directly follows from the application of the continuous mapping theorem; see van der Vaart [29, Theorem 2.3].

Proof of Lemma 3. Observe that the autocovariance of the process (Z i,t + Z j,t+h ) t≥1 at lag is equal to

and that the autocovariance of the process (Z i,t -Z j,t+h ) t≥1 at lag is equal to Relative frequency estimates for P(r = 3). . . . . . . . . . . . . . 28 3 Relative frequency estimates for P( rQ = 3). . . . . . . . . . . . . 29 4 Relative frequency estimates for dimensional reduction, n = 100. . 30