Experimental evaluation of an efflux-influx model of C exudation by individual apical root segments
Résumé
The aim of this study was to evaluate if a model describing the efflux and the influx of C through the root surface could be fitted to experimental short-term kinetics of carbon (C) exudation by individual apical root segments in maize (Zea mays L.). The efflux of C was set constant or modelled by a power function of the distance from the apex to simulate the greater release of C around the root tip commonly reported in the literature. The influx was proportional to the C concentration in the external solution to simulate the active re-uptake of exudates by the root. Plants were exposed to full light or to shade to manipulate C allocation to roots. The model with a constant efflux gave satisfactory fits to the kinetics of exudation (average R(2)=0.66). The average gross efflux was then 2.1 mug C cm(-2) root surface h(-1). The model was improved if exudation was set more intense towards the root apex (average R(2)=0.74). The estimated gross efflux decreased then from 5.2 mug C cm(-2) h(-1) at the apex to 1.8 mug C cm(-2) h(-1) for the region located 5-25 cm from the root tip. The decrease in net exudation of individual roots due to the shading of plants was weak, which may indicate that the import of C by the primary roots studied was not reduced significantly. By describing the exudation of an apical root segment of variable length and diameter, the model is a first step in linking exudation to root system architecture models and to whole plant functioning.