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Abstract 15 

In recent years, the importance of the gut microbiota in human health has been revealed and 16 

many publications have highlighted its role as a key component of human physiology. Owing 17 

to the use of modern sequencing approaches, the characterization of the microbiome in healthy 18 

individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis, 19 

associated with pathological conditions. Microbiota establishes a symbiotic crosstalk with their 20 

host: commensal microbes benefit from the nutrient-rich environment provided by the gut and 21 

the microbiota produces hundreds of proteins and metabolites that modulate key functions of 22 

the host, including nutrient processing, maintenance of energy homeostasis and immune system 23 

development. Many bacteria-derived metabolites originate from dietary sources. Among them, 24 

an important role has been attributed to the metabolites derived from the bacterial fermentation 25 

of dietary fibers, namely the short chain fatty acids (SCFAs) linking host nutrition to intestinal 26 
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homeostasis maintenance. SCFAs are an important fuel for intestinal epithelial cells (IEC) and 27 

regulate IEC functions through different mechanisms to modulate their proliferation, 28 

differentiation as well as functions of subpopulations such as enteroendocrine cells, to impact 29 

gut motility and to strengthen the gut barrier functions as well as host metabolism. Recent 30 

findings show that SCFAs, and in particular butyrate, also have important intestinal and 31 

immuno-modulatory functions. In this review, we discuss the mechanisms and the impact of 32 

SCFAs on gut functions and host immunity and consequently on human health. 33 

  34 
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Introduction 35 

Humans are colonized, at birth, by bacteria, archaea, fungi and viruses, which are collectively 36 

called the microbiota. Distinct microbiota inhabit all epithelial surfaces of the body: skin, oral 37 

cavity, respiratory, gastrointestinal and reproductive tracks (1); with the largest and most diverse 38 

microbiota residing in the colon. The intestinal microbiota is composed of 100 trillions of 39 

bacteria which represent ~25 times as many genes as our own Homo sapiens genome. The 40 

diversity and complexity of the microbiota is influenced by the host genetic background, the 41 

diet and the environment. Reciprocally, this microbiota encodes thousands of genes absent in 42 

human genome that exert diverse functions often associated with beneficial physiological 43 

effects for its host (2-4). From this close symbiotic relationship emerged the notion that humans 44 

and their microbiota form a composite organism, namely a holobiont (5). Advances in next-45 

generation sequencing and bioinformatics tools have shown that this relationship is far more 46 

complex than anticipated. Indeed, over the last decade, studies highlighted that perturbation of 47 

the microbiota, referred to as dysbiosis, and loss of bacterial diversity affect different host 48 

systems, particularly metabolic and immunes processes, that participate to host physiology and 49 

pathophysiologic conditions (2). Moreover, growing lines of evidence suggest that the dialogue 50 

between microbiota and the host systems has a homeostatic role beyond the gut, and contributes 51 

directly to the global wellbeing of the host. In agreement with this, animal studies have 52 

demonstrated that microbiota is implicated in liver diseases, allergy, diabetes, airway 53 

hypersensitivity, autoimmune arthritis and even neurological disorders (6-8).    54 

The human body has evolved to functionally interact with thousands of naturally occurring or 55 

microbiota-derived metabolites. Thus, the intestinal microbiome provides an extended 56 

repertoire of molecules and metabolites that influence the host health. Amongst those 57 

molecules, short chain fatty acids (SCFAs), derived from bacteria-dependent hydrolysis of 58 

fibers, have attracted considerable attention for their role in host health (figure 1A). Indeed, 59 

decreased abundance of SCFA-producing bacteria or decreased genomic potential for SCFA-60 

production have been identified in many studies such type-1 diabetes, type-2 diabetes, liver 61 

cirrhosis, inflammatory bowel diseases (IBD) and atherosclerosis (9-14). Here, we aim to provide 62 

an overview of bacterial SCFAs production in the gut, their impact on intestinal cells and host 63 

functions, and their different mechanisms of action.  64 
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 SCFAs production and transport 65 

Production of SCFAs 66 

Complex dietary carbohydrates are metabolised by intestinal microbiota through an extensive 67 

set of enzymes, mostly absent in mammals and belonging to the large family of carbohydrate-68 

active enzymes (CAZyme) (reviewed in (15)). The degradation of dietary fibers by gut 69 

microbiota, produces organic acids, gases and large amount of SCFAs. Acetate (C2), 70 

propionate (C3) and butyrate (C4) are the main SCFAs produced (60:20:20 mmol/kg in human 71 

colon). SCFAs can reach a combined concentration of 50–150 mM mainly in the colon where 72 

the microbial biomass is the highest (16-19). Substrates for bacterial fermentation include non-73 

digestible carbohydrates derived from dietary fibers such as polysaccharide plant cell walls, 74 

resistant starch, soluble oligosaccharide and endogenously products, such as mucin (20). Aside 75 

bacterial fermentation, SCFAs can also be found in plant oil and animal fats. Butter contains 3 76 

to 4% of butyrate in the form of tributyrin (21). However, when fermentable fibers supply 77 

decreases, some bacterial species can switch to amino acids and protein fermentation as an 78 

alternative energy source, also contributing to SCFAs and branched chain fatty acids (BCFA) 79 

production (22, 23). The BCFAs, i.e. isovalerate, 2-methylbutyrate and isobutyrate, are present at 80 

lower concentrations than SCFAs and originate only from proteins breakdown. Acetate is a net 81 

fermentation product for most gut bacteria while butyrate and propionate are produced by more 82 

specific bacterial species. Butyrate is produced from acetate, lactate, amino acids and various 83 

carbohydrates via the glycolysis from two different pathways, the butyryl-CoA:acetate CoA-84 

transferase or the phosphotransbutyrykase and butyrate kinase pathway. Using FISH probes 85 

and PCR, Flint and colleagues have shown that specific families belonging to the Clostridiales 86 

order (Firmicutes) have the capabilities to produce butyrate: Lachnospiraceae (Coprococcus, 87 

Eubacterium, Anaerostipes, Roseburia), Ruminococcaceae (Faecalibacterium, 88 

Subdoligranulum),Erysipelotrichaceae (Holdemanella) (24-26). The butyrate-producing 89 

capability of Clostridiales has been confirmed using in vitro culture in other genera such as 90 

Clostridium, Butyrivibrio, Lachnoclostridium, Marvinbryantia, Oscillibacter, Flavonifractor, 91 

Erysipelatoclostridium, Anaerotruncus, Dorea and Blautia, Ruminiclostridium (27, 28). 92 

Propionate is produced in the gut from various substrate, including amino acids, carbohydrates, 93 

lactate and 1,2-propanediol. Hence, most hexoses and pentoses enter the succinate pathway 94 

and result in succinate production, a precursor of propionate.  The succinate pathway is present 95 

in Bacteroidetes and some Firmicutes, such as the Negativicutes (Veillonella, 96 
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Phascolarctobacterium). Some other Firmicutes, belonging to the Negativicutes 97 

(Megasphera), the Lachnospiraceae (Coprococcus) and the Ruminocaccaceae, use the acrylate 98 

pathway, in which lactate is the substrate to produce propionate. The propanediol pathways is 99 

present in Proteobacteria and Lachnospiraceae species and use deoxyhexose sugars (e.g. 100 

fucose) as substrates. The commensal bacterium Akkermansia muciniphila, member of the 101 

Verrucomicrobia phylum also produces propionate from this later pathway (29). Some bacteria, 102 

notably in the Lachnospiraceae family, can produce both propionate and butyrate but from 103 

different substrates, e.g. Roseburia inulivorans (30).  104 

In vitro experiments have shown that Bacteroides growth is reduced relatively to Firmicutes 105 

and Actinobacteria because SCFAs negatively impact Bacteroides at mild acid pH (31). Thus, 106 

SCFAs production by Firmicutes and Bacteroides may to be regulated by pH variations, with 107 

more Firmicutes fermentation in proximal colon (pH≈5.6) and conditions favoring Bacteroides 108 

fermentation in the distal colon with a more neutral pH (pH≈6.3) (32). This selective gradient is 109 

limiting the propionate production and promoting butyrate formation in the more proximal part 110 

of the colon (24). Intestinal pH is not the only factor that impact microbiota composition and 111 

consequently SCFAs production. Indeed, intestinal gases production (e.g. oxygen and 112 

hydrogen) and diet composition and intake (e.g. type of fibers and iron) have been reported to 113 

influence the microbiota composition and the gut SCFAs concentration (33, 34). 114 

SCFAs transport 115 

In the host, SCFAs have distinct roles depending of their absorption and local physiologic 116 

concentrations (35, 36). Acetate, propionate and butyrate are weak acids with a pKa of 4.8 for 117 

butyrate. In physiological conditions the colonic pH range from 5.5 to 6.7, thus most of SCFAs 118 

are in the ionized form and require transporters for absorption (37, 38). SCFA transporters are 119 

expressed at different level: in the small intestine: MCT1 (SLC16A1), SMCT2 (SLC5A12) and 120 

SLC16A7 and in the colon: MCT1 (SLC16A1), SMCT2 (SLC5A12), SMCT1 (SL5CA8) and 121 

SLC26A3(20, 39). The transporters MCT1, SMCT1, SLC26A3 show affinities for all three major 122 

SCFAs while the other ones are more selective, e.g. SMCT2 only transports butyrate. Butyrate 123 

is mainly absorbed via MCT-1 that is expressed both at apical and basolateral membrane of 124 

colonic epithelial cells (39, 40). From approximately 20mM in gut lumen, butyrate concentration 125 

on portal vein reaches a range of 5-10µM. The liver significantly uptakes butyrate as there is 126 

almost no splanchnic release (41, 42). Butyrate venous concentration ranges from 0.5µM to 127 

3.3µM (32). Similarly, a larger amount of propionate is found in portal vein, around 32µM but 128 
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there is only a very small release from the liver. Venous concentration of propionate ranges 129 

from 3.8 to 5.4µM. In contrast, acetate is weakly absorbed by epithelial cells and the liver. The 130 

portal vein concentration of acetate is 98µM-143µM. Hence, liver efficiently metabolizes the 131 

butyrate and propionate released by the gut epithelium and avoids any acute increase even in 132 

the case of artificial enema (32, 41).  133 

Cellular uptake of SCFAs in their anionic form are through H+ or Na+ coupled transporters. 134 

Thus, butyrate transport directly participates in electrolyte absorption with increases of Na+ 135 

and Cl- absorption and release of bicarbonate (HCO3
-) in the lumen (39, 43, 44). Interestingly, 136 

electrolytes absorption is region specific due to the different transporter expression levels in 137 

each gut regions (45). Transport of butyrate is electroneutral though SMCT2 (Na+), resulting in 138 

the transport of one Na+ for each butyrate anion absorbed (46). On the contrary, SMCT1 139 

transport is electrogenic as two Na+ are transported with one butyrate anion. This results in 140 

electrolytes and water absorption (47, 48). MCT1 is a proton coupled transporter and has no direct 141 

role in ion transport. However, MCT1 indirectly regulates bicarbonate secretion through 142 

Na+/H+ and Cl-/HCO3
- exchangers. Interestingly, butyrate modulates the expression of many 143 

transporters including MCT1 and SMCT1, therefore potentially increasing electrolyte 144 

exchanges as well as its own transport. Butyrate blocks Cl- secretion by inhibiting NKCC1 145 

expression and increases expression of the Na+/H+ transporter NHE3 through HDAC inhibition 146 

and a SP1/3 dependent pathway (49-52). 147 

Mechanisms  148 

SCFAs receptors  149 

The human genome encodes for six potential G protein-coupled receptors (GPCR) sensitive to 150 

SCFAs: GPR41 (FFAR3), GPR42, GPR43 (FFAR2), GPR109a (HCAR2), GPR164 (OR51E1) 151 

and OR51E2. GPR41 and GPR109a are exclusively Gαi/o coupled receptors whereas GPR43 152 

can be coupled to either Gαβγq and Gαi/o and OR51E2 is αs coupled (53). GPR42 was recently 153 

identified as a functional GPCR modulating Ca2+ channel flux, but only the Gβγ pathway 154 

downstream this receptor was explored (54). The GPR41, GPR43 and GPR109a are expressed 155 

in numerous organs including the small and large intestine by various cell types: immune cells, 156 

adipose tissues, heart, skeletal muscle or neurons (20). GPR43 (FFAR2), GPR41 (FFAR3) 157 

recognize acetate, butyrate and propionate with affinities that differ between species, whereas 158 

only butyrate activates GPR109a (Figure 1B) (55-58). Schematically, GPR41 activation by 159 
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propionate and butyrate and GPR109a activation by butyrate lead to the inhibition of cAMP 160 

(cyclic adenosine monophosphate) accumulation and protein kinase A (PKA) and MAP kinases 161 

(ERK et p38) activation. On the other hand, GPR43 is activated by the three main SCFAs with 162 

approximately the same affinities. GPR43 engagement stimulates the phospholipase-Cβ, which 163 

releases intracellular Ca2+ and activates the protein kinase C (PKC) in addition to cAMP 164 

accumulation inhibition and PKA and ERK activation (59). The highly polymorphic GPR42 is 165 

activated by propionate and modulates Ca2+ by a yet unknown mechanism that could be similar 166 

to GPR43 due to the very high homology between these two receptors. In humans, GPR42 is 167 

expressed in the colon and in sympathetic ganglia (54). Butyrate is the ligand of GPR164 168 

(OR51E1) expressed all along the gastrointestinal tract and specifically by enteroendocrine 169 

cells (60, 61). The olfactory receptor OR51E2 (Olfr78 in mouse) is activated by propionate and 170 

acetate and result in cAMP and Ca2+ increase. Olfr78 is expressed at the gut mucosal level by 171 

PYY-positive colonic enteroendocrine cells (62). It is also detected in various tissues, including 172 

kidney, blood vessels, lung and specific nerves in the heart and gut (63).  173 

Transcriptional regulations and post-translational modifications 174 

SCFAs have a broad impact in the host: metabolism, differentiation, proliferation mainly due 175 

to their impact on gene regulation. Indeed, several studies revealed that butyrate regulates the 176 

expression of 5 to 20% of human genes (64-66). Within the cells, butyrate and propionate exhibit 177 

strong inhibition capacity of lysine/histone deacetylase (K/HDAC) activity, with butyrate being 178 

more potent than propionate (67, 68). Moreover, butyrate is metabolized into acetyl-CoA which 179 

stimulates histone acetyltransferase (HAT) by further enhancing histone acetylation (Figure 180 

1B) (66, 69). By their HDAC inhibitor and HAT stimulatory properties, SCFAs promote post-181 

translational modification of histones through increasing their acetylation. Histone 182 

hyperacetylation leads to an increased accessibility of transcription factors to the promoter 183 

regions of targeted genes owing the modulation of their transcription. HDAC inhibition by 184 

butyrate does not only up-regulate gene transcription, repression of several genes such as LHR, 185 

XIAP or IDO-1 has been reported (27, 70). In colonic cell line, 75% of the upregulated genes are 186 

dependent of the ATP citrate lyase (ACL) activity and 25% are independent at 0.5mM 187 

concentration but the proportion is reversed at high concentration (5mM). This suggests that 188 

the gene regulation mechanisms are different, depending on the butyrate concentration. It has 189 

been shown that butyrate does not only tune histone acetylation level but also acetylation of 190 

other proteins, “K/HDAC” inhibitor, including transcription factors such as SP1 and FOXP3 191 



 8 

(71, 72). SCFAs derived from the gut microbiota also promote crotonylation through their histone 192 

acetylase properties (73). Histone crotonylation is abundant in the small and large bowel 193 

epithelium as well as in the brain. Crotonyl-CoA modification of histones is linked to the cell 194 

cycle regulation. Moreover, several studies have shown that butyrate also modifies DNA and 195 

protein methylation and phosphorylation levels (74-76). 196 

Novel role of butyrate as ligand of transcription factors 197 

Beside the extensive described effects of SCFAs on host physiology through GPRs and post-198 

translational modifications, a novel role emerged for butyrate as ligand of two transcription 199 

factors, expanding our knowledge on microbial-host crosstalk. By exploring the mechanisms 200 

involved in the microbial modulation of Angiopoietin-like protein 4 (ANGPTL4), Alex and 201 

co-workers demonstrated that SCFAs induce ANGPTL4 transcription and secretion through a 202 

novel role as selective modulator of peroxisome proliferator-activated receptor γ (PPARγ) in 203 

colonic cell lines (77). In this study, Alex and co-workers showed that butyrate promotes, 204 

similarly to PPARγ ligands, the interactions between PPARγ and multiple coactivators and 205 

binds into PPARγ binding pocket with a conformation similar to the known PPARγ agonists, 206 

the decanoic acid (77). The evidence suggests, for the first time, an original function of butyrate 207 

as ligand for a transcription factor. This original mechanism was also reported for another 208 

nuclear transcription factor, the aryl hydrocarbon receptor (AhR) in human colonic cell lines 209 

(78). This latter study described a ligand-dependent activation of human AhR by butyrate in 210 

synergy with its role as HDAC inhibitor. By using selective ligand antagonists and structural 211 

modelling, it emerges that butyrate activates human AhR by binding into its ligand binding 212 

pocket similarly to the AhR ligand FICZ (78). Together these reports provide an expanded view 213 

of the possible mechanisms for butyrate to modulate human transcription factors activity that 214 

might apply to other transcription factors (Figure 1B).  215 

Functional impact of SCFA on the host. 216 

SCFA, regulators of the gut metabolism, proliferation and differentiation 217 

SCFAs are efficiently taken up from the gut lumen by the intestinal epithelial cells (IEC) with 218 

different fates (Figure 1B). Butyrate is the primary energy source of IECs, being oxidized via 219 

the β-oxidation in the mitochondria. This catabolic process represents from 73% to 75% of 220 

oxygen consumption by human colonocytes, by which part of butyrate is converted into ketone 221 

bodies (79-81). The main substrates of colonocytes are by order of preference, butyrate > ketone 222 



 9 

bodies > amino acid > glucose. By using a high level of oxygen, the colonocytes metabolism 223 

maintains epithelial hypoxia with an oxygen partial pressure [pO2] of less than < 1% oxygen 224 

(7.6 mmHg), thus favoring anaerobic commensals (82). The capacity to produce ketone bodies 225 

and oxidize butyrate is a crucial difference between the small and large bowel. Epithelial cell 226 

butyrate oxidative capacity has been determined in vitro to be between 1 to 5 mM of butyrate, 227 

therefore when a greater concentration is available, SCFAs can affect cells functions such as 228 

K/HDAC inhibition (69, 83). Moreover, butyrate absorption increases the pyruvate 229 

dehydrogenase kinases (PDK) which negatively regulates the pyruvate dehydrogenase (PDH) 230 

complex. The PDH decarboxylates pyruvate to produce acetyl-CoA and NADH, both 231 

necessary to the tricarboxylic acid (TCA) (84). This dual action pushes the colonocyte 232 

metabolism from glycolysis to β-oxidation. After transport into the cells, butyrate enhances 233 

oxidative phosphorylation, which consumes oxygen (83). Similarly, it has been demonstrated 234 

that fatty acid oxidation is reduced in germ-free mice compared to conventional mice (85). 235 

Butyrate is not the only fatty acid metabolized. Acetate is a substrate for cholesterol and fatty 236 

acids synthesis and is metabolized in muscles. Propionate is a precursor for the synthesis of 237 

glucose in the liver (20, 25, 85). Acetate and butyrate are also major substrates for lipogenesis in 238 

rat colonocytes (86).  239 

Through the production of SCFAs, gut microbiota actively communicates with host cells and 240 

strongly modulates a variety of cellular mechanisms. Two of the main functions influenced by 241 

SCFAs and thus gut microbiota are cell proliferation and differentiation. Indeed, the 242 

proliferative activity of crypt epithelial cells as well as the migration of mature epithelial cells 243 

along the crypt-villus axis are greatly attenuated in antibiotic-treated and germ-free mice (87). 244 

At physiological state, butyrate favors cells differentiation and inhibits proliferation. First 245 

evidences on IECs were demonstrated on cell lines (88, 89). In these studies, long term incubation 246 

of intestinal cancerous cell lines with SCFAs resulted in differentiated phenotypes coupled to 247 

decreased cell proliferation. High concentration of butyrate is associated with inhibition of stem 248 

cells and proliferative cells in the crypts, through a HDAC inhibition-dependent binding of 249 

FOXO3 to promoters of key genes in the cell cycle (90). Butyrate concentration near the crypt 250 

base is estimated to be 50–800 µM dose equivalent (85, 91, 92). These studies indicate that butyrate 251 

concentration is low in the deep crypts and increasing in a gradient along the lumen-to-crypt 252 

axis. Butyrate metabolization by differentiated cells on the epithelium plateau may result in a 253 

protective depletion in the crypts that is protective for stem cells proliferation. Hence, the crypt 254 
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structure is suggested to be an adaptive mechanism protecting the gut epithelial stem cells of 255 

butyrate high concentration found in the lumen (90). 256 

Interestingly, butyrate has a dualistic role in epithelial cellular metabolisms: it supports healthy 257 

cells as primary energy source for IECs and represses cancerous cells expansion. This is known 258 

as the “butyrate paradox” or “Warburg effect” (66). This is explained by a metabolic shift 259 

occurring in cancerous cells using preferentially glucose as energy source. The inhibition of 260 

cell proliferation is generally characterized by an increase in reactive oxygen species (ROS) 261 

production, DNA damages and cell cycle arrest, suggesting that SCFAs initiate apoptosis 262 

signaling in cancer cells (93-96). Indeed, through the activation of the pro-apoptotic protein BAX, 263 

the upregulation of apoptosis-inducing factor-mitochondria associated 1 isoform 6 (AIFM1) 264 

and the reduction of mitochondrial membrane potential, SCFAs stimulate the cytochrome c 265 

release which drives caspase 3 activation (93). Coherently, the induction of the CDK inhibitors 266 

p21 and p27 and the downregulation of heat-shock cognate 71 kDa protein isoform and survival 267 

is observed, leading to growth arrest (97, 98). 268 

Another mechanism for propionate to inhibit cell proliferation is suggested to involve its role 269 

as GPCR agonist. In human monocyte and lymphoblast cancer cell lines, Bindels and 270 

colleagues observe that the effect on cell proliferation is dependent on GPR43 activation (99). 271 

GPR43 displays a dual coupling through Gi and Gq protein families. While PLC blockage does 272 

not influence cell proliferation, increase in cAMP, mediated by the inhibition of Gi subunit, 273 

slightly reduces the propionate anti-proliferative effect, suggesting a mechanism dependent on 274 

cAMP levels (99). 275 

Considering the important metabolic shift occurring in cancer cells, the production and 276 

availability of a large variety of metabolites are modified among which acetyl-CoA. Acetyl-277 

CoA is crucial in several metabolic pathways and a fundamental cofactor for HATs. 278 

Consequently, different cell metabolites are produced, such as a large amount of lactate, which 279 

in turn could stimulate the growth of commensal bacteria and partially explain the anti-280 

tumorigenic effect of some probiotics (100). 281 

Regulation of gut endocrine functions, importance on host physiology 282 

Among intestinal epithelial cells, enteroendocrine cells (EECs) play an important role in host 283 

physiology by secreting hormones that regulate food intake, insulin secretion and gut functions 284 
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in response to a variety of stimuli (101). Among these stimuli, fiber-rich diets or infusion with 285 

SCFAs have been associated with increased circulating levels of gut hormones (102, 103). 286 

Supporting these results, expression of butyrate receptors GPR43, GPR41 and GPR109a have 287 

been reported in enteroendocrine cells (104-106). Acute stimulation of EECs by SCFAs is shown 288 

to trigger hormones secretion such as GLP-1 and PYY. The mechanism involves GPR43 289 

activation leading to increased intracellular calcium, corresponding to the activation of a Gq 290 

coupled receptor (107). Several studies have confirmed the role of GPR43 in the EEC response 291 

to SCFAs using additional knockout models or agonists(108-110). In particular EECs, the L-cells, 292 

GPR41 is also involved in the GLP-1 secretory response as suggested by the results in GPR41 293 

knockout animals or GPR41 agonists (106, 107). However, GPR41 stimulation also inhibits GIP 294 

secretion from glucose insulinotropic polypeptide (GIP) producing EECs (111). This inhibition 295 

of GIP-producing cells could correspond to the activation of Gi/o pathways which are mainly 296 

resulting in inhibitory responses. The exact role of GPR41 in GLP-1 secretion remains to be 297 

fully understood. The possibility of GPR41 hetero-dimerization with GPR43 has been recently 298 

highlighted and could explain a role of GPR41 in GLP-1 stimulatory activity(112). Additionally, 299 

species differences are described in response to the different SCFAs. If propionate and acetate 300 

are strong stimuli for PYY and GLP-1 secretion in rodents at low concentrations, much higher 301 

concentrations are required to induce secretion in human (110, 113). These divergences can be 302 

explained both by the variation of SCFAs affinities to the receptor families as well as the 303 

different receptors expression levels. Indeed, GPR41 is expressed in fewer EECs in humans 304 

compared to rodents (106, 114). The role of other SCFAs receptors GPR109a, GPR42, OR51E1 305 

and OR51E2, is still to be deciphered but some studies show that they are also enriched in some 306 

EECs subpopulations (62, 115). 307 

In addition to the SCFA-dependent acute stimulation of gut hormone secretion, it emerged that 308 

SCFAs also tune EECs identity and consequently long-term hormonal production. Indeed, 309 

animals fed with fiber-rich diets have, in addition to a higher circulating gut hormone levels, 310 

an elevated number of enteroendocrine cells (102). Supporting this result, an increase 311 

differentiation of epithelial cells into L-cells by SCFAs have been reported, with a higher GLP-312 

1, PYY and serotonin production (103, 116-120). GPR43 and GPR41 play important but different 313 

roles in the differentiation of enteroendocrine cells. GPR43 stimulation increased the number 314 

of the PYY-producing cells and PYY expression but not the number of GLP-1-positive cells 315 

which is dependent on GPR41 (116, 117).  316 
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Moreover, receptor-independent pathways are also involved in the expression regulation of gut 317 

hormone genes. Indeed, butyrate HDAC inhibitory activity highly increased PYY expression in 318 

human L-cells with a much stronger effect than GPR43 stimulation (116). Modulation of PYY 319 

gene expression is associated with increased production and secretion both in basal and 320 

stimulated conditions and could explain the long-term effects of SCFAs on circulating gut 321 

hormone levels seen with fiber-enriched diets. Butyrate also impacts EECs responses to 322 

external stimuli by regulating the expression of receptors sensing exogenous molecules 323 

deriving from the microbiota. In particular, butyrate increases Toll-like receptors (TLR) 324 

expression in L-cells leading to an amplified stimulation by TLR ligands and a consequent 325 

higher NF-B activation and butyrate-dependent PYY expression (121).  326 

Due to their important functions on host, gut hormones link SCFAs and the modulation of other 327 

gut functions such as electrolyte absorption. Indeed, PYY is strongly associated with the 328 

modulation of electrolyte and water absorption functions due to the expression of NPY 329 

receptors on epithelial cells and neuronal cells (122, 123). As SCFAs stimulate PYY release, they 330 

impact electrolyte absorption (124). Similarly, serotonin is also important in water and 331 

electrolyte absorption. SCFAs also increase serotonin production, and blockade of serotonin 332 

receptors decreases butyrate-dependent electrolyte absorption (119, 125). These results indicate 333 

that regulation of electrolytes absorption by SCFAs is mediated by multiple pathways including 334 

gut hormone modulations.  335 

SCFAs have also been associated with tuning of intestinal transit (125). Acute effect of SCFAs 336 

on gut motility is hormone dependent with an important role of PYY (126, 127). Moreover, germ-337 

free animals have decreased gut motility which is partially restored by SCFAs infusion in the 338 

colonic lumen, with butyrate having the highest effect (128). The gut motility dysfunction in 339 

germ-free mouse could be partially explained by the highly dysregulated gut endocrine 340 

functions. However, no difference could be found in non-producing serotonin mouse model 341 

using TPH1 knockout mice (128). This suggests that serotonin might not play an important role 342 

in the SCFAs-dependent regulation of gut motility and effects previously described could be 343 

minor compared to other pathways (125). Interestingly, SCFAs, and mostly butyrate, have a 344 

direct effect on gut motility through regulation of enteric neurons (126). Indeed, some enteric 345 

neurons express GPR41 and can therefore respond to SCFAs (106). Additionally, HDAC 346 

inhibition by butyrate increases gut motility on the long term by increasing the number of 347 
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acetylcholine and substance P positive neurons, highlighting the importance of distinct 348 

mechanisms triggering similar effects (129).  349 

Butyrate and other SCFAs are therefore important regulators of EECs functions, both by 350 

acutely stimulating gut hormone secretion, and modulating their production. Indeed, SCFAs 351 

increase EECs subpopulation cell numbers and regulate genes expression. Different 352 

mechanisms including receptor activation and HDAC inhibition are involved in these 353 

functions, highlighting the important and diverse roles of SCFAs as signaling molecules. 354 

Modulations of gut hormones participate in the many roles of SCFAs on host physiology 355 

including gut homeostasis. 356 

 Barrier function and Immune responses  357 

In the last decade, SCFAs have attracted considerable attention for their impact on host immune 358 

responses and barrier functions. SCFAs play one of their major roles by maintaining an 359 

environment favourable for commensal bacteria and controlling pathogens growth. By 360 

stabilising the transcription factor HIF, butyrate increases O2 consumption by IECs favouring 361 

the physiologic hypoxia in the colon (130). Maintenance of the colonic anaerobic environment 362 

is key to favour the anaerobes commensal component of the gut microbiota and control the 363 

pathogens level such as Salmonella in a virtuous cycle (131-133). However, enteric pathogens 364 

such as Salmonella enterica serovar Typhimurium are highly adapted to the colonic 365 

environment and utilize the gut microbiota-derived butyrate to compete with resident bacteria 366 

(134). Besides effect on the O2 level in the intestinal tract, butyrate promotes the epithelial barrier 367 

functions by reducing the epithelial permeability via HIF (130). Moreover, butyrate reduces 368 

epithelial permeability by the regulation of IL-10 receptor, occludin, zonulin and claudins, 369 

reinforcing the tight junctions and the trans-epithelial resistance in vitro (135, 136). Another 370 

important mechanism involved in the epithelial barrier function is the modulation of the mucus 371 

layer thickness protecting the mucosa. In the colon, MUC2 is the predominant mucin 372 

glycoprotein produced by the goblet cells. Treatment with butyrate increases MUC2 production 373 

both in vitro and in human colonic biopsies (32, 137). SCFAs enhance the epithelial barrier 374 

functions by modulating the antimicrobial peptides (AMP) secretion by the gut epithelium. 375 

Butyrate increases the level of colonic LL-37 in vitro and an in vivo (138, 139). Activation of 376 

GPR43 by butyrate induce RegIIIγ and β-defensins expression by the activation of the mTOR 377 

pathway and STAT3 phosphorylation in mouse IECs (140). The modulations of β-defensins in 378 
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epithelial cells relies on the inhibition of HDAC3 (141). Interestingly, SCFAs and butyrate in 379 

particular, promote AMPs targeting both gram positive and negative bacteria.  380 

It is now clear that gut microbiota plays an important role in intestinal homeostasis by 381 

controlling the human immune response notably by the production of SCFAs. Indeed, SCFAs 382 

have a global anti-inflammatory effect by up-regulating both anti-inflammatory and down-383 

regulating pro-inflammatory cytokines by different mechanisms and consequently promoting 384 

mucosal homeostasis (142). This anti-inflammatory effect can be mediated by IECs as binding 385 

of SCFAs to GPR43 and GPR109a induces Ca2+ efflux and membrane hyperpolarization which 386 

activate the inflammasome activating protein NLRP3 thereby induce the release of IL-18 with 387 

a protective effect on DSS colitis mouse model (143). In vitro experiments demonstrate that the 388 

increase of protein acetylation by butyrate decreases IL-8 production in IECs (144). Moreover, 389 

butyrate, and to a lesser extent propionate, upregulate the production of TGFβ1 in IECs, a 390 

cytokine promoting anti-inflammatory regulatory T cells (Treg) (145, 146). Our group have shown 391 

that butyrate acts independently of the main GPCRs, via its HDAC inhibition property and the 392 

SP1 transcription factor present on the human TGFβ1 promoter (28). Moreover, in mice, fiber 393 

supplementation promotes vitamin A metabolism in small intestine epithelial cells by 394 

increasing RALDH-1. The production of retinoic acid by epithelial cells, the active metabolite 395 

of vitamin A, is crucial for the tolerogenic imprinting of dendritic cells (147). 396 

The impact of SCFAs go beyond the epithelial cells, with similar mechanisms reported in 397 

macrophages and dendritic cells (DCs). In mice, macrophages stimulation with butyrate, 398 

imprints through HDAC3 inhibition, a metabolic reprogramming and elevates antimicrobial 399 

peptides. Hence, upon stimulation, AMPs belonging to the S100 family, ficolin and lysozyme 400 

are increased (148). Here again, butyrate has a stronger antimicrobial effect than propionate and 401 

no protective impact is detected with acetate. Butyrate treatment of DCs derived from human 402 

donors, decreases their capacity to present antigens and increases IL-10 production leading to 403 

a tolerogenic phenotype (149). Upon LPS treatment, butyrate induces the IL-23 production by 404 

DCs thus promoting the differentiation of naive T lymphocytes into pro-inflammatory Th17 405 

(150). Another study shows that DCs treated with butyrate induce the differentiation of naive T 406 

lymphocytes into anti-inflammatory Tr1 producers of IL-10 (151). By regulating the 407 

transcriptional activity, butyrate decreases the inflammatory response of macrophages exposed 408 

to inflammatory microbial molecules such as LPS and induces their polarisation through a M2 409 

anti-inflammatory phenotype (152, 153). Similarly, butyrate-dependent activation of GPR109a 410 
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increases the tolerogenic response of colonic macrophages and DCs reducing colonic 411 

inflammation and promoting homeostasis (154). Furthermore, it has been shown that butyrate 412 

pre-treatment down-regulates nitric oxide (NO), IL-6, and IL-12 in mice independently of 413 

TLRs and GPCRs pathways. Neutrophils migration is increased upon treatment with SCFAs, 414 

in a GPR43-dependent mechanism (155).  415 

Regulatory T cells (Treg) are critical for limiting intestinal inflammation and have thus been 416 

subject of considerable attention to improve diseases such as inflammatory bowel disease 417 

(IBD). Many studies showed that Tregs depend on microbiota-derived signals for proper 418 

development and function (145, 146, 156, 157). Recently several groups identify SCFAs as key 419 

metabolites for promoting differentiation of naive T lymphocytes into Treg cells in the intestine 420 

(71, 145, 146, 152, 154, 158, 159). By interacting directly with naive T cells, butyrate and propionate 421 

increase the acetylation of the promoter of the transcription factor Foxp3 essential for the 422 

differentiation of Tregs, leading to an increase of Foxp3 expression (71, 152, 158). Another group 423 

suggested that propionate might induce the same changes via GPR43 (71, 159). Moreover, 424 

butyrate-dependent activation of GPR109a increases the tolerogenic response of colonic 425 

macrophages and DCs, promoting Treg and IL-10 producing T cells(154). Interestingly, SCFAs 426 

increase the TGFβ1 production by IECs via its HDAC inhibition property thus promoting the 427 

Tregs differentiation in the gut (28, 145, 146). Altogether, these studies highlight that the molecular 428 

mechanisms induced by SCFAs to control Treg-development are complex and involve many 429 

cells types involved in the tolerogenic environment such as myeloid cells and IECs.  430 

Impact of SCFAs on other lymphocyte populations such as B cells has not been as extensively 431 

studied than their Treg counterparts.  Acetate supplementation in mice increases intestinal IgA 432 

in a GPR43 dependent mechanism (160). Dietary fibres and SCFAs enhance antibody response 433 

to bacteria by supporting B cell differentiation into plasma B cells via the increase of histone 434 

acetylation and of B cell metabolism (161, 162). Mechanistically, it is through the downregulation 435 

of B cell AID and Blimp1, dependent on their HDAC inhibitory activity that SCFAs inhibited 436 

class-switch DNA recombination, somatic hypermutation and plasma cell differentiation. 437 

Interestingly, SCFAs also modulate the fate of B-cell producing autoantibodies and reduce 438 

autoimmunity in lupus-prone mice (162). 439 
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Conclusion: 440 

The past decade of biological research through a combination of translation-focused animal 441 

models and studies in humans has highlighted the overarching roles that the gut microbiota 442 

plays in human health. It has become clear that dysbiotic microbiota is associated with a wide 443 

range of pathologies such as obesity, diabetes, cardiovascular diseases, autoimmune diseases 444 

and neuronal disorders. Despite the lack of evidence in human, causality has been demonstrated 445 

in rodent models. Factors such as antibiotics use, modern sanitation, quality of diet and 446 

environmental factors linked with the lifestyle changes that occurred in the last century in 447 

developed societies are suggested to contribute to a decrease in the diversity of the human 448 

microbiome (163). 449 

Diet and nutritional status are important determinants in human health. Numerous studies have 450 

shown that diet modulates the composition and functions of the microbiota in humans and 451 

animal models (164-166). These interventional studies showed that microbiota composition is 452 

dynamic, can shift rapidly to dietary changes and that this shift is individual dependent and 453 

depends on the microbiota diversity of the donor.  Thus, the role of diet in shaping microbiota 454 

is changing our view of the strategies to take to improve the systemic health. Indeed, it is though 455 

that nutritional interventions could manipulate the microbial ecology and consequently 456 

modulate human physiology with beneficial health outcomes. However, what constitutes an 457 

optimal health-promoting microbiota and how individuals with distinct microbiota can achieve 458 

such level of diversity are still open questions.  459 

As discussed in this review, the gut microbial metabolites, SCFAs, are well known to exert a 460 

wide beneficial impact to the host (167, 168). Hence, fiber-induced increase of SCFA-producing 461 

bacteria has been proposed to play an important role in the prevention and treatment of many 462 

diseases. Supporting this idea, clinical studies reported that prebiotics and dietary fibers 463 

increased the relative abundance of these beneficial SCFAs-producing bacteria and butyrate 464 

fermentation, leading to the improvement of type 2 diabetes and ulcerative colitis (169, 170). 465 

However, the microbiota produces a vast number of metabolites that modulate host responses, 466 

sometimes in synergy with SCFAs (121). Many studies support the benefits of increasing both 467 

the amount and the variety of dietary fibers ingested but it is difficult to establish whether it is 468 

a direct role of SCFAs or the increased bacterial diversity that impact host homeostasis. As the 469 

microbiota is a complex ecosystem, much work remains to be done to investigate fully the 470 

functions of SCFAs alone or with other beneficial metabolites in physiology and 471 

pathophysiology.  472 
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Figure 1: A. Functional impact of SCFA on the host. B. Mechanisms: 1: GPCR-dependent 486 

signaling, 2. Histone and transcription factor acetylation by SCFAs, 3. Role of butyrate as 487 

ligand of transcription factors. 488 
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