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Short Chain Fatty Acids — mechanisms and functional importance in the gut.

Camille Martin-Gallausiaux**, Ludovica Marinelli®*, Hervé M. Blottiére®3, Pierre Larraufie*

and Nicolas Lapaque®”

! Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette,

Luxembourg

2 Universit¢ Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350,

Jouy-en-Josas, France

3 Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MetaGenoPoliS, 78350,
Jouy-en-Josas, France

4 Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
* These authors contributed equally to this work

# Corresponding author: Nicolas Lapague — nicolas.lapaque@inrae.fr

Running title: Short Chain Fatty Acids — mechanisms and functions

Keywords: SCFA, microbiota, gut

Abstract

In recent years, the importance of the gut microbiota in human health has been revealed and
many publications have highlighted its role as a key component of human physiology. Owing
to the use of modern sequencing approaches, the characterization of the microbiome in healthy
individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis,
associated with pathological conditions. Microbiota establishes a symbiotic crosstalk with their
host: commensal microbes benefit from the nutrient-rich environment provided by the gut and
the microbiota produces hundreds of proteins and metabolites that modulate key functions of
the host, including nutrient processing, maintenance of energy homeostasis and immune system
development. Many bacteria-derived metabolites originate from dietary sources. Among them,
an important role has been attributed to the metabolites derived from the bacterial fermentation

of dietary fibers, namely the short chain fatty acids (SCFASs) linking host nutrition to intestinal
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homeostasis maintenance. SCFAs are an important fuel for intestinal epithelial cells (IEC) and
regulate IEC functions through different mechanisms to modulate their proliferation,
differentiation as well as functions of subpopulations such as enteroendocrine cells, to impact
gut motility and to strengthen the gut barrier functions as well as host metabolism. Recent
findings show that SCFAs, and in particular butyrate, also have important intestinal and
immuno-modulatory functions. In this review, we discuss the mechanisms and the impact of

SCFAs on gut functions and host immunity and consequently on human health.
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Introduction

Humans are colonized, at birth, by bacteria, archaea, fungi and viruses, which are collectively
called the microbiota. Distinct microbiota inhabit all epithelial surfaces of the body: skin, oral
cavity, respiratory, gastrointestinal and reproductive tracks V; with the largest and most diverse
microbiota residing in the colon. The intestinal microbiota is composed of 100 trillions of
bacteria which represent ~25 times as many genes as our own Homo sapiens genome. The
diversity and complexity of the microbiota is influenced by the host genetic background, the
diet and the environment. Reciprocally, this microbiota encodes thousands of genes absent in
human genome that exert diverse functions often associated with beneficial physiological
effects for its host @, From this close symbiotic relationship emerged the notion that humans
and their microbiota form a composite organism, namely a holobiont ®). Advances in next-
generation sequencing and bioinformatics tools have shown that this relationship is far more
complex than anticipated. Indeed, over the last decade, studies highlighted that perturbation of
the microbiota, referred to as dysbiosis, and loss of bacterial diversity affect different host
systems, particularly metabolic and immunes processes, that participate to host physiology and
pathophysiologic conditions . Moreover, growing lines of evidence suggest that the dialogue
between microbiota and the host systems has a homeostatic role beyond the gut, and contributes
directly to the global wellbeing of the host. In agreement with this, animal studies have
demonstrated that microbiota is implicated in liver diseases, allergy, diabetes, airway
hypersensitivity, autoimmune arthritis and even neurological disorders €,

The human body has evolved to functionally interact with thousands of naturally occurring or
microbiota-derived metabolites. Thus, the intestinal microbiome provides an extended
repertoire of molecules and metabolites that influence the host health. Amongst those
molecules, short chain fatty acids (SCFASs), derived from bacteria-dependent hydrolysis of
fibers, have attracted considerable attention for their role in host health (figure 1A). Indeed,
decreased abundance of SCFA-producing bacteria or decreased genomic potential for SCFA-
production have been identified in many studies such type-1 diabetes, type-2 diabetes, liver
cirrhosis, inflammatory bowel diseases (IBD) and atherosclerosis ©14. Here, we aim to provide
an overview of bacterial SCFASs production in the gut, their impact on intestinal cells and host

functions, and their different mechanisms of action.
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SCFAs production and transport

Production of SCFAs

Complex dietary carbohydrates are metabolised by intestinal microbiota through an extensive
set of enzymes, mostly absent in mammals and belonging to the large family of carbohydrate-
active enzymes (CAZyme) (reviewed in ). The degradation of dietary fibers by gut
microbiota, produces organic acids, gases and large amount of SCFAs. Acetate (C2),
propionate (C3) and butyrate (C4) are the main SCFAs produced (60:20:20 mmol/kg in human
colon). SCFAs can reach a combined concentration of 50—-150 mM mainly in the colon where
the microbial biomass is the highest 1619, Substrates for bacterial fermentation include non-
digestible carbohydrates derived from dietary fibers such as polysaccharide plant cell walls,
resistant starch, soluble oligosaccharide and endogenously products, such as mucin %, Aside
bacterial fermentation, SCFAs can also be found in plant oil and animal fats. Butter contains 3
to 4% of butyrate in the form of tributyrin ?Y. However, when fermentable fibers supply
decreases, some bacterial species can switch to amino acids and protein fermentation as an
alternative energy source, also contributing to SCFAs and branched chain fatty acids (BCFA)
production ?> 2%, The BCFAs, i.e. isovalerate, 2-methylbutyrate and isobutyrate, are present at
lower concentrations than SCFAs and originate only from proteins breakdown. Acetate is a net
fermentation product for most gut bacteria while butyrate and propionate are produced by more
specific bacterial species. Butyrate is produced from acetate, lactate, amino acids and various
carbohydrates via the glycolysis from two different pathways, the butyryl-CoA:acetate CoA-
transferase or the phosphotransbutyrykase and butyrate kinase pathway. Using FISH probes
and PCR, Flint and colleagues have shown that specific families belonging to the Clostridiales
order (Firmicutes) have the capabilities to produce butyrate: Lachnospiraceae (Coprococcus,
Eubacterium,  Anaerostipes, Roseburia), Ruminococcaceae (Faecalibacterium,
Subdoligranulum),Erysipelotrichaceae  (Holdemanella) 429, The butyrate-producing
capability of Clostridiales has been confirmed using in vitro culture in other genera such as
Clostridium, Butyrivibrio, Lachnoclostridium, Marvinbryantia, Oscillibacter, Flavonifractor,
Erysipelatoclostridium, Anaerotruncus, Dorea and Blautia, Ruminiclostridium @ 28,
Propionate is produced in the gut from various substrate, including amino acids, carbohydrates,
lactate and 1,2-propanediol. Hence, most hexoses and pentoses enter the succinate pathway
and result in succinate production, a precursor of propionate. The succinate pathway is present
in Bacteroidetes and some Firmicutes, such as the Negativicutes (Veillonella,
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Phascolarctobacterium). Some other Firmicutes, belonging to the Negativicutes
(Megasphera), the Lachnospiraceae (Coprococcus) and the Ruminocaccaceae, use the acrylate
pathway, in which lactate is the substrate to produce propionate. The propanediol pathways is
present in Proteobacteria and Lachnospiraceae species and use deoxyhexose sugars (e.g.
fucose) as substrates. The commensal bacterium Akkermansia muciniphila, member of the
Verrucomicrobia phylum also produces propionate from this later pathway @%. Some bacteria,
notably in the Lachnospiraceae family, can produce both propionate and butyrate but from
different substrates, e.g. Roseburia inulivorans ©9.

In vitro experiments have shown that Bacteroides growth is reduced relatively to Firmicutes
and Actinobacteria because SCFAs negatively impact Bacteroides at mild acid pH @Y. Thus,
SCFAs production by Firmicutes and Bacteroides may to be regulated by pH variations, with
more Firmicutes fermentation in proximal colon (pH~5.6) and conditions favoring Bacteroides
fermentation in the distal colon with a more neutral pH (pH=6.3) ®?). This selective gradient is
limiting the propionate production and promoting butyrate formation in the more proximal part
of the colon @¥_ Intestinal pH is not the only factor that impact microbiota composition and
consequently SCFAs production. Indeed, intestinal gases production (e.g. oxygen and
hydrogen) and diet composition and intake (e.g. type of fibers and iron) have been reported to

influence the microbiota composition and the gut SCFAs concentration ¢339,

SCFAs transport

In the host, SCFAs have distinct roles depending of their absorption and local physiologic
concentrations ©> %%, Acetate, propionate and butyrate are weak acids with a pKa of 4.8 for
butyrate. In physiological conditions the colonic pH range from 5.5 to 6.7, thus most of SCFAs
are in the ionized form and require transporters for absorption G738, SCFA transporters are
expressed at different level: in the small intestine: MCT1 (SLC16A1), SMCT2 (SLC5A12) and
SLC16A7 and in the colon: MCT1 (SLC16A1), SMCT2 (SLC5A12), SMCT1 (SL5CAS8) and
SLC26A3(% %) The transporters MCT1, SMCT1, SLC26A3 show affinities for all three major
SCFAs while the other ones are more selective, e.g. SMCT2 only transports butyrate. Butyrate
is mainly absorbed via MCT-1 that is expressed both at apical and basolateral membrane of
colonic epithelial cells @49, From approximately 20mM in gut lumen, butyrate concentration
on portal vein reaches a range of 5-10uM. The liver significantly uptakes butyrate as there is
almost no splanchnic release “* 42, Butyrate venous concentration ranges from 0.5uM to
3.3uM @2, Similarly, a larger amount of propionate is found in portal vein, around 32uM but
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there is only a very small release from the liver. Venous concentration of propionate ranges
from 3.8 to 5.4uM. In contrast, acetate is weakly absorbed by epithelial cells and the liver. The
portal vein concentration of acetate is 98uM-143uM. Hence, liver efficiently metabolizes the
butyrate and propionate released by the gut epithelium and avoids any acute increase even in

the case of artificial enema 24D,

Cellular uptake of SCFAs in their anionic form are through H* or Na" coupled transporters.
Thus, butyrate transport directly participates in electrolyte absorption with increases of Na*
and CI- absorption and release of bicarbonate (HCO3Y) in the lumen @ 4349 Interestingly,
electrolytes absorption is region specific due to the different transporter expression levels in
each gut regions “®. Transport of butyrate is electroneutral though SMCT2 (Na*), resulting in
the transport of one Na* for each butyrate anion absorbed “®. On the contrary, SMCT1
transport is electrogenic as two Na* are transported with one butyrate anion. This results in
electrolytes and water absorption “7:48). MCT1 is a proton coupled transporter and has no direct
role in ion transport. However, MCTL1 indirectly regulates bicarbonate secretion through
Na*/H" and CI/HCOs" exchangers. Interestingly, butyrate modulates the expression of many
transporters including MCT1 and SMCT1, therefore potentially increasing electrolyte
exchanges as well as its own transport. Butyrate blocks ClI secretion by inhibiting NKCC1
expression and increases expression of the Na*/H* transporter NHE3 through HDAC inhibition
and a SP1/3 dependent pathway “°-52),

Mechanisms

SCFAs receptors

The human genome encodes for six potential G protein-coupled receptors (GPCR) sensitive to
SCFAs: GPR41 (FFAR3), GPR42, GPR43 (FFAR2), GPR109a (HCAR2), GPR164 (OR51E1)
and ORS51E2. GPR41 and GPR109a are exclusively Gai/o coupled receptors whereas GPR43
can be coupled to either Gopyq and Goio and ORS1E2 is as coupled ©®. GPR42 was recently
identified as a functional GPCR modulating Ca?* channel flux, but only the GBy pathway
downstream this receptor was explored ®4. The GPR41, GPR43 and GPR109a are expressed
in numerous organs including the small and large intestine by various cell types: immune cells,
adipose tissues, heart, skeletal muscle or neurons @9, GPR43 (FFAR2), GPR41 (FFAR3)
recognize acetate, butyrate and propionate with affinities that differ between species, whereas
only butyrate activates GPR109a (Figure 1B) 5% Schematically, GPR41 activation by
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propionate and butyrate and GPR109a activation by butyrate lead to the inhibition of cCAMP
(cyclic adenosine monophosphate) accumulation and protein kinase A (PKA) and MAP kinases
(ERK et p38) activation. On the other hand, GPR43 is activated by the three main SCFAs with
approximately the same affinities. GPR43 engagement stimulates the phospholipase-Cp, which
releases intracellular Ca®* and activates the protein kinase C (PKC) in addition to cAMP
accumulation inhibition and PKA and ERK activation ®%. The highly polymorphic GPR42 is
activated by propionate and modulates Ca?* by a yet unknown mechanism that could be similar
to GPR43 due to the very high homology between these two receptors. In humans, GPR42 is
expressed in the colon and in sympathetic ganglia ®*. Butyrate is the ligand of GPR164
(OR51E1) expressed all along the gastrointestinal tract and specifically by enteroendocrine
cells %51 The olfactory receptor OR51E2 (OIfr78 in mouse) is activated by propionate and
acetate and result in cAMP and Ca?* increase. OIfr78 is expressed at the gut mucosal level by
PY'Y-positive colonic enteroendocrine cells 2. It is also detected in various tissues, including

kidney, blood vessels, lung and specific nerves in the heart and gut ©2.
Transcriptional regulations and post-translational modifications

SCFAs have a broad impact in the host: metabolism, differentiation, proliferation mainly due
to their impact on gene regulation. Indeed, several studies revealed that butyrate regulates the
expression of 5 to 20% of human genes ©46). Within the cells, butyrate and propionate exhibit
strong inhibition capacity of lysine/histone deacetylase (K/HDAC) activity, with butyrate being
more potent than propionate €758 Moreover, butyrate is metabolized into acetyl-CoA which
stimulates histone acetyltransferase (HAT) by further enhancing histone acetylation (Figure
1B) 669 By their HDAC inhibitor and HAT stimulatory properties, SCFAs promote post-
translational modification of histones through increasing their acetylation. Histone
hyperacetylation leads to an increased accessibility of transcription factors to the promoter
regions of targeted genes owing the modulation of their transcription. HDAC inhibition by
butyrate does not only up-regulate gene transcription, repression of several genes such as LHR,
XIAP or IDO-1 has been reported @” 7. In colonic cell line, 75% of the upregulated genes are
dependent of the ATP citrate lyase (ACL) activity and 25% are independent at 0.5mM
concentration but the proportion is reversed at high concentration (5mM). This suggests that
the gene regulation mechanisms are different, depending on the butyrate concentration. It has
been shown that butyrate does not only tune histone acetylation level but also acetylation of
other proteins, “K/HDAC” inhibitor, including transcription factors such as SP1 and FOXP3
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(11.72) SCFAs derived from the gut microbiota also promote crotonylation through their histone
acetylase properties (®. Histone crotonylation is abundant in the small and large bowel
epithelium as well as in the brain. Crotonyl-CoA modification of histones is linked to the cell
cycle regulation. Moreover, several studies have shown that butyrate also modifies DNA and

protein methylation and phosphorylation levels 479,
Novel role of butyrate as ligand of transcription factors

Beside the extensive described effects of SCFASs on host physiology through GPRs and post-
translational modifications, a novel role emerged for butyrate as ligand of two transcription
factors, expanding our knowledge on microbial-host crosstalk. By exploring the mechanisms
involved in the microbial modulation of Angiopoietin-like protein 4 (ANGPTL4), Alex and
co-workers demonstrated that SCFAs induce ANGPTLA4 transcription and secretion through a
novel role as selective modulator of peroxisome proliferator-activated receptor y (PPARY) in
colonic cell lines 7. In this study, Alex and co-workers showed that butyrate promotes,
similarly to PPARY ligands, the interactions between PPARy and multiple coactivators and
binds into PPARy binding pocket with a conformation similar to the known PPARy agonists,
the decanoic acid ). The evidence suggests, for the first time, an original function of butyrate
as ligand for a transcription factor. This original mechanism was also reported for another
nuclear transcription factor, the aryl hydrocarbon receptor (AhR) in human colonic cell lines
(). This latter study described a ligand-dependent activation of human AhR by butyrate in
synergy with its role as HDAC inhibitor. By using selective ligand antagonists and structural
modelling, it emerges that butyrate activates human AhR by binding into its ligand binding
pocket similarly to the AhR ligand FICZ (®. Together these reports provide an expanded view
of the possible mechanisms for butyrate to modulate human transcription factors activity that
might apply to other transcription factors (Figure 1B).

Functional impact of SCFA on the host.
SCFA, regulators of the gut metabolism, proliferation and differentiation

SCFAs are efficiently taken up from the gut lumen by the intestinal epithelial cells (IEC) with
different fates (Figure 1B). Butyrate is the primary energy source of IECs, being oxidized via
the B-oxidation in the mitochondria. This catabolic process represents from 73% to 75% of
oxygen consumption by human colonocytes, by which part of butyrate is converted into ketone

bodies (®#Y, The main substrates of colonocytes are by order of preference, butyrate > ketone
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bodies > amino acid > glucose. By using a high level of oxygen, the colonocytes metabolism
maintains epithelial hypoxia with an oxygen partial pressure [pO2] of less than < 1% oxygen
(7.6 mmHg), thus favoring anaerobic commensals 2. The capacity to produce ketone bodies
and oxidize butyrate is a crucial difference between the small and large bowel. Epithelial cell
butyrate oxidative capacity has been determined in vitro to be between 1 to 5 mM of butyrate,
therefore when a greater concentration is available, SCFAs can affect cells functions such as
K/HDAC inhibition ©° 8 Moreover, butyrate absorption increases the pyruvate
dehydrogenase kinases (PDK) which negatively regulates the pyruvate dehydrogenase (PDH)
complex. The PDH decarboxylates pyruvate to produce acetyl-CoA and NADH, both
necessary to the tricarboxylic acid (TCA) ®%. This dual action pushes the colonocyte
metabolism from glycolysis to B-oxidation. After transport into the cells, butyrate enhances
oxidative phosphorylation, which consumes oxygen . Similarly, it has been demonstrated
that fatty acid oxidation is reduced in germ-free mice compared to conventional mice 9.
Butyrate is not the only fatty acid metabolized. Acetate is a substrate for cholesterol and fatty
acids synthesis and is metabolized in muscles. Propionate is a precursor for the synthesis of
glucose in the liver ?% 2585 Acetate and butyrate are also major substrates for lipogenesis in

rat colonocytes @9,

Through the production of SCFAS, gut microbiota actively communicates with host cells and
strongly modulates a variety of cellular mechanisms. Two of the main functions influenced by
SCFAs and thus gut microbiota are cell proliferation and differentiation. Indeed, the
proliferative activity of crypt epithelial cells as well as the migration of mature epithelial cells
along the crypt-villus axis are greatly attenuated in antibiotic-treated and germ-free mice €7
At physiological state, butyrate favors cells differentiation and inhibits proliferation. First
evidences on IECs were demonstrated on cell lines @889, In these studies, long term incubation
of intestinal cancerous cell lines with SCFAs resulted in differentiated phenotypes coupled to
decreased cell proliferation. High concentration of butyrate is associated with inhibition of stem
cells and proliferative cells in the crypts, through a HDAC inhibition-dependent binding of
FOXO3 to promoters of key genes in the cell cycle %, Butyrate concentration near the crypt
base is estimated to be 50-800 M dose equivalent 9192 These studies indicate that butyrate
concentration is low in the deep crypts and increasing in a gradient along the lumen-to-crypt
axis. Butyrate metabolization by differentiated cells on the epithelium plateau may result in a

protective depletion in the crypts that is protective for stem cells proliferation. Hence, the crypt
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structure is suggested to be an adaptive mechanism protecting the gut epithelial stem cells of

butyrate high concentration found in the lumen ©,

Interestingly, butyrate has a dualistic role in epithelial cellular metabolisms: it supports healthy
cells as primary energy source for IECs and represses cancerous cells expansion. This is known
as the “butyrate paradox” or “Warburg effect” (66). This is explained by a metabolic shift
occurring in cancerous cells using preferentially glucose as energy source. The inhibition of
cell proliferation is generally characterized by an increase in reactive oxygen species (ROS)
production, DNA damages and cell cycle arrest, suggesting that SCFAs initiate apoptosis
signaling in cancer cells %), Indeed, through the activation of the pro-apoptotic protein BAX,
the upregulation of apoptosis-inducing factor-mitochondria associated 1 isoform 6 (AIFM1)
and the reduction of mitochondrial membrane potential, SCFAs stimulate the cytochrome ¢
release which drives caspase 3 activation ®®, Coherently, the induction of the CDK inhibitors
p21 and p27 and the downregulation of heat-shock cognate 71 kDa protein isoform and survival

is observed, leading to growth arrest 7 %),

Another mechanism for propionate to inhibit cell proliferation is suggested to involve its role
as GPCR agonist. In human monocyte and lymphoblast cancer cell lines, Bindels and
colleagues observe that the effect on cell proliferation is dependent on GPR43 activation 9.
GPRA43 displays a dual coupling through G; and Gq protein families. While PLC blockage does
not influence cell proliferation, increase in CAMP, mediated by the inhibition of G subunit,
slightly reduces the propionate anti-proliferative effect, suggesting a mechanism dependent on
CAMP levels 9,

Considering the important metabolic shift occurring in cancer cells, the production and
availability of a large variety of metabolites are modified among which acetyl-CoA. Acetyl-
CoA is crucial in several metabolic pathways and a fundamental cofactor for HATS.
Consequently, different cell metabolites are produced, such as a large amount of lactate, which
in turn could stimulate the growth of commensal bacteria and partially explain the anti-

tumorigenic effect of some probiotics (%9,

Regulation of gut endocrine functions, importance on host physiology

Among intestinal epithelial cells, enteroendocrine cells (EECs) play an important role in host

physiology by secreting hormones that regulate food intake, insulin secretion and gut functions

10



285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

308
309
310
311
312
313
314
315
316

in response to a variety of stimuli @Y. Among these stimuli, fiber-rich diets or infusion with
SCFAs have been associated with increased circulating levels of gut hormones (02 103)
Supporting these results, expression of butyrate receptors GPR43, GPR41 and GPR109a have
been reported in enteroendocrine cells 1%4-19), Acute stimulation of EECs by SCFAs is shown
to trigger hormones secretion such as GLP-1 and PYY. The mechanism involves GPR43
activation leading to increased intracellular calcium, corresponding to the activation of a Gq
coupled receptor 19, Several studies have confirmed the role of GPR43 in the EEC response
to SCFAs using additional knockout models or agonists®%®-119_ In particular EECs, the L-cells,
GPRA41 is also involved in the GLP-1 secretory response as suggested by the results in GPR41
knockout animals or GPR41 agonists 1% 197, However, GPR41 stimulation also inhibits GIP
secretion from glucose insulinotropic polypeptide (GIP) producing EECs !V, This inhibition
of GIP-producing cells could correspond to the activation of Gi/o pathways which are mainly
resulting in inhibitory responses. The exact role of GPR41 in GLP-1 secretion remains to be
fully understood. The possibility of GPR41 hetero-dimerization with GPR43 has been recently
highlighted and could explain a role of GPR41 in GLP-1 stimulatory activity!'2. Additionally,
species differences are described in response to the different SCFAs. If propionate and acetate
are strong stimuli for PY'Y and GLP-1 secretion in rodents at low concentrations, much higher
concentrations are required to induce secretion in human %113 These divergences can be
explained both by the variation of SCFAs affinities to the receptor families as well as the
different receptors expression levels. Indeed, GPRA41 is expressed in fewer EECs in humans
compared to rodents % 114 The role of other SCFASs receptors GPR109a, GPR42, OR51E1
and OR51E2, is still to be deciphered but some studies show that they are also enriched in some

EECs subpopulations ©¢2 119,

In addition to the SCFA-dependent acute stimulation of gut hormone secretion, it emerged that
SCFAs also tune EECs identity and consequently long-term hormonal production. Indeed,
animals fed with fiber-rich diets have, in addition to a higher circulating gut hormone levels,
an elevated number of enteroendocrine cells (%9, Supporting this result, an increase
differentiation of epithelial cells into L-cells by SCFAs have been reported, with a higher GLP-
1, PYY and serotonin production (03 116-120) GPR43 and GPR41 play important but different
roles in the differentiation of enteroendocrine cells. GPR43 stimulation increased the number
of the PYY-producing cells and PYY expression but not the number of GLP-1-positive cells
which is dependent on GPR41 (116 117),

11
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Moreover, receptor-independent pathways are also involved in the expression regulation of gut
hormone genes. Indeed, butyrate HDAC inhibitory activity highly increased PYY expression in
human L-cells with a much stronger effect than GPR43 stimulation ¥, Modulation of PYY
gene expression is associated with increased production and secretion both in basal and
stimulated conditions and could explain the long-term effects of SCFAs on circulating gut
hormone levels seen with fiber-enriched diets. Butyrate also impacts EECs responses to
external stimuli by regulating the expression of receptors sensing exogenous molecules
deriving from the microbiota. In particular, butyrate increases Toll-like receptors (TLR)
expression in L-cells leading to an amplified stimulation by TLR ligands and a consequent

higher NF-kB activation and butyrate-dependent PYY expression (21,

Due to their important functions on host, gut hormones link SCFAs and the modulation of other
gut functions such as electrolyte absorption. Indeed, PYY is strongly associated with the
modulation of electrolyte and water absorption functions due to the expression of NPY
receptors on epithelial cells and neuronal cells 22123 As SCFAs stimulate PYY release, they
impact electrolyte absorption 24, Similarly, serotonin is also important in water and
electrolyte absorption. SCFAs also increase serotonin production, and blockade of serotonin
receptors decreases butyrate-dependent electrolyte absorption 1% 129 These results indicate
that regulation of electrolytes absorption by SCFASs is mediated by multiple pathways including

gut hormone modulations.

SCFAs have also been associated with tuning of intestinal transit 2%, Acute effect of SCFAs
on gut motility is hormone dependent with an important role of PYY ¢26.:12) Moreover, germ-
free animals have decreased gut motility which is partially restored by SCFAs infusion in the
colonic lumen, with butyrate having the highest effect 28, The gut motility dysfunction in
germ-free mouse could be partially explained by the highly dysregulated gut endocrine
functions. However, no difference could be found in non-producing serotonin mouse model
using TPH1 knockout mice 28, This suggests that serotonin might not play an important role
in the SCFAs-dependent regulation of gut motility and effects previously described could be
minor compared to other pathways 2%, Interestingly, SCFAs, and mostly butyrate, have a
direct effect on gut motility through regulation of enteric neurons 29, Indeed, some enteric
neurons express GPR41 and can therefore respond to SCFAs @%)  Additionally, HDAC

inhibition by butyrate increases gut motility on the long term by increasing the number of

12
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acetylcholine and substance P positive neurons, highlighting the importance of distinct

mechanisms triggering similar effects (29,

Butyrate and other SCFAs are therefore important regulators of EECs functions, both by
acutely stimulating gut hormone secretion, and modulating their production. Indeed, SCFAs
increase EECs subpopulation cell numbers and regulate genes expression. Different
mechanisms including receptor activation and HDAC inhibition are involved in these
functions, highlighting the important and diverse roles of SCFAs as signaling molecules.
Modulations of gut hormones participate in the many roles of SCFAs on host physiology

including gut homeostasis.

Barrier function and Immune responses

In the last decade, SCFAs have attracted considerable attention for their impact on host immune
responses and barrier functions. SCFAs play one of their major roles by maintaining an
environment favourable for commensal bacteria and controlling pathogens growth. By
stabilising the transcription factor HIF, butyrate increases O, consumption by IECs favouring
the physiologic hypoxia in the colon ¢3%. Maintenance of the colonic anaerobic environment
is key to favour the anaerobes commensal component of the gut microbiota and control the
pathogens level such as Salmonella in a virtuous cycle 31133 However, enteric pathogens
such as Salmonella enterica serovar Typhimurium are highly adapted to the colonic
environment and utilize the gut microbiota-derived butyrate to compete with resident bacteria
(134) Besides effect on the O2 level in the intestinal tract, butyrate promotes the epithelial barrier
functions by reducing the epithelial permeability via HIF 39, Moreover, butyrate reduces
epithelial permeability by the regulation of IL-10 receptor, occludin, zonulin and claudins,
reinforcing the tight junctions and the trans-epithelial resistance in vitro 35 13) Another
important mechanism involved in the epithelial barrier function is the modulation of the mucus
layer thickness protecting the mucosa. In the colon, MUC2 is the predominant mucin
glycoprotein produced by the goblet cells. Treatment with butyrate increases MUC2 production
both in vitro and in human colonic biopsies @2 3. SCFAs enhance the epithelial barrier
functions by modulating the antimicrobial peptides (AMP) secretion by the gut epithelium.
Butyrate increases the level of colonic LL-37 in vitro and an in vivo @3 139 Activation of
GPR43 by butyrate induce RegllIly and B-defensins expression by the activation of the mTOR
pathway and STAT3 phosphorylation in mouse 1ECs 49, The modulations of p-defensins in
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epithelial cells relies on the inhibition of HDAC3 1Y, Interestingly, SCFAs and butyrate in

particular, promote AMPs targeting both gram positive and negative bacteria.

It is now clear that gut microbiota plays an important role in intestinal homeostasis by
controlling the human immune response notably by the production of SCFAs. Indeed, SCFAS
have a global anti-inflammatory effect by up-regulating both anti-inflammatory and down-
regulating pro-inflammatory cytokines by different mechanisms and consequently promoting
mucosal homeostasis 42, This anti-inflammatory effect can be mediated by IECs as binding
of SCFAs to GPR43 and GPR109a induces Ca?* efflux and membrane hyperpolarization which
activate the inflammasome activating protein NLRP3 thereby induce the release of IL-18 with
a protective effect on DSS colitis mouse model “*3. In vitro experiments demonstrate that the
increase of protein acetylation by butyrate decreases I1L-8 production in IECs 44, Moreover,
butyrate, and to a lesser extent propionate, upregulate the production of TGFB1 in IECs, a
cytokine promoting anti-inflammatory regulatory T cells (Treg) ¢45148). Our group have shown
that butyrate acts independently of the main GPCRs, via its HDAC inhibition property and the
SP1 transcription factor present on the human TGF1 promoter ?®. Moreover, in mice, fiber
supplementation promotes vitamin A metabolism in small intestine epithelial cells by
increasing RALDH-1. The production of retinoic acid by epithelial cells, the active metabolite

of vitamin A, is crucial for the tolerogenic imprinting of dendritic cells 47,

The impact of SCFAs go beyond the epithelial cells, with similar mechanisms reported in
macrophages and dendritic cells (DCs). In mice, macrophages stimulation with butyrate,
imprints through HDAC3 inhibition, a metabolic reprogramming and elevates antimicrobial
peptides. Hence, upon stimulation, AMPs belonging to the S100 family, ficolin and lysozyme
are increased 4®), Here again, butyrate has a stronger antimicrobial effect than propionate and
no protective impact is detected with acetate. Butyrate treatment of DCs derived from human
donors, decreases their capacity to present antigens and increases IL-10 production leading to
a tolerogenic phenotype 149, Upon LPS treatment, butyrate induces the IL-23 production by
DCs thus promoting the differentiation of naive T lymphocytes into pro-inflammatory Th17
(150 Another study shows that DCs treated with butyrate induce the differentiation of naive T
lymphocytes into anti-inflammatory Trl producers of IL-10 @5V, By regulating the
transcriptional activity, butyrate decreases the inflammatory response of macrophages exposed
to inflammatory microbial molecules such as LPS and induces their polarisation through a M2

anti-inflammatory phenotype @52 153), Similarly, butyrate-dependent activation of GPR109a
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increases the tolerogenic response of colonic macrophages and DCs reducing colonic
inflammation and promoting homeostasis 54, Furthermore, it has been shown that butyrate
pre-treatment down-regulates nitric oxide (NO), IL-6, and IL-12 in mice independently of
TLRs and GPCRs pathways. Neutrophils migration is increased upon treatment with SCFAs,

in a GPR43-dependent mechanism *5%),

Regulatory T cells (Treg) are critical for limiting intestinal inflammation and have thus been
subject of considerable attention to improve diseases such as inflammatory bowel disease
(IBD). Many studies showed that Tregs depend on microbiota-derived signals for proper
development and function (145 146 156, 157) " Recently several groups identify SCFAs as key
metabolites for promoting differentiation of naive T lymphocytes into Treg cells in the intestine
(71, 145, 146, 152, 154, 1%8, 159) By interacting directly with naive T cells, butyrate and propionate
increase the acetylation of the promoter of the transcription factor Foxp3 essential for the
differentiation of Tregs, leading to an increase of Foxp3 expression ("% 152.158)  Another group
suggested that propionate might induce the same changes via GPR43 (% 59 Moreover,
butyrate-dependent activation of GPR109a increases the tolerogenic response of colonic
macrophages and DCs, promoting Treg and IL-10 producing T cells®®*. Interestingly, SCFAs
increase the TGFpB1 production by IECs via its HDAC inhibition property thus promoting the
Tregs differentiation in the gut ?3 145146 Altogether, these studies highlight that the molecular
mechanisms induced by SCFAs to control Treg-development are complex and involve many
cells types involved in the tolerogenic environment such as myeloid cells and IECs.

Impact of SCFAs on other lymphocyte populations such as B cells has not been as extensively
studied than their Treg counterparts. Acetate supplementation in mice increases intestinal IgA
in a GPR43 dependent mechanism %9, Dietary fibres and SCFAs enhance antibody response
to bacteria by supporting B cell differentiation into plasma B cells via the increase of histone
acetylation and of B cell metabolism (6% 162 Mechanistically, it is through the downregulation
of B cell AID and Blimp1, dependent on their HDAC inhibitory activity that SCFAs inhibited
class-switch DNA recombination, somatic hypermutation and plasma cell differentiation.
Interestingly, SCFAs also modulate the fate of B-cell producing autoantibodies and reduce

autoimmunity in lupus-prone mice (162,
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Conclusion:

The past decade of biological research through a combination of translation-focused animal
models and studies in humans has highlighted the overarching roles that the gut microbiota
plays in human health. It has become clear that dysbiotic microbiota is associated with a wide
range of pathologies such as obesity, diabetes, cardiovascular diseases, autoimmune diseases
and neuronal disorders. Despite the lack of evidence in human, causality has been demonstrated
in rodent models. Factors such as antibiotics use, modern sanitation, quality of diet and
environmental factors linked with the lifestyle changes that occurred in the last century in
developed societies are suggested to contribute to a decrease in the diversity of the human
microbiome 63),

Diet and nutritional status are important determinants in human health. Numerous studies have
shown that diet modulates the composition and functions of the microbiota in humans and
animal models %416 These interventional studies showed that microbiota composition is
dynamic, can shift rapidly to dietary changes and that this shift is individual dependent and
depends on the microbiota diversity of the donor. Thus, the role of diet in shaping microbiota
is changing our view of the strategies to take to improve the systemic health. Indeed, it is though
that nutritional interventions could manipulate the microbial ecology and consequently
modulate human physiology with beneficial health outcomes. However, what constitutes an
optimal health-promoting microbiota and how individuals with distinct microbiota can achieve
such level of diversity are still open questions.

As discussed in this review, the gut microbial metabolites, SCFAs, are well known to exert a
wide beneficial impact to the host 67-168) Hence, fiber-induced increase of SCFA-producing
bacteria has been proposed to play an important role in the prevention and treatment of many
diseases. Supporting this idea, clinical studies reported that prebiotics and dietary fibers
increased the relative abundance of these beneficial SCFAs-producing bacteria and butyrate
fermentation, leading to the improvement of type 2 diabetes and ulcerative colitis 6% 179,
However, the microbiota produces a vast number of metabolites that modulate host responses,
sometimes in synergy with SCFAs 21, Many studies support the benefits of increasing both
the amount and the variety of dietary fibers ingested but it is difficult to establish whether it is
a direct role of SCFAs or the increased bacterial diversity that impact host homeostasis. As the
microbiota is a complex ecosystem, much work remains to be done to investigate fully the
functions of SCFAs alone or with other beneficial metabolites in physiology and

pathophysiology.
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