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Highlights 19 

- Virtual experiments were run for diverse regions, cropping systems and weed floras 20 

- Plant-morphology and shade-response parameters were related to crop production 21 

- The same parameter values promote crop and weed species in mixed canopies 22 

- Successful species reduce leaf thickness and are taller and wider per unit biomass 23 

- There is a trade-off between yield promotion and weed suppression traits 24 

Abstract 25 

Crops compete with weeds for light, and choosing competitive crop species contributes to managing 26 

weeds. The objective was to identify which crop and weed parameters related to competition for light 27 

drive weed harmfulness for crop production. In a previous experiment, we measured parameters to 28 

characterize species potential plant morphology in unshaded conditions and species response to shading 29 

for a range of 60 crop and annual weed species. Here, we integrated the measured parameter values into 30 

an existing simulation model that uses an individual-based 3D representation of crop-weed canopies to 31 

predict weed dynamics and crop production from pedoclimate and cropping system information. The 32 

model, i.e. FLORSYS, was used to run virtual experiments in seven French and Spanish regions, with 33 

272 cropping systems varying in terms of crop rotations, herbicide use and tillage intensity etc. A series 34 
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of statistical methods (RLQ, fourth corner analysis, Principal Component Analysis, Pearson correlation 35 

coefficients, analysis of variance) were used to identify the key weed and crop parameters that drive 36 

crop yield loss and other weed harmfulness indicators. The weed species that caused the highest yield 37 

loss had a large leaf area at emergence. When young, they presented a large specific leaf area and a 38 

uniform leaf area distribution along plant height. They were also taller per unit plant biomass and their 39 

populations were more homogeneous in terms of plant width. At later stages, harmful weed species 40 

presented a smaller interception area to herbicides, with thicker leaves located lower on the plant. When 41 

shaded, harmful weed species shifted their leaves upwards and decreased their plant width per unit 42 

biomass. Weed-suppressive crop species had a large specific leaf area, wider plants per unit biomass, 43 

and a uniform leaf area distribution along plant height. When shaded, they increased their plant height 44 

and width per unit biomass. There was a trade-off between parameters driving potential crop production 45 

and those minimizing weed-inflicted yield losses.  46 

 47 
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 49 

1 Introduction 50 

When herbicide use is reduced due to environmental and health issues, crops are more often confronted 51 

to competition with weeds. In temperate climates with high-input crop management, the main resource 52 

for which crops and weed compete is light. As a consequence, choosing light-competitive crop species 53 

and varieties is a major lever for non-chemical weed management (Drews et al., 2009; Paynter and Hills, 54 

2009; Mhlanga et al., 2016). Once emerged, species competitiveness for light depends on how much 55 

light a species intercepts and how little it leaves to competing species. In terms of growth, this translates 56 

into three questions: how fast a species occupies empty space, how much space it occupies, and how it 57 

avoids shading or reacts to shade.  58 

Field trials can investigate the effects of cultural techniques that drive canopy structure (e.g. crop 59 

species, cultivar, sowing density and interrow width) on weed biomass and/or crop production 60 

(Kristensen et al., 2006; Olsen et al., 2006; Drews et al., 2009; Paynter and Hills, 2009). These 61 

experiments though often focus on one or a few crop and/or weed species in a single location, 62 

disregarding long-term effects, thus lacking in genericity. Consequently, mechanistic models have been 63 

developed to describe processes in detail (e.g. light interception, absorption and transformation) at the 64 

scale of crop canopies or single plants within these canopies (Renton and Chauhan, 2017). The earliest 65 

of the crop-weed competition models considered bispecific homogeneous crop-weed canopies based on 66 

detailed ecophysiological functions driving crop-weed competition for light and other resources 67 

(Spitters and Aerts, 1983; Wilkerson et al., 1990; Kropff and Spitters, 1992). These were later updated 68 

to 3D individual-based bispecific competition models (Brainard and Bellinder, 2004). Conversely, the 69 

earliest multiannual weed dynamics model simplified competition processes to include weed seed bank 70 



processes and impacts of cultural techniques (Cousens et al., 1986; Ballaré et al., 1987; Debaeke, 1988). 71 

The combination of the two approaches led to individual-based three-dimensional models combining 72 

simplified 3D plant representation with multiannual species dynamics and detailed effects of cultural 73 

techniques. Such models are the best compromise to represent heterogeneous crop-weed canopies and 74 

test contrasting cropping systems with different weed floras and pedoclimatic conditions (Colbach et 75 

al., 2014a). 76 

The process-based FLORSYS model follows this principle. It simulates multi-specific and multi-cohort 77 

weed dynamics and their impact on crop production as a function of cropping systems and pedoclimate, 78 

at a daily scale over several years or decades (Gardarin et al., 2012; Munier-Jolain et al., 2013; Colbach 79 

et al., 2014b; Munier-Jolain et al., 2014). The 3D multispecies crop-weed canopy consists of individual 80 

plants whose leaf area is distributed inside cylinders, predicting light availability in each 3D pixel 81 

("voxel") (Munier-Jolain et al., 2013; Munier-Jolain et al., 2014). In addition to light availability, plant 82 

dimensions and leaf area are driven by species parameters determining early growth, potential plant 83 

morphology and shading response (Colbach et al., 2014b; Colbach et al., in revision). Shading response 84 

is a key process in plant-plant interaction, particularly in multispecies heterogeneous canopies where 85 

morphological plasticity allows weeds to avoid shade cast by crops (Cavero et al., 2000). The latter 86 

model as well as earlier crop-weed competition models (Kropff et al., 1992) have already been used to 87 

identify pertinent weed state variables (e.g. weed biomass) linked to crop yield loss, similarly to what 88 

was already attempted in field trials (Regnier and Stoller, 1989; Pike et al., 1990; Cavero et al., 1999). 89 

Previous models worked with state variables describing crops, weeds and canopies, which vary with 90 

plant stage as well as cultural and pedoclimatic conditions. Conversely, in the present study, we worked 91 

with generic universally valid parameters that describe plant properties intrinsic to a species, focusing 92 

on those crucial for plant-plant interaction, i.e. those related to plant morphology and shade response. 93 

This switch from site-dependent to intrinsic species properties is essential to draw generic conclusions 94 

valid in a large range of situations. The objective of the study was to use the FLORSYS model to run a 95 

multi-site, multi-annual and multi-species simulation (i.e. a virtual field network) in order to investigate 96 

(1) which annual weed species and weed parameters drive crop yield loss due to crop-weed competition 97 

for light and other weed impacts on crop production, (2) which crop species parameters reduce this 98 

competition-driven yield loss, and (3) at which plant stages the parameter values are crucial for the 99 

outcome. The final aim was to identify crop ideotypes (i.e. theoretical ideal crop plants that combine all 100 

the characteristics required to reach one or several goals in a production situation, Martre et al., 2015) 101 

for arable cropping systems in order to promote weed suppression by crop competition. 102 

 103 



2 Material and methods 104 

2.1 The "virtual-field" model FLORSYS 105 

2.1.1 Weed and crop life cycle 106 

FLORSYS is a virtual field on which cropping systems can be experimented with a large range of virtual 107 

measurements of crop, weed and environmental state variables. The structure of FLORSYS is presented 108 

in detail in previous papers (Gardarin et al., 2012; Munier-Jolain et al., 2013; Colbach et al., 2014b; 109 

Munier-Jolain et al., 2014; Mézière et al., 2015).  110 

The input variables of FLORSYS consist of (1) a description of the simulated field (daily weather, latitude 111 

and soil characteristics); (2) all the crops and management operations in the field, with dates, tools and 112 

options; and (3) the initial weed seed bank, which is either measured on soil samples or estimated from 113 

regional flora assessments (Colbach et al., 2016). These input variables influence the annual life cycle 114 

of annual weeds and crops, with a daily time-step. Pre-emergence stages (surviving, dormant and 115 

germinating seeds, emerging seedlings) are driven by soil structure, temperature and water potential. 116 

Post-emergence processes (e.g. photosynthesis, respiration, growth, shade response) are driven by light 117 

availability and air temperature. At plant maturity, weed seeds are added to the soil seed bank; crop 118 

seeds are harvested to determine crop yield. Crop-weed competition was considered for light only in the 119 

present FLORSYS version. The model is currently parameterized for 25 frequent and contrasting annual 120 

weed species, 11 cash crop species (sold for profit) and 15 cover and forage crop species (grown for 121 

services and not for sale), including several varieties of wheat, field bean and pea (section A.2 of the 122 

supplementary material online). 123 

2.1.2 The parameters driving morphology and shading response 124 

Early post-emergence growth, potential plant morphology and response to shading by neighbours are 125 

key processes that drive crop-weed competition and that determine how fast plants occupy space once 126 

they emerge, how much space they occupy and how they try to capture light when surrounded by 127 

neighbour plants. In FLORSYS (which considers water and nutrient conditions to be non-limiting), these 128 

processes are driven by temperature and light. Species strategies are described by 145 parameters 129 

measured either in field trials (Munier-Jolain et al., 2014) or in garden plot experiments (Colbach et al., 130 

in revision). Early post-emergence plant growth in the absence of shading is driven by two parameters 131 

per species, i.e. leaf area at emergence and plant relative growth rate, which determine how fast a species 132 

occupies the field after emergence (Table 1, and section B online). Potential plant morphology in 133 

unshaded conditions depends on eight parameters per species and stage for 11 plant stages. These 134 

parameters determine plant dimensions, its leaf area and leaf area distribution along plant height. A 135 

further five parameters per species and stage drive species response to shading, determining whether 136 

shaded plants invest more into plant height versus width or into leaf versus stem biomass, and whether 137 

they shift their leaves upwards or downwards. 138 

 139 



2.1.3 Effect of cultural techniques 140 

Life-cycle processes depend on the dates, options and tools of management techniques (tillage, sowing, 141 

herbicides, mechanical weeding, mowing, harvesting), in interaction with weather and soil conditions 142 

on the day the operations are carried out (section A.3 online). For instance, weed plant survival 143 

probabilities are calculated deterministically depending on management operations, biophysical 144 

environment as well as weed morphology and stage; the actual survival of each plant is determined 145 

stochastically by comparing this probability to a random probability.  146 

 147 

2.1.4 Indicators of weed impact on crop production 148 

FLORSYS simulates crop yield as well as a set of indicators assessing weed impacts on crop production 149 

(Mézière et al., 2015) (see section A.4 online). Here, we investigated (1) crop grain yield loss which is 150 

the difference in yield in weed-including vs weed-free simulations relative to yield in weed-free 151 

simulations, (2) harvest pollution by weed seeds and debris resulting from weed biomass and seeds 152 

harvested with the crop grain, and (3) field infestation by weed biomass during crop growth. In addition, 153 

(4) annual weed seed production in crops was examined, as a proxy for the risk of future weed 154 

infestations. Finally, (5) potential crop yield was analysed, predicted by the weed-free simulations. To 155 

make yields of different crop species comparable, yield in MJ/ha (instead of t/ha) was preferred, 156 

multiplying the grain yield in t/ha by its energy content (see details in Lechenet et al., 2014). 157 

 158 

2.1.5 Domain of validity 159 

FLORSYS was previously evaluated with independent field data on weed short and long-term dynamics 160 

at French national scale, over a large range of existing arable cropping systems. It showed that crop 161 

yields, daily weed species densities and, particularly, densities averaged over the years were generally 162 

well predicted and ranked as long as a corrective function was added to keep weeds from flowering 163 

during winter at more southern latitudes (Colbach et al., 2016). A further critical analysis of yield loss 164 

was carried out in a previous simulation study covering the same regions as and cropping systems that 165 

were used here (Colbach and Cordeau, 2018). They concluded that the model's prediction quality was 166 

adequate for the model's purpose, i.e. to predict orders of magnitude and to rank situations in terms of 167 

cropping systems and crop species. Higher crop yield losses than those reported in previous field studies 168 

mostly resulted from the simulation plan. This does not adapt practices to simulated weed floras and 169 

interannual weather variability (as farmers or trial managers would do), in order to discriminate the 170 

effect of crop species and management practices on weeds from the effect of weeds on the choice of 171 

crops and practices (Colbach and Cordeau, 2018). 172 

 173 



2.2 The simulated field network 174 

A virtual field network was simulated combining (1) a large number of contrasting cropping systems 175 

from several regions, (2) different weather series, and (3) presence or absence of weeds. Several sources 176 

were used to gather data on contrasting cropping systems from six French regions (Burgundy, Paris 177 

region, Aquitaine, Poitou-Charentes, Lorraine, Picardie) and one Spanish region (Catalonia). These 178 

systems were all already used in previous simulation studies (find the detailed list of sources and 179 

references in Colbach and Cordeau, 2018) and were reused here, focusing on different factors and 180 

impacts, to tackle our new research questions. In total, 272 arable cropping systems were simulated with 181 

FLORSYS (section C online). They included both conventional and organic systems, with a tillage 182 

intensity varying from no-till to annual mouldboard ploughing. Rotations were mainly based on cereals 183 

(wheat, barley, maize) and oilseed rape, with occasional legume crops (lucerne, faba bean etc), non-184 

legume broadleaved crops (sunflower, flax etc) and temporary grassland, with proportions and crop 185 

species depending on regions.  186 

Two series of simulations were run. The first simulated the cropping systems starting with a typical 187 

regional weed seed bank consisting of the 25 annual weed species currently included in FLORSYS 188 

(section A.2 online). The second series ran without an initial weed seed bank. Comparing series 1 and 2 189 

gave the weed impact on crop production and led to calculating a crop yield loss due to weeds. 190 

In each series, each cropping system was simulated over 27 years (running from summer to summer), 191 

repeating the basic rotational pattern (e.g. oilseed rape/wheat/barley) over time. For each region, a 192 

typical soil (texture etc.) was based on soil analyses from locations inside the simulated regions (section 193 

C.2 online). Daily weather variables were recorded by INRA weather stations in the different regions 194 

(INRA Climatik platform) and by the experimental station La Tallada in Catalonia. Each system was 195 

repeated 10 times with 10 different weather series consisting of 28 randomly chosen weather (calendar) 196 

years from its region of origin, using the same 10 series for each system of a given region.  197 

 198 

2.3 Statistics 199 

First, we analysed which weed parameters drive crop yield loss and other indicators of weed harmfulness 200 

for crop production. RLQ analyses were used to identify significant relationships between weed-impact 201 

indicators and weed species parameters, using the library ade4 (Chessel et al., 2004) of R (R Core Team, 202 

2016). The RLQ analysis was initially developed to analyse correlations between cultural techniques (R 203 

matrix) and species traits (Q matrix) via weed species densities (L matrix). Here, we used annual 204 

indicator values of yield loss, harvest pollution and field infestation from the 27 simulated years and 10 205 

weather repetitions for the R matrix. The Q matrix consisted of the 145 parameters of Table 1 for the 25 206 

weed species in FLORSYS. These parameters discriminate species for their ability to compete for light. 207 

The L matrix comprised the plant density of each weed species for each of the 27 years and the 10 208 

repetitions, using the maximums of the daily weed species densities between crop sowing and harvest. 209 



Only parameter-indicator relationships significant at p=0.05 after a 4th corner analysis were considered, 210 

using the fourthcorner() function of R. This analysis tests whether species are distributed independently 211 

of their effect on indicators and of their traits, retaining for each indicator × trait combination the highest 212 

p values of models permuting either indicators or traits. To check whether weed species could be 213 

aggregated into functional groups in terms of impact on crop production related to plant morphology 214 

and shading response, species were grouped based on a Ward ascendant hierarchy classification using 215 

the hclust() function of R according to the Euclidian distances separating coordinates of species in the 216 

RLQ multidimensional space. 217 

Then, we analysed which crop parameters reduce weed-caused crop yield loss and other weed 218 

harmfulness indicators. A Principal Component Analysis (PCA) was carried out on annual yield 219 

potential (i.e. yield from weed-free simulations), crop yield loss (relative yield difference in weed-free 220 

vs. weed-infested simulations) and annual weed seed production as a proxy for the risk of future weed 221 

harmfulness. Among the 145 parameters of Table 1, those most correlated to the PCA axes were 222 

projected onto the PCA correlation circle. Analyses were carried out with the FactoMineR package of 223 

R. 224 

Finally, to evaluate the relative contribution of crop species and cropping systems on weed harmfulness, 225 

crop yield loss and weed seed production were both analysed with linear models as a function of crop 226 

species, cropping system, region, weather repetition, time since simulation onset as well as interactions 227 

between factors, using PROC GLM of SAS. Cropping systems and weather repetitions were nested 228 

within regions. Mean crop yield loss and weed seed production were compared per crop, with a least-229 

significant difference test. 230 

3 Results 231 

3.1 Weed harmfulness 232 

3.1.1 Which weed species drive weed harmfulness 233 

At the annual scale, the three actual immediate weed harmfulness indicators, i.e. crop grain yield loss, 234 

harvest pollution and field infestation, were correlated (Pearson correlation coefficients ranging from 235 

0.65 to 0.73, p<0.0001, section D.1 online). Conversely, there was no correlation at all between actual 236 

immediate and potential future harmfulness, i.e. weed seed production (Pearson correlations ranging 237 

from 0.04 to 0.06, p<0.0001). When focusing on actual immediate weed harmfulness, it appeared that 238 

weed species were the most discriminated by harvest pollution (longest arrow on Figure 1.A) and the 239 

least by yield loss (shortest arrow) though all three harmfulness indicators were orientated into the same 240 

direction, along the left-hand side of axis 1. This axis explained almost all of the variance of the indicator 241 

values (97.7%, section D.2.2 online), a large part of the trait-value variance (61.6%) and nearly the entire 242 

cross-variance between the traits and the indicators (98.0% of axis 1 in Figure 1).  243 

Weed species could be clustered into several groups, depending on their contribution to weed 244 

harmfulness averaged over all cropping systems, crops, years and weather repetitions (Figure 1.B). The 245 



most harmful ones were Galium aparine (GALAP) and Avena fatua (AVEFA). The second most 246 

harmful group, especially in terms of yield loss and harvest pollution, consisted of six species including 247 

Alopecurus myosuroides (ALOMY), Chenopodium album (CHEAL), Echinochloa crus-galli 248 

(ECHCG), Geranium dissectum (GERDI), Panicum milleaceum (PANMI), and Stellaria media 249 

(STEME). Three other clusters included the species that were the least harmful in terms of harvest 250 

pollution (Senecio vulgaris, SENVU; Sonchus asper, SONAS; Veronica persica, VERPE), crop yield 251 

loss (Abutilon theophrasti, ABUTH; Ambrosia artemisiifolia, AMBEL; Poa annua, POAAN) and field 252 

infestation (Mercuralis annua, MERAN, Fallopia convolvulus, POLCO, Polygonum persicaria, 253 

POLPE), respectively. The remaining seven species located at the centre of the graph presented an 254 

intermediate harmfulness. 255 

3.1.2 Which weed parameters drive weed harmfulness?  256 

The parameters determining the potential morphology and shading response of the most harmful weed 257 

species are shown in Figure 1.C. The most harmful weed species irrespective of crops, cropping systems, 258 

years and weather repetitions had a high initial leaf area at emergence (LA0 at the left-hand side of 259 

Figure 1.C); in unshaded conditions, they presented a high specific leaf area at early stages (SLA0 and 260 

SLA1), and they were taller per unit plant biomass from the end of vegetative stage onwards (HM7, 261 

HM8, HM9, HM10). In the most harmless weed species, plant width increased with plant biomass 262 

(b_WM9, b_WM10 on the right-hand side of Figure 1.C). Harmless species also had a larger 263 

interception area per unit leaf biomass at later stages, with a high specific leaf area from flowering 264 

onwards (SLA8, SLA9, SLA10), with leaves mostly located at the top of the plant (RLH6, RLH7). 265 

When shaded, harmful species shifted their leaves upwards in mature plants (mu_RLH10 at the left) 266 

whereas species that increased their plant width per unit biomass (mu_WM8, mu_WM9, mu_WM10 on 267 

the right) were harmless. 268 

There were few differences between the weed parameters driving the three types of investigated weed 269 

harmfulness. Generally, harvest pollution was the most driven by parameters increasing plant height 270 

(HM7, HM8, HM9, HM10 at the left top quadrant) and placing leaves above the combine cutting, i.e. 271 

shifting leaves upwards in shaded mature plants (mu_RLH10). Yield loss was the most driven by 272 

parameters that ensured a large light interception and shading area very early via a large leaf area both 273 

in absolute value and per unit of leaf biomass (LA0, SLA0, SLA1 on the left-hand side of the first axis). 274 

Finally, weeds with a larger interception area per unit leaf biomass, with a high specific leaf area (SLA8, 275 

SLA9, SLA10 in the upper right quadrant) and increased plant width per unit biomass when shaded 276 

(mu_WM8, mu_WM9, mu_WM10) contributed the least to field infestation. 277 

Conversely, only one parameter relevant for weed seed production could be identified. This proxy for 278 

future weed harmfulness was the highest in species that increased their plant width per unit biomass 279 

when shaded, particularly at early stages (mu_WM2, Pearson correlation coefficient identified by 280 

fourth-corner analysis = 0.24, section D.2.1 online). 281 



Though many indicator-trait correlations were identified by the RLQ analyses, the correlation 282 

coefficients were generally low (below 0.30, section D.2.1 online). This, together with the relative low 283 

variance of the trait values accounted for by the two RLQ axes (a total of 58.5%, compared to 99.9% 284 

for indicator values, section D.2.2 online), shows that trait combinations rather than single trait values 285 

drive weed species impact. 286 

3.2 Which crop parameters reduce weed harmfulness? 287 

Crops differed more in terms of potential yield than weed suppression. The Principal Component 288 

Analysis (PCA) showed that the situations (cropping system x year x weather repetition) that maximised 289 

potential yield were generally not those that minimized weed harmfulness as the two categories were 290 

perpendicular on the PCA variable graph (Figure 2.A). But, this also means that there were situations 291 

that reconciled both high yield potential and low yield loss due to weeds. Moreover, the two harmfulness 292 

indicators, i.e. yield loss and weed seed production, were also perpendicular when switching PCA axes 293 

(Figure 2.C), indicating that the situations with a low yield loss did not necessarily present a low weed 294 

seed production. 295 

Crop species and varieties were roughly ranked along the second axis of the PCA (Figure 2.B) which 296 

was driven almost entirely by potential yield (Figure 2.A). Averaged over all cropping systems, years 297 

and weather repetitions, wheat (TRZAX) was potentially the most productive crop (toward the top of 298 

the second PCA axis), followed by sunflower (HELAN) and maize (ZEAMX). The species with the 299 

lowest potential yield (toward the bottom of the second axis) were flax (LIUUT), winter barley (HORVX 300 

and soybean (GLXMA). The difference between species was greater than the difference among cultivars 301 

of a given species. The middle group consisted of field bean (VICFX), sorghum (SORVU), pea (PIBSX) 302 

and oilseed rape (BRSNN). 303 

The crop species differed much less in terms of weed suppression, here illustrated by weed-related crop 304 

yield loss and annual weed seed production (as a proxy for future weed-borne crop yield loss). Indeed, 305 

species were roughly at the centre of the first PCA axis which was driven by the two weed-harmfulness 306 

indicators (Figure 2.A and B). Plotting the third vs the first PCA axis made it a bit easier to see crop 307 

differences, as the third axis allowed to separate the two harmfulness indicators (Figure 2.C). This graph 308 

showed that crops differed a little bit more in terms of yield loss than weed seed production as the crops 309 

were distributed along the y=-x line (i.e. the direction of the yield loss arrow) with little variability along 310 

the y=x line (i.e. the direction of the weed seed production arrow) (Figure 2.D). Averaged over all 311 

cropping systems, years and weather repetitions, maize (ZEAMX) and oilseed rape (BRSNN) were the 312 

crops with the lowest crop yield loss (left upper quadrant). Conversely, flax (LIUUT), spring pea 313 

(PIBSX) and barley (HORVX) presented the highest yield loss (lower right quadrant). 314 

 315 



3.2.1 Crop species is not the main driver of yield loss 316 

The analysis of variance confirmed that crop species was not the main driver of crop yield loss in this 317 

simulation study (Table 2.A). Yield loss mostly depended on cropping system (partial R² = 318 

0.49=0.27+0.05+0.17 out of total R² of 0.68), albeit in interaction with weather (partial R² = 0.17) and 319 

crop species (partial R² = 0.05). Crop species explained three times less variability than cropping system 320 

(partial R² = 0.16 = 0.10+0.05+0.01), and part of this depended on cropping system (partial R² = 0.05).  321 

Using a method that accounted for the main driver of weed harmfulness (i.e. cropping systems) allowed 322 

to better discriminate crops in terms of yield loss and, particularly, weed seed production (Table 2.B). 323 

The general ranking was the same as the one observed in the PCA of Figure 2.D. Among the species 324 

with enough situations, the crops with the highest yield loss due to weeds were legumes, i.e. pea and 325 

soybean. Conversely, early-sown broadleaved crops (oilseed rape) and summer crops (maize and 326 

sunflower) presented the lowest yield loss. Autumn-sown cereals (wheat, triticale) were intermediate, 327 

except for the Caphorn wheat cultivar, which presented a very high yield loss.  328 

The crop ranking for weed seed production as a proxy for the risk of future yield loss was very different 329 

(Table 2.B). The crops with the lowest weed seed production were early-sown crops, i.e. wheat and 330 

oilseed rape, those with the highest weed seed production were late-sown crops, i.e. sunflower and 331 

soybean. Interestingly, the crops and varieties with the highest yield loss presented very low (wheat cv 332 

Caphorn) or moderate weed seed production (pea). 333 

 334 

3.2.2 Which crop parameters drive potential yield and weed harmfulness? 335 

The projection of the crop parameters driving potential plant morphology and shading response onto the 336 

PCA axes allowed to identify the key parameters driving yield potential (along the first PCA axis, Figure 337 

2.A), crop yield loss (along the y=-x line, Figure 2.C) and, to a lesser degree, weed seed production 338 

(along the y=x line in Figure 2.C). In the absence of shading, the crops with the highest potential yield 339 

invested in leaf biomass to the detriment of stem biomass, particularly at earlier stages (LBR0-LBR4 at 340 

the top of second PCA axis, Figure 2.A), with an uneven leaf distribution along plant height (b_RLH8-341 

b_RLH10 at the top of second axis). High-potential crop species were more homogeneous in terms of 342 

plant height which depended less on plant biomass, particularly at late stages (b_HM8-b_HM10 at the 343 

bottom of second axis ). When shaded, the high-potential crops were able to etiolate, producing taller 344 

plants per unit biomass, particularly during the vegetative stage (mu_HM5-mu_HM8), but they kept a 345 

uniform leaf area distribution along plant height, particularly at early stages (mu_RLH0-mu_RLH5 at 346 

the bottom of second axis). 347 

The optimal crop morphology and shading response for limiting yield loss was different. When 348 

unshaded, crops with the lowest yield loss were those with thinner leaves, maximising their leaf area per 349 

unit leaf biomass, particularly at early stages (SLA0-SLA4 in the left upper quadrant of Figure 2.C), 350 

with wider plants per unit biomass during vegetative stages (WM4-WM7), particularly for plants with 351 

a lower biomass (b_WM6-b_WM7 in the right lower quadrant), and a uniform leaf area distribution 352 



along plant height (b_RLH5-b_RLH7). When shaded, the crops with the lowest yield loss were able to 353 

occupy even more space, by increasing their plant width per unit biomass at early stages (mu_WM2-354 

mu_WM4 in the left upper quadrant) and, even more importantly, their plant height per unit biomass, 355 

both at early (mu_HM3-mu_HM4 in the left upper quadrant) and late stages (mu_HM8-mu_HM9 in the 356 

left upper quadrant). It was impossible to identify individual key crop parameters related to weed seed 357 

production (Figure 2.C). 358 

 359 

3.3 Crop ideotypes and weed "harmtypes" 360 

The most relevant crop parameters could be combined into crop ideotypes, i.e. the optimal combination 361 

of parameter values to maximise yield in weed-free (i.e. potential yield) or weed-infestation situations 362 

(i.e. actual yield) (Figure 3). Except for the shade response resulting in increased height per unit biomass 363 

(mu_HM), the parameters that maximise one or the other type of yield were not the same or even 364 

contrary (leaf area distribution b_RLH). In both situations, though, the relevant parameters aimed at two 365 

effects, i.e. occupying the field space before any other plant and reacting to shade once neighbour plants 366 

start to compete for space and light. 367 

Early space occupation was also the main success of the generalist weed species that were harmful in 368 

all crops, cropping systems and regions (Figure 4). Even more interesting, several parameters that made 369 

species successful in multispecies canopies were the same for both crops and weeds (SLA, b_WM, 370 

b_RLH). However, later in the weed life-cycle (at the time when foliar herbicides were sprayed in the 371 

simulations), inconspicuous weeds with a lower leaf area per unit leaf biomass (smaller SLA) and plant 372 

width  per unit biomass (smaller mu_WM), were more harmful. Harvest pollution was very much related 373 

to weed morphology at harvest itself, which explains why weed species contributed more to this 374 

pollution when their leaf area was concentrated at the top of the plant. Conversely, no generalized 375 

parameter profile could be identified for weed seed production, which is a proxy for weed harmfulness 376 

for future crops, indicating that this function depends much more on cropping system and regional 377 

conditions.  378 

 379 

4 Discussion 380 

4.1 A novel approach to determine crop ideotypes and weed "harmtypes" 381 

The present simulation-based approach allowed us to determine crop ideotypes maximising yield 382 

potential and minimizing weed-caused crop yield loss as well as weed "harmtypes" most harmful for 383 

crop production in large range of contrasting cropping systems and regions. The study also demonstrated 384 

that the crop parameters driving the yield potential were not those driving yield-loss reduction and that 385 

none of the investigated crop species answered to all requirements of the crop ideotypes. Both for crop 386 

ideotypes and weed "harmtypes", it was all about early field occupation and later shade response though 387 



the exact features depended on the goal (i.e. yield potential vs weed suppression, current or future 388 

harmfulness). Weed "harmtypes" also included characteristics that would allow the plants to avoid late-389 

season herbicides. 390 

The novelty of our approach consisted in combining detailed measurements on plant morphology and 391 

shading response carried out on individual plants in controlled conditions (Colbach et al., in revision) 392 

with a simulation study to test the different species and cultivars in a multi-annual and multi-site virtual 393 

farm field network. Tardy et al. (2015; 2017) similarly used detailed individual-plant measurements but 394 

combined them with expert knowledge to define the characteristics of the ideotypes for weed-395 

suppressive cover crop species in banana cropping systems. They then identified the best species within 396 

the panel of experimented cover crop species as the one with characteristics the closest to those of the 397 

ideotype. 398 

Most authors usually worked with canopy or weed state variables such as early ground cover or canopy 399 

closure, plant height, leaf area index, weed density or leaf area, either in fields (Regnier and Stoller, 400 

1989; Pike et al., 1990; Cavero et al., 1999; Paynter and Hills, 2009; Reiss et al., 2018) or in simulations 401 

(Kropff et al., 1992). These variables are specific to cropping systems and pedoclimate, which makes it 402 

more difficult to draw generic conclusions, particularly as these studies worked with a single crop 403 

species and a very limited number of species (three or less). Conversely, we worked here with 404 

parameters that described species-intrinsic performances and were closer to processes driving 405 

competition for light, which allowed us to identify pertinent parameters and to go further in 406 

understanding crop-weed competition. For instance, most studies report that taller cultivars are more 407 

weed-suppressive than shorter cultivars (section 4.2). Here, we demonstrated that crop plant width per 408 

unit plant biomass is the key morphological trait in unshaded conditions and that plant height per unit 409 

plant biomass is an efficient response strategy when shaded (i.e. in the presence of weeds). The drawback 410 

is that these parameters are difficult to measure and not among those that are routinely measured by 411 

plant breeders (Zhao et al., 2006). 412 

Experimental studies also have trouble to measure the attainable yield as it is notoriously difficult to 413 

achieve a continuously totally weed-free situation in fields, particularly when monitoring many fields at 414 

a time (Colbach et al., submitted). As in our study, yield-gap analyses thus often estimate the attainable 415 

yield from simulations (Grassini et al., 2015). In contrast to these studies, we used simulations to both 416 

estimate attainable yield and actual yield. This ensured that any difference between these two yields was 417 

due to the limiting factors that we aimed to investigate, i.e. weeds, and not due to errors in field 418 

observations used for simulation inputs on one hand, actual yield on the other hand. 419 

4.2 Simulation results consistent with field observations 420 

Our results are conditional on the prediction quality of FLORSYS which was shown to be adequate in a 421 

previous study (section 2.1.5). This evaluation concluded that FLORSYS correctly predicted and ranked 422 

weed species densities but could not assess the harmfulness of individual weed species for crop 423 

production. Coverage by the literature on this topic is scant. Some establish harmfulness thresholds for 424 



different weed species in a single crop (e.g. see review by Caussanel, (1989) or link weed densities 425 

observed in field communities to yield loss in different crop types (Milberg and Hallgren, 2004). 426 

Extension services establish harmfulness scores based on expert opinion, usually also for a given crop 427 

(CETIOM, 2008) or aggregate qualitative knowledge (http://www.infloweb.fr). Among the weed 428 

species present both in literature and here, A. fatua and G. aparine were among the most harmful species, 429 

A. myosuroides and S. media among the second most harmful species, F. convulvus, V. persica and V. 430 

hederifolia among the least harmful ones (Caussanel, 1989; Wilson and Wright, 1990). Other authors 431 

though found different results. For instance, G. aparine was deemed rather harmless in Sweden (Milberg 432 

and Hallgren, 2004) but that was on spring cereals whereas we established a crop-independent 433 

harmfulness ranking. Indeed, the impact of a given weed species also depends on the identity of the 434 

infested crops (Fried et al., 2017), the weed floras  and, of course, on which resource crops and weeds 435 

compete for (Zimdahl, 2004). The above-cited field studies did not discriminate between competition 436 

causes whereas we exclusively focused on competition for light and our simulations ensured that there 437 

were no other abiotic or biotic stresses. Moreover, our weed species ranking was established over many 438 

contrasting cropping systems, crops, weed floras and pedoclimates. Conversely, yield-loss field studies 439 

either investigate one weed species in one crop species in bi-specific trials (Caussanel, 1989), which is 440 

an unrealistic situation disregarding weed-weed interference, or the impact of multispecific weed floras 441 

without discriminating individual species (Keller et al., 2014), which is consistent with farming 442 

situations but does not allow to draw conclusions on individual species.  443 

Though many simulation and field studies analysed canopy and weed state variables related to yield loss 444 

(see Introduction), few studies investigate correlations between weed species parameters and weed 445 

harmfulness for crop production as we did here. The few exceptions confirmed our findings on which 446 

weed parameters drive harmfulness, such as the importance of early space occupation (Spitters and 447 

Aerts, 1983), plant height surpassing crop canopy (Spitters and Aerts, 1983; Fried et al., 2017), a high 448 

stem elongation rate, particularly in shaded conditions (Weinig, 2000) (consistent with our higher plant 449 

height per unit biomass, particularly at later stages when shading is more likely), or a large specific leaf 450 

area (SLA) at early stages and a small one at later stages (Storkey, 2004; Storkey, 2005) (which is 451 

identical to our results). The harmfulness of a small SLA late in the weed life-cycle seems surprising at 452 

first, but such plants are less likely to be affected by foliar herbicides, which may be applied later in the 453 

cropping season and enter via weed leaves. 454 

Reports on crop parameters relevant for yield potential and weed suppressiveness are more common but 455 

they usually compare different cultivars rather than species, as we did here. Again, our results are mostly 456 

consistent with previous experimental studies. The most frequent reported feature of weed-suppressive 457 

species and cultivars is plant height (Ford and Pleasant, 1994; Christensen, 1995; Lemerle et al., 1996; 458 

Mennan and Zandstra, 2005; Østergård et al., 2008; Drews et al., 2009; Fried et al., 2017; Jha et al., 459 

2017) which is consistent with our height efficiency. A large leaf area, leaf area index or light 460 

interception area also increase weed suppression (Ford and Pleasant, 1994; Christensen, 1995; Lindquist 461 



and Mortensen, 1998; Drews et al., 2009) which is consistent with our large specific leaf area and wider 462 

plants per unit plant biomass. Some parameters reported in literature required a more detailed plant 463 

description than we used here, such as leaf inclination (Drews et al., 2009). Conversely, other features 464 

used in literature are not actual parameters but the result of several processes such as rapidly shading 465 

canopies or high ground cover (Holt, 1995; Drews et al., 2009). Both are though consistent with our 466 

results demonstrating the need of an early space occupation by crops.  467 

4.3 Can weed-suppressive crop ideotypes contribute to weed 468 

management 469 

Choosing crop species and cultivars that tolerate or suppress weeds is expected to be a major lever for 470 

integrated crop protection (see introduction). The present study identified the features that make species 471 

and cultivars "generalist winners", i.e. that produce a high yield in weed-free situations or that are weed-472 

suppressive, regardless of the cropping system and pedoclimate. But, even if some of the crop species 473 

studied here were better than others, none of them combined all the parameter values minimizing weed 474 

impacts on crop production, far less those reconciling low weed impact with high potential production. 475 

This frequently reported antagonisms (Sardana et al., 2017) may correspond to the theoretical trade-off 476 

between community performance and competitiveness (Denison et al., 2003): crop plants with traits that 477 

maximize their competition towards weeds compete among themselves in the absence of weeds, 478 

reducing their overall performance in resource capture and biomass production. However, Denison et al 479 

(2003) concluded that "there is no reason to expect the structure of natural ecosystems […] to be a 480 

reliable blueprint for agricultural ecosystems". The antagonism between yield potential and weed 481 

suppression is thus not inevitable as shown by recent varietal improvement (section Error! Reference 482 

source not found.). 483 

Even when focusing on the sole weed suppression aspect, there was a trade-off between crop species 484 

that minimize weed-caused crop yield loss and those that limit weed seed production, i.e. the risk of 485 

future yield loss. For instance, pea presented a high weed-caused crop yield loss but a low weed seed 486 

production, which partially explains, in addition to the use of different herbicides and the absence of 487 

mineral nitrogen fertilization, why pea is a very interesting diversification crop in winter rotations 488 

resulting in an impressive reduction of weed infestation (Chauvel et al., 2001). This again demonstrates 489 

the necessity to combine crop/cultivar choice with all other cropping-system components.  490 

The present study focused on parameters driving crop-weed competition for light, albeit in a large range 491 

of crops and cropping systems. But, as the lower-input crop management and weed management 492 

strategies required by new farming policies must be robust to hazards resulting from climate change, it 493 

will be necessary to similarly consider crop and weed parameters related to competition for nitrogen and 494 

water or those to frost damage. Indeed, other parameter-based studies have shown the importance of, 495 

e.g., photosynthesis response to temperature or photosynthetic pathway (Spitters and Aerts, 1983). The 496 

same applies to parameters that drive crop and weed phenology and, for weeds, seed persistence. This 497 



is essential when aiming to tailor advice to particular crops and cropping systems as the most successful 498 

weeds were shown to be those mimicking crops in terms of emergence and maturity dates (Fried et al., 499 

2008; Fried et al., 2009).  500 

Down-scaling the present approach to investigate intra-species variability in crop robustness to weeds 501 

is a promising avenue. The goal is not only to assist the choice of the best varieties to sow, but also to 502 

identify key selection criteria to focus on, in order to create new high-yielding crop varieties that are 503 

robust to weed impacts (Martre et al., 2015; Rotter et al., 2015). Recent studies suggested that, at least 504 

in rice, high yield potential and improved weed-suppressive ability are compatible (Mahajan et al., 2014; 505 

Mahajan et al., 2015). 506 

5 Conclusion 507 

The present study identified generic rules on which species parameters make annual weeds harmful for 508 

crop production and crops tolerant to crop-weed competition for light, across a large range of arable 509 

cropping systems and pedoclimates. Crop and weed species that were successful in mixed canopies were 510 

shown to be similar in terms of potential plant morphology and shading response. These rules can be 511 

used as pointers for selecting crops in agroecological cropping systems aiming to regulate weeds by 512 

biological interactions. The study also demonstrated a trade-off between crop traits that promoted 513 

potential yield and those that made crops tolerate or suppress weeds. Further research is thus needed to 514 

resolve this trade-off and identify combinations of crop species traits that reconcile high potential yield 515 

and low yield loss.  516 
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8 Tables 679 

 680 

Table 1. Species parameters for characterizing initial growth, potential plant morphology and response to shading (based on Colbach et al., in revision). For 681 

each species, there are 11 values for each potential-morphology and shading-response parameter, corresponding to 11 BBCH$ stages ranging from emergence 682 

(0) to death (10). Ranges of variation correspond to the 25 weed species and 33 crop species investigated by Colbach et al. 683 

Parameter 

name Relative advance of growth stage at the time of parameter measurement Unit Median [min,max]§ 

A. Initial growth (without neighbour shading or self-shading) 

RGR Relative growth rate cm²∙cm-2
∙°Cday-1 0.0172 [0.0055, 0.0461] 

LA0 Leaf area at emergence cm² 0.179 [0.01, 3.10] 

B. Potential morphology (morphology variables in unshaded conditions)  

SLA Specific Leaf Area (total leaf area vs total leaf biomass&) - Leaf area efficiency cm2
∙g-1 153 [10, 1204] 

LBR Leaf biomass ratio (leaf biomass vs total above-ground biomass) – Leafiness none 0.75 [0, 1] 

HM Specific (allometric) plant height – Height efficiency (height vs. total above-ground biomass ratio) cm∙g-1 20 [1.2, 838] 

b_HM Shape parameter b for specific plant height – Height efficiency of heavy vs light plant none 0.27 [0.0005, 0.99] 

WM Specific (allometric) plant width – Width efficiency (width vs. total above-ground biomass ratio) cm∙g-1 22 [0.82, 3464] 

b_WM Shape parameter b for specific plant width – Width efficiency of heavy vs light plant none 0.37 [0.02, 1.70] 

RLH Median relative leaf height (relative plant height below which 50% of leaf area are located) cm cm-1 0.48 [0.20, 0.81] 

b_RLH Shape parameter for leaf distribution along plant height – Unevenness of leaf distribution none 2.7 [0.24, 58] 

C. Response to shading (variation in morphology variables with shading intensity) 

mu_SLA Response of specific leaf area to shading none 0.48 [-0.56, 1.72] 

mu_LBR Response of leaf biomass ratio to shading  none -0.01 [-0.66, 1.02] 

mu_HM Response of specific height to shading none 0.43 [-0.53, 2.27] 

mu_WM Response of specific width to shading  none 0.27 [-1.53, 1.87] 

mu_RLH Response of median relative leaf height to shading none 0.01 [-1.00, 1.39] 
$ The BBCH-scale is a generic scale applying to both mono and dicotyledonous weed species to identify their growth stages (Hess et al., 1997) 684 
§ Median, minimum and maximum values over all crop and weed species. For B and C, these are over all stages 685 
& All biomass-based units refer to dry plant or leaf biomass 686 



Table 2. Which factors influence crop yield loss the most?  687 

A. Analysis of variance of yield loss as a function of simulation factors with PROC GLM of SAS. 688 

Cropping systems and weather repetitions were nested within regions. All factors were significant at 689 

p=0.0001 690 

Factors 
Partial R²  

Crop grain 
yield loss 

Weed seed 
production 

Years since simulation onset (log10-transformed) 0.03 0.00 

Crop species 0.10 0.01 

Region 0.04 0.01 

Cropping system (within region) 0.27 0.27 

Weather repetition (within region) 0.01 0.00 

Crop species x cropping system (within region) 0.05 0.09 

Crop species x weather repetition (within region) 0.01 0.00 

Cropping system x weather repetition (within region) 0.17 0.05 

TOTAL 0.68 0.44 
 691 

B. Comparison of means. Variation in yield loss relative to mean loss. Numbers followed by the same 692 

letter are not significantly different at p=0.05. Crops between brackets are based on a too small number 693 

of situations and reflect the effect of cropping system and region rather than the crop species  694 

Crop species 

N 
Variation in 

Crop grain yield loss  
(%)§ 

Weed seed production  
(seeds/m²) 

Maize ZEAMX 17342 -31.4 a 5682 d 

Oilseed rape BRSNN 10452 -26.8 b -26853 b 

(Field bean) (VICFX cv Gladice) 210 -15.8 c -26365 abc 

Sunflower HELAN 3127 -1.7 d 43898 f 

Spring barley HORVX 1421 -0.6 de -1540 d 

Wheat TRZAX cv Cézanne 18187 0.4 e -12321 c 

Triticale TTLSS 655 0.5 e 8209 de 

Wheat TRZAX cv Orvantis 3939 0.9 e -33635 a 

Soybean GLXMA 689 4.3 f 61057 g 

Pea PIBSX cv Enduro 446 7.7 fgh -2250 cd 

(Sorghum) (SORVU) 241 7.8 fgh 32872 f 

(Flax) (LIUUT) 258 8.2 fgh -21315 bc 

Barley HORVX 6901 8.6 g 17 d 

Wheat TRZAX cv Caphorn 3028 11 h -40991 a 

Spring pea PIBSX 4340 26.9 i 13537 e 
§ Yield loss is 100 (yield in weed-free – yield in weed-infested simulation)/(yield in weed-free 695 
simulation) 696 
 697 



9 Figure captions 698 

Figure 1. The weed species (shown with EPPO codes) and species traits that explain weed harmfulness 699 

for crop production, irrespective of crops and cropping systems. Synthetic representation of the RLQ 700 

results with weed-impact indicators and weed plant density in simulated fields as matrix R and L, 701 

respectively, and parameters driving morphology and shading as matrix Q. A. Weed-impact indicators 702 

with correlation circle, B. Weed species, clustered into groups, following a Ward ascendant hierarchy 703 

classification, C. species parameters, with those positively or negatively correlated to weed harmfulness 704 

for crop production in respectively red and green; parameters in gray are not significantly correlated to 705 

weed harmfulness based on fourth-corner analysis (LA0 is hidden behind SLa0, mu_RLH6 and 7 behind 706 

mu_RLH10). For the meaning of species parameters, see Table 1. (Nathalie Colbach © 2018) 707 

 708 

Figure 2. Annual crop performance in terms of weed-caused crop yield loss (100 t/t), weed seed 709 

production (seeds/m²) and potential yield (MJ/ha), and the correlation with crop parameters driving 710 

potential plant morphology and shading response. Principal Component Analysis (PCA) on annual 711 

performance indicators. A and C: arrows show performance variables, with a projection of the most 712 

correlated crop parameters. B and D: dots show annual performance of 272 cropping systems x 27 years 713 

x 10 weather repetitions as symbols and crop species (EPPO codes) at the center of 95% ellipses. For 714 

the meaning of the crop parameters, see Table 1. (Nathalie Colbach © 2018) 715 

 716 

Figure 3. Schematic representation of crop ideotypes in terms of potential plant morphology and shade 717 

response for maximising potential yield and limiting weed-caused yield loss across a large range of 718 

contrasting cropping systems and pedoclimates. Based on crop parameters shown to increase potential 719 

yield in weed-free simulations (A) and decrease yield loss (B) by Principal Component Analysis of 720 

Figure 2. Parameters describing plant morphology in unshaded conditions drive space occupation before 721 

other plants (top); parameters describing shade response drive the reaction to neighbour plants (bottom) 722 

in monospecies (A) and multispecies canopies (B). For the names of the crop parameters, see Table 1. 723 

(Nathalie Colbach © 2018) 724 

 725 

Figure 4. Schematic representation of weed "harmtypes" in terms of potential plant morphology and 726 

shade response that drive immediate harmfulness for the current crop irrespective of cropping system 727 

and pedoclimate. Based on weed parameters shown to increase yield loss, field infestation, harvest 728 

pollution (A), only yield loss and field infestation (B), only harvest pollution (C) by RLQ analysis of 729 

Figure 1. Parameters describing plant morphology in unshaded conditions drive space occupation before 730 

other plants (top); parameters describing shade response drive the reaction to neighbour plants in 731 

multispecies canopies (bottom). For the names of the crop parameters, see Table 1. (Nathalie Colbach 732 

© 2018) 733 
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