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Independent components analysis (ICA) at the 
“cocktail-party” in analytical chemistry

Abstract
Independent components analysis (ICA) is a probabilistic method, whose goal is to extract 
underlying component signals, that are maximally independent and non-Gaussian, from mixed 
observed signals. Since the data acquired in many applications in analytical chemistry are mixtures 
of component signals, such a method is of great interest. In this article recent ICA applications for 
quantitative and qualitative analysis in analytical chemistry are reviewed. The following 
experimental techniques are covered: fluorescence, UV-VIS, NMR, vibrational spectroscopies as 
well as chromatographic profiles. Furthermore, we reviewed ICA as a preprocessing tool as well as 
existing hybrid ICA-based multivariate approaches. Finally, further research directions are 
proposed. Our review shows that ICA is starting to play an important role in analytical chemistry, 
and this will definitely increase in the future.

Keywords: Independent components analysis; Chemometrics; Spectroscopy; Chromatography

1 Introduction

Yulia B. Monakhovaa,b,c,∗ yul-monakhova@mail.ru, Douglas N. Rutledged,e

aSpectral Service AG, Emil-Hoffmann-Straße 33, 50996, Cologne, Germany

bInstitute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012, Saratov, Russia

cInstitute of Chemistry, Saint Petersburg State University, 13B Universitetskaya Emb., St Petersburg, 

199034, Russia

dUMR Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, Massy, France

eNational Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia

∗Corresponding author. Spectral Service AG, Emil-Hoffmann-Straße 33, 50996, Köln, Germany.

i The corrections made in this section will be reviewed and approved by journal production editor.



Experimental measurements acquired by an analytical device usually contain contributions from several 
interesting phenomena mixed together. A fundamental goal in the analytical community is to find the 
underlying, original signals that provide information about the system, but often cannot be directly or clearly 
seen in the observed data. Overcoming this challenge requires mathematical methods that can be efficiently 
applied to large data sets of chemical data and that are able to extract the underlying chemical features of 
interest.

Besides well-known and routinely applied chemometric methods, such as principal components analysis 
(PCA), cluster analysis or partial least squares regression (PLS), other interesting computational approaches 
are efficient but, unfortunately, not routinely used in analytical chemistry. Independent components analysis 
(ICA) is one such methods that deals with problems which can be symbolized by the “cocktail-party-problem” 
[1–3]. In this simple model, a number of microphones are situated at different locations in a room where a 
cocktail party is taking place. Different sound sources exist in this room: music being played, people talking, 
noises from the streets, etc. These sounds represent the “Source signals”. The microphones acquire different 
mixtures of these sounds. Providing that there are at least as many microphones as original sources signals, 
ICA is able to extract the original sound sources from the set of mixtures, along with the corresponding mixing 
proportions for each observed signal mixture. It is obvious that situations quite similar to the cocktail-party 
problem are to be found in analytical chemistry. For example, one would like to find the chemically 
interpretable spectral profiles characteristic of components or of phenomena, but one can only experimentally 
observe mixtures of the components.

Principal components analysis (PCA) is a classical technique in statistical data analysis, feature extraction and 
data reduction that aims to calculate orthogonal directions of greatest dispersion of the individuals in the 
multidimensional space defined by the original variables. The dispersion of the individuals being given by the 
variance-covariance matrix of the data, PCA is based on these second-order statistics. PCA gives vectors 
defining these directions of greatest dispersion (Loadings) and the coordinates of the individuals on these 
directions (Scores).

ICA on the other hand aims to extract “pure”, unmixed source signals from mixtures. ICA decomposes the 
M × N matrix of observed signal mixtures, X (where M is the number of measured mixture signals, N denotes 
the number of variables), into a K × N matrix of K unknown source signals S, and an M × K mixing matrix A, 
containing the proportions of the sources in each mixture. All vectors are understood as column vectors.

In matrix notation,

The application of ICA to mixture decomposition is based on the following considerations. The pure 
component spectra, S, show only weak dependencies, whereas mixing make the observed signals in X more 
dependent than the sources. ICA seeks a transformation or decomposition matrix W (an estimate of A −1) that 
“eliminates” the dependencies caused by mixing, S =W X. The two main quantitative criteria of statistical 



dependence are minimization of mutual information and maximization of non-Gaussianity [1–3]. The 
minimization of mutual information (MMI) family of ICA algorithms uses measures like Kullback-Leibler 
Divergence and maximum entropy. ICA algorithms based on the non-Gaussianity are motivated by the Central 
Limit Theorem and use kurtosis and negentropy [1–3].

ICA does not have the same statistical basis as multivariate methods based on the second-order moment (e.g., 
principal components analysis (PCA), factor analysis (FA) and partial least squares (PLS)) or curve resolution 
methods such as simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) or other competing 
approaches such as multivariate curve resolution - alternating least squares (MCR-ALS) [4–6]. ICA looks for 
non-mixed, statistically independent signals. Since, as a result of the Central Limit Theorem, mixtures of 
signals have more Gaussian distributions than the individual signals mixed together, ICA extracts from the 
mixtures, vectors with maximal non-Gaussianity as measured by their fourth-order moment. ICA techniques 
usually do not use any training data and do not assume a priori knowledge about the parameters of mixing 
systems.

The main differences between PCA and ICA are schematically shown in Fig. 1. The first step in PCA is to 
perform eigenvalue decomposition of a covariance matrix. In PCA, the first eigenvector νν1 is a least-squares 
fit of the data cloud and best represents the variance of the data. PC1 is the vector of Scores or projections of 
each data point onto νν1. The contributions of the original variables to the definition of v1 are called the 
Loadings. The second eigenvector νν2 is orthogonal to νν1, and extracts most of the remaining data variance. 
In contrast, the independent components IC1 and IC2 are the first two source signals and, like the Loadings of 
a PCA, they have contributions from the original variables. IC1 and IC2 are not only orthogonal, but also 
independent. There is no basic criterion for ordering the ICs, as they are all equally important, whereas in PCA 
the first extracted components are considered more important than the later ones, since it is assumed that more 
variance implies more information. Associated with these ICs are latent variables (comparable to PCA Scores) 
containing the Proportions of the ICs in each observed signal. There is no reason for these latent variables to 
be mutually orthogonal [2]. To compute the ICs, the whitened eigenvectors νν1 and νν2 are rotated using the 
unmixing matrix, W.

alt-text: Fig. 1

Fig. 1

Differences between PCA (a) and ICA (b). Reprinted with the permission of SpringerNature [80].
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The basic ICA theory was mainly developed in the early 1990s and later summarized in several reviews. Its 
first applications were developed in statistics, neural networks, pattern recognition, and information theory 
(e.g., medical signal analysis, speech recognition, image processing, fault detection and others) [2,3,7–10]. 
Even now these areas remain the main application spheres of ICA approaches [11,12]. ICA has also received 
much attention as an effective data-mining tool for microarray gene expression data, including gene clustering, 
classification and identification [13]. On the other hand, the number of studies using ICA-based methods in 
analytical chemistry, compared to the total number of works employing this method, is still extremely small.

In this review, ICA is highlighted regarding its applications in analytical chemistry using spectroscopic and 
chromatographic signals as experimental data. To be concise, the fundamentals of ICA are not reviewed in this 
article, because sufficient literature is available on this topic [2,3,7–10]. On the contrary, an update of the main 
application areas of ICA in analytical chemistry since the year 2012 is not available. Other topics such as ICA-
pretreatment of multivariate data and hybrid approaches will also be covered.

2 ICA applications in analytical chemistry

ICA has attracted great interest from chemists and has been applied to different types of experimental data 
including fluorescence, UV-VIS, NMR, vibrational spectroscopies as well as chromatographic approaches [7,
14–41]. In this regard ICA has been beneficial in solving practical problems in the fields of environment, 
agriculture, food products, petroleum, and medicine.

2.1 Spectroscopy

Fluorescence. Fluorescence spectroscopy can be a fast, nondestructive and sensitive technique, able to provide 
information about chemical composition of complex systems containing fluorophores. The increasing use of 
this technique has been facilitated by improved instruments and new data analysis techniques such as 
multivariate and multiway chemometric tools. One of these tools is ICA, which is particularly useful to 
improve the interpretation of fluorescence data in cases of spectral overlap and changes caused by 
environmental and matrix effects [15–25]. The main application areas of ICA to handle fluorescence profiles 
are environmental monitoring and food control.

Regarding environmental studies, synchronous fluorescence spectroscopy in combination with ICA was used 
to retrieve major spectral contributions diagnosing various dissolved organic carbon (DOC) constituents 
(tyrosine, tryptophane, humic and fulvic acids) as well as their proportions in environmental samples of natural 
organic matter. The DOC concentration estimation was based on a polynomial regression model between the 
ICA mixing matrix (the matrix of the Proportions of the Source Signals) and the reference values. The bias 
was estimated to be less than 6% and 13% for fulvic acid and humic acid, respectively. The proposed approach 
is interesting, because it can be performed using a portable spectrometer and thereby makes a stabilization step 
unnecessary [15]. Likewise, an ICA-based method was developed to demonstrate the feasibility of the 
automatic fluorimetric determination of three organic pollutants in model mixtures [16].

ICA was also applied to complete 3D fluorescence spectra of environmental samples. For example, spectral 
features of different phenolic homologs (phenol, thymol and m-cresol) in three-component mixtures were 
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extracted by ICA [17]. The proposed method increased the correct identification rate and allowed efficient 
water pollution monitoring. In another study, 3D solid-phase front-face fluorescence spectroscopic data of 
different simulated natural soil organic matter (SOM) samples were treated by ICA in order to identify major 
components of the organic matter as well as to reveal interactions in natural soils (e.g., self-quenching in case 
of cellulose) [18].

More applications of ICA are available in the area of fluorescence for food control and food monitoring. For 
example, Cantal-type cheese with added NaCl and KCl were analyzed for their structure at the molecular level 
by synchronous fluorescence spectroscopy (SFS) during gentle heating and cooling [19]. ICA treatment 
revealed three significant components (coenzyme/Maillard reaction products, tryptophan and vitamin A) and 
their proportions were correlated with rheological measurements to explain cheese texture modifications, 
which is important for the manufacturing of new cheese products [19].

The adulteration of orange juice by addition of grapefruit juice at the level of 1% was uncovered by 3D-front-
face fluorescence spectroscopy followed by ICA [20]. Multiple linear regression (MLR) was performed to 
estimate the added percentage of grapefruit juice from the IC proportions based on the dataset of juice 
mixtures and two commercial samples labeled with known composition of both juices. Another interesting 
example was provided by Garcia et al. who applied 3D front-face fluorescence spectroscopy in combination 
with ICA to follow the development of dough [21].

ICA was also applied to monitor the antioxidant effect during the thermal evolution of corn oil samples with or 
without addition of natural or synthetic antioxidants [22,23]. 17 extracted ICs representing either individual 
fluorophores, which are degraded or formed during heating, or interpretable artifacts (baseline variations or 
Raleigh diffusion). The results were confirmed by NMR spectroscopy and classical methods for the 
determination of anisidine and viscosity values [23]. ICA applied to the 3D front-face fluorescence 
spectroscopic data of olive oil samples submitted to accelerated aging conditions in presence of polypropylene 
and polylactide plastic packaging materials revealed five significant IC profiles corresponding to natural olive 
oil fluorophores and newly formed oxidation products [24]. The results were used to monitor migration of 
antioxidants, which slow oil degradation and stabilize oils in contact with plastic.

ICA was also of interest in fluorescence beverage control. For example, 3D front-face fluorescence 
spectroscopic data of several wine samples for a range of pH values were modeled by ICA [25]. The results 
have shown that the introduction of pH as an additional parameter facilitated the discrimination of red wines 
according to grape variety. The reason for clearer discrimination is the pH-induced alterations in the structure 
of polyphenols, which makes the differences in concentrations of marker compounds more pronounced.

ICA was also applied to recover spatial structures and the corresponding spectra from multispectral 
fluorescence tomographic images in in vivo phantom and animal experiments. Moreover, fluorophore 
concentrations can be estimated. One such examples where ICA was applied to spectroscopic images is given 
by Pu et al. [26].

To conclude, ICA has been shown to be an effective tool for the analysis of 1D and 3D fluorescence spectra as 
well as fluorescence images by extracting pure underlying signals from a set of mixed experimental signals 



with unknown proportions [15–25]. It allows the decomposition of the experimental data resulting in the 
extraction of individual fluorophores or interpretable artifacts, which facilitates the interpretation of the results 
and can be used in environmental monitoring and food control. This is possible with ICA, but not with PCA. 
When the 3D array, with a matrix for each sample, is unfolded into a 2D matrix, with a row vector for each 
sample, ICA recovers independent non-Gaussian source signals which can be folded back to give interpretable 
source signal matrices. PCA on the other hand nearly always extracts Loadings that are mixtures of source 
signals. Their interpretation in the case of normal spectral data can be delicate; in the case of unfolded 3D 
arrays, the results almost never resemble the spectra of fluorophores.

UV-VIS. Ultraviolet–visible spectroscopy (UV–VIS) is a complementary method to fluorescence spectroscopy, 
where energy absorbed during electronic transitions from the ground state to the excited state is measured. 
Despite being routinely used in analytical chemistry for the quantitative determination of different analytes, 
such as transition metal ions, highly conjugated organic compounds, and biological macromolecules, UV/Vis 
spectroscopy has not received much attention for ICA applications.

In the study of Rohart et al. the interactions of milk proteins and different polysaccharides under varying 
conditions (pH, ionic strength and temperature) were examined based on methylene blue spectrophotometric 
analysis combined with ICA modeling [27]. ICA identified associative interactions and characterized the 
strength of them under different experimental conditions. The results can be used to control interactions 
between different ingredients involved in formulated foods and, therefore, information can be had regarding 
the overall texture and stability of the products.

A fast and reliable UV-VIS spectroscopic method for multicomponent quantitative analysis of targeted 
compounds with overlapping signals in complex mixtures has been established [14]. The proposed approach is 
based on the preliminary extraction of qualitative and quantitative information from experimental profile of a 
calibration system by ICA. Using this quantitative model and the results obtained by ICA for unknown 
mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples could then 
calculated without reference solutions. The proposed method was tested on the analysis of vitamins and 
caffeine in energy drinks and aromatic hydrocarbons in motor fuel, with 10% error. The results demonstrated 
that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of 
spectral overlap and the absence/inaccessibility of reference materials [14].

Kernel independent component analysis (KICA) has been used for feature selection using hyperspectral 
imaging (HIS) technique, where the spectra were recorded within the spectral region of 400–720 nm. ICAICA 
results supplemented by support vector machine classifier were utilized for the identification of four varieties 
of qualified and adulterated oil products [28].

NMR. An historical overview of the applications of blind source separation (BSS) methodologies in NMR 
spectroscopy, including methods specifically designed for this type of spectroscopy is given in Ref. [29]. ICA 
applications were mainly restricted to food and biological objects. For example, the utility of ICA to analyze 
in vivo brain tissue samples was tested through the analysis of an artificial dat [30]. Another promising 
application is the ICA separation of targeted resonances from confounding artifacts in in vivo NMR 
experiments [31].
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ICA was applied as a statistical approach in the development of an innovative analytical methodology to 
uncover the most common adulterations and quality deviations of honey [32]. According to the ICA modeling, 
two marker compounds of honey adulteration with exogenous sugars were identified. In another study, various 
ICA algorithms were applied for simultaneous 1H NMR spectroscopic determination of up to 8 organic 
substances in complex mixtures. Among others, constituents of honey, soft drinks, and liquids used in 
electronic cigarettes were studied [33]. Later, a quantitative NMR method for analysis of targeted compounds 
with overlapping signals in complex mixtures was established. The method is based on the combination of 
ICA for spectral deconvolution and the PULCON principle (pulse length based concentration determination) 
for quantification [34]. In the context of food surveillance, NMR spectroscopy and ICA were also used to 
discriminate 46 authentic rice samples according to type (Basmati, non‐Basmati long‐grain rice, and round‐
grain rice). ICA was found to be superior to classical PCA regarding the verification of rice authenticity [35].

ICA deconvolution considerably improves the application range of direct NMR spectroscopy for the analysis 
of complex mixtures. The results demonstrated that ICA is a promising tool for rapid simultaneous 
quantification of up to six components in case of spectral overlap and the absence of reference materials. NMR 
spectroscopy combined with ICA could be used as a screening method in the control of food and biological 
samples. ICA is a promising technique for decomposing NMR spectral data into components resembling 
metabolite resonances, and therefore has the potential to provide a data-driven alternative for making group 
comparisons to the use of metabolite concentrations derived from the curve-fitting of individual spectra.

Vibrational spectroscopy. As a nondestructive and convenient tool, vibrational spectroscopy has been widely 
shown to be a useful technique for inspection of complex objects due to its advantages of speed, noninvasive 
measurement, ease of use, and minimal sample preparation requirements.

Regarding mid infrared spectroscopy (MIR), one effective application was to retrieve qualitative and 
quantitative information about formulations of plastic materials, which can be important for automated plastic 
waste separation and to control the content of additives in polymer materials. For example, the combination of 
ICA and MIR showed great potential in sorting plastic wastes from five kinds of conventional polymers as 
well as differentiating low- and high-density polyethylene materials [36]. Among 28 significant ICs, only five 
ICs contained reliable information for the differentiation of the plastic materials. 100% discrimination rates 
based on the selected independent component proportions (ICA “scores”) were obtained regardless the 
samples properties or the spectrometer used. Attenuated total reflectance-mid infrared spectroscopy (ATR-
MIR) was used to identify and quantify four different plasticizers as potential migrants in polylactide polymer 
material [37] (Fig. 1). A clear classification model was obtained using an ICA model with 11 significant ICs. 
To establish a quantitative model, the ICA proportions corresponding to specific ICs were were correlated with 
the reference concentrations determined by gravimetric analysis of plasticizers. Sufficiently high values of 
validation parameter proved the good predictability of the proposed qualitative and quantitative models.

MIR spectroscopy was also used in environmental studies for the investigation of the mucilage aggregate 
formation process from several algae. The interpretation of the ICA decomposition results revealed that the 
aggregation process consisted of two phases: production of mono- and oligosaccharides with oligopeptides and 
their subsequent polymerization into supramolecular structures [38]. Later the MIR spectra of several samples 
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of normal and anomalous size aggregates of organic matter were collected and then submitted to ICA, which 
allowed a good spectral decomposition together with the extraction of a higher number of significant and 
chemically interpretable components [39].

ICA was also combined with near infrared spectroscopy (NIR) for the simultaneous quantitative analysis of 
two bioactive compounds, gentiopicroside and swertiamarin, in different parts of the medicinal plant Gentiana 
scabra Bunge [40]. The predictive ability of the model was evaluated based on the coefficients of variation 
(0.24–0.42%) and the standard deviations (0.07–1.29%). The approach can contribute to the quality control of 
medicinal plants during and after cultivation. Another interesting application was to use ICA for processing 
NIR hyperspectral images to determine the spatial distribution of peanut traces as an allergenic food 
contaminant in wheat flour at different stages of food manufacturing [41].

Functional near infrared spectroscopy (fNIRS) is a noninvasive method to capture brain activities according to 
the measurements of changes in both oxyhemoglobin and deoxyhemoglobin concentrations. Considering this 
experimental technique ICA was able to separate distinct spatial patterns of brain activity, which can be 
correlated with the specific neural events, such as finger tapping tasks [42]. ICA was also used in the time-
spectral domain to isolate physiological sources of fNIRS acquired on the human forehead [43]. The IC 
profiles suggested that one of the two significant components represented vasodilation of cerebral arterioles 
while the other one represented the washout of deoxyhemoglobin either in cerebral capillaries and venules or 
in extra cerebral tissue.

Raman spectroscopy and imaging. Raman spectroscopy and imaging is another area of application for ICA. 
For example, an ICA-based method was able to differentiate between single- and multi-component mixture 
spectra without prior knowledge of the analyzed sample in an automated manner. The method has been applied 
to artistic pigment identification [44].

Raman imaging. Chemical imaging spectroscopy is a technique where molecular and spatial information of a 
sample can be obtained simultaneously. The spatial information can be obtained by using imaging techniques 
and is becoming important for the control quality of different products. However, coupling spectroscopy and 
imaging techniques generates a huge amount of data, which can only be interpreted by using multivariate 
techniques.

The combination of Raman imaging and ICA has shown great potential for investigating biological and 
forensic samples, and pharmaceuticals. The combination of Raman imaging and ICA was used to detect 
ammonium nitrate/fuel oil explosives on banknotes with a limit of detection of 70 μg/cm2 after an ATM 
explosion experiment [45] and to detect differences in pen inks [46]. The capability of Raman spectroscopy 
together with ICA as a diagnostic tool for oral cancer was demonstrated in Ref. [47]. ICA was also used to 
examine the distribution of active ingredients and major excipients (lactose and avicel) in a pharmaceutical 
tablet Bipreterax® (Fig. 2) [48] as well as for the study of the homogeneity of constituents in semi-solid 
pharmaceutical formulations [49] (see Fig. 3Fig. 3).

alt-text: Fig. 2
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2.2 Chromatographic methods

Chromatographic profiles of complex samples involve high complexity data that must be effectively resolved 
to produce chemically meaningful results. However, in recent years there have not been many practical 
applications of ICA published regarding chromatographic techniques. In the case of standard chromatographic 
data (e.g. GC-FID), this is in part because it is only possible to apply multivariate analysis methods if the 
peaks are aligned so as to be in the same column for each sample. In the case of coupled instruments (e.g. GC-
MS, LC-UV), another possibility is to have the spectral data associated with chromatogram in the columns.

Fig. 2

ICA application on ATR-MIR data for polyactide analysis. Reprinted with the permission of Elsevier [ 34 ].

alt-text: Fig. 3

Fig. 3

ICA application on Raman images of the Bipreterax© drug product. Reprinted with the permission of Elsevier [ 42 ].
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ICA may be coupled with chromatographic data to extract the chromatographic profile of a targeted 
component from matrix interferences and background noise. As an example, the quantitative methodology to 
analyze the triazine pesticide prometryn in hair samples by total ion chromatography was developed [50]. The 
standard additions method was employed for the quantification. The efficiency of the method was validated 
with spiked samples, and the recoveries were in the range of 99–105%.

ICA was also used to address incomplete separation problems occurring during chromatographic analysis of 
complex matrices. ICA resolved the elution and spectral profiles in GC-MS and GC × GC-MS data with 
different numbers of components, degrees of overlap and noise, with acceptable statistical and calibration 
results. The approach was successfully applied to the quantification of phenanthrene and anthracene in the 
aromatic fraction of heavy fuel oil (HFO) analyzed by GC × GC-MS [51]. ICA was also successfully used to 
numerically separate coeluting LC peaks of 19 antimalarial drugs and estimate their unbiased retention times [
52]. Independent components regression (ICR) was found to be an efficient tool for GC-MS compound 
identification, avoiding the influence of outlier data [53].

A new ICA approach called MetICA was applied to experimental mass spectrometry (MS)-based, non-targeted 
metabolomics data, which allowed to understand how non-targeted metabolomics data reflect biological nature 
and technical phenomena. The authors concluded that an optimal ICA model should be selected by optimizing 
the number of reliable components instead of just trying to fit the data [54].

It is clear that the range of applications of ICA to different types of chromatographic profiles should increase 
in the near future similarly to the alternative technique, MCR-ALS, which is widely used in chromatographic 
data analysis [45–57].

2.3 Other instrumental techniques

Apart from spectroscopic and chromatographic measurements, a small number of studies used less common 
types of instrumental measurements. For example, ICA enabled estimation of the Faradaic and double layer 
charging current components in differential pulse and anodic stripping voltammetry. Individual components 
were recovered with R2 of more than 0.98 in comparison with the ground truth data. Voltammograms of Pb(II) 
and Cd(II) were constructed using only Faradaic component. Validation studies demonstrated the possibility of 
significant improvement of sensitivity of these voltamperic determinations [58].

The aim of another work was to propose an alternative way for wine classification and prediction based on 
electronic nose (e-nose) measurements. In this regard, ICA was used as a dimensionality reduction technique. 
Successful results have been obtained in most cases for prediction and classification [59].

3 Data pretreatment

Besides direct application to spectroscopic analysis of overlapping profiles, ICA is also an effective method 
for pretreatment of experimental data. ICA was used to eliminate Rayleigh and Raman scattering from the 
excitation-emission fluorescence data cube so that this preprocessed data could then be analyzed by parallel 
factor analysis (PARAFAC) resulting in more informative and noise-free models [60]. In subsequent studies, it 
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was shown that ICA could be used instead of PARAFAC for the complete analysis of such multi-way data [
18–25].

ICA was used as a tool for identifying the original hemodynamic functional brain near-infrared response as the 
primary IC in the presence of different types of noise (instrumental noise, motion artifacts, interferences) [61]. 
Moreover, physiological noises (low-frequency oscillation and respiratory signals) were separated from 
unknown noise identified as motion artifacts. The approach was successfully applied to determine hemoglobin 
values of eight volunteers. A t-test was used to show the superiority of the ICA approach in comparison with 
the classical low-pass filter method [61].

It should be stressed that ICA-based preprocessing is not limited to multiway methods such as PARAFAC or to 
fluorescence data. ICA preprocessing could be used to selectively eliminate certain sources of variation from 
data sets in order to facilitate PLS regression, discriminant analysis, clustering or any other chemometric 
technique.

4 Determination of the number of significant components

When performing ICA, it is very useful to assess the statistical significance of the resolved components. The 
determination of the optimum number of ICs is a crucial step before ICA modeling. Indeed, extracting too few 
ICs may result in non-pure signals, still consisting of mixtures, whereas calculating too many may excessively 
decompose source signals and introduce noise.

In order to address this problem several methods have been proposed in the literature during recent years. The 
number of ICs imposed can be iteratively increased from one to 5–7 to observe the consistency of certain 
compounds and to detect any substantial increase of noise [15]. In the case where the ICA results are used to 
develop a quantitative predictive model, the behavior of the standard error of validation (SEV) as consecutive 
ICs are extracted can be used to restrict the number of significant ICs in the model [40]. For transcriptomics 
datasets a possibility of prioritizing components with respect to their reproducibility in multiple ICA runs has 
been shown [62].

Principal object analysis (POA), which represents simply a PCA on the transposed dataset combined with 
FastICA algorithm, was proposed as a robust and accurate unsupervised method to retrieve maximal spectral 
information regarding the number of components, the respective signal sources and their contributions [63]. 
Three parameters based on a priori information (relative bias, relative success index and signal source 
distribution) were used to estimate the performance of the method. The approach was applied in the context of 
the unsupervised data treatment of synchronous fluorescence signals of standard mixtures of tyrosine, 
tryptophan and phenanthroline.

The consequences of having too few or too many components in the ICA model on the resolved spectral 
profiles during NIR examination of distribution of active ingredient and major excipients in a pharmaceutical 
tablet Bipreterax® were discussed. For example, with too many the signal contribution of some substances can 
be spread over several ICs. On the contrary, the use of too few components led to the non-detection of a low 
concentration compound [47].
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Other methods based on initial data matrix manipulations have been proposed [64,65]. The first one, called 
Random_ICA, which can be regarded as a generalization of the ICA_by_blocks method [65], performs several 
random splittings of the initial data matrix into two blocks and then compares the outputs from ICA runs with 
increasing numbers of ICs. The Kaiser-Meyer-Olkin (KMO) index of the transposed residual matrices obtained 
after progressive extraction of ICs can be also regarded as a means of determining whether the observed 
signals in the residual matrix are still mixtures. In another method, the correlations between calculated ICA 
outputs (proportions or source signals) with known physico-chemical information (known concentrations or 
spectra) were found to be helpful to select the optimal number of ICs. The methods were successfully tested 
using various simulated and experimental data sets based on IR, GC-MS, and 3D fluorescence measurements [
64].

5 Hybrid approaches based on ICA

It is known that in chemometrics it is common to apply a cascade of multivariate approaches to the dataset 
under study. For example, PCA and cluster analysis are often applied to detect outliers and provide exploratory 
analysis of the data before the application of more advanced chemometric approaches. Another promising but 
as yet largely unexplored research direction is to increase the efficiency of classical chemometric methods by 
synergistic combination of their advantages within a new approach.

In the study of Shu, the ability of ICA to extract hidden information was used for feature extraction before 
constructing a support vector machine (SVM) model for on-line multivariate process monitoring [66]. A case 
study of the Tennessee Eastman benchmark process was used to confirm the efficiency of the proposed 
methodology by comparing it to several traditional methods, including ICA, PCA and ICA-PCA [66]. 
Similarly, a Genetic ICA algorithm was introduced as the feature extraction method to improve the prediction 
accuracy of the Back-propagation neural network method for the simultaneous determination of four 
exchangeable cations (K+, Na+, Ca2+ and Mg2+) to monitor the irrigation water quality [67]. The ICA mixing 
matrix has also been used as an input to obtain a Bayesian posterior for a spatial source distribution [68].

ICA based on the minimization of mutual information can be used as an alternative to PCA as a preprocessing 
tool for LDA and FDA classification. To illustrate the performance of this ICA/DA methodology, four 
representative nuclear magnetic resonance (NMR) data sets of wine samples were used. The average increase 
in the percentage of correct classification for ICA/DA in comparison with PCA/DA varied between 6 ± 1% and 
8 ± 2%. The use of independent components (ICs) instead of principle components (PCs) resulted in improved 
classification performance of the DA methods [69].

The use of hybrid chemometric approaches also resulted in improved quality of multivariate quantitative 
analysis. The idea is to use the calculated mixing matrix (proportions) of chemically interpretable ICs as the 
input for a regression procedure for multicomponent determination. This method is called IC-based regression 
(ICR) [70,71] and is advantageous in those cases where the estimated ICs are very similar to the real sources 
since the corresponding mixing matrix gives the relative-concentration profiles of each component in the 
mixtures. The suitability of ICR was demonstrated using spectroscopic signals of complex biological samples [
53].



In the study by Gao et Ren, the idea to combine ICA denoising properties with Elman recurrent neural network 
(ERNN) was implemented for the simultaneous spectrofluorimetric determination of biphenyl, naphthalene 
and benzotriazol in model mixtures, which are well-known carcinogenic organic pollutants in biological and 
environmental samples. The mixing matrix A, derived from ICA, was used as input data to the ERNN model, 
which was trained by the descent back-propagation approach [72].

Another research group has proposed to combine ICA with PCA. A new approach accommodated one or more 
Gaussian components in the ICA model and uses PCA to characterize contributions from this inseparable 
Gaussian subspace [73]. Successfully tested on the well-known Fisher's iris and Howells' craniometric data 
sets, mixed ICA/PCA was proven to be of potential interest in any chemical investigation, where the 
authenticity of blindly separated non-Gaussian sources might otherwise be questionable.

Microarray data have an important role in identification and classification of cancer tissues. Two novel 
classification approaches, namely, multi-resolution independent component analysis based support vector 
machines (MICA-SVM) and linear discriminant analysis (MICA-LDALDA) were successfully tested on 
microarray data for cancer diagnostics [74]. Later, a similar approach was successfully applied to three cancer 
datasets (leukemia, breast cancer and lung cancer datasets) [75].

6 Conclusions

It is probably fair to say that in the last 10 years, ICA has shown its potential to become one of the standard 
multivariate tools in analytical chemistry. The generality and potential usefulness of the methodology is no 
longer in question, and ICA for some datasets can now compete with traditional multivariate methods, such as 
PCA or MCR-ALS [76]. In this review it is shown that different ICA algorithms have been successfully 
applied in many application areas. For the application of ICA in analytical chemistry, further developments 
will need to address two central challenges, namely, using a priori information during ICA-modeling and the 
choice of an ICA algorithm in each particular case.

According to our experience and reported research results, all or most ICA algorithms can successfully recover 
interesting sources signals in many situations. However, the accuracy of ICA algorithms used for different 
kinds of spectral data may not be the same [7]. Unfortunately, so far there is no general criterion for the 
selection of an ICA algorithm in signal processing for analytical chemistry, therefore comparison of several 
ICA algorithms for a specific task is recommended. The ICA algorithm needs to be more carefully selected in 
particular situations, for example, when the sources are continuously distributed or broad bands. Mutual 
Information Least Dependent Component Analysis (MILCA) and kernel ICA (KICA) are robust ICA 
algorithms that can be used when distribution and correlation of the sources are unknown [7,78]. New efforts 
are needed to compare various ICA algorithms and to compare ICA with other multivariate approaches using 
different analytical datasets.

Currently, the problem of incorporating a priori information into ICA modeling is rather acute. Including such 
information not only improves convergence, but also extends the application of ICA techniques to 
experimental data that do not exactly satisfy ICA assumptions. As a proof of principle, an adaptive weighted 
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summation algorithm, which takes into account available reference signals, has been introduced in the 
framework of multi-objectives optimization [79].
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