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A B S T R A C T

Hyperspectral imaging (HSI) has become an essential tool for exploration of different spatially-resolved prop-
erties of materials in analytical chemistry. However, due to various technical factors such as detector sensitivity,
choice of light source and experimental conditions, the recorded data contain noise. The presence of noise in the
data limits the potential of different data processing tasks such as classification and can even make them in-
effective. Therefore, reduction/removal of noise from the data is a useful step to improve the data modelling. In
the present work, the potential of a wavelength-specific shearlet-based image noise reduction method was
utilised for automatic de-noising of close-range HS images. The shearlet transform is a special type of composite
wavelet transform that utilises the shearing properties of the images. The method first utilises the spectral
correlation between wavelengths to distinguish between levels of noise present in different image planes of the
data cube. Based on the level of noise present, the method adapts the use of the 2-D non-subsampled shearlet
transform (NSST) coefficients obtained from each image plane to perform the spatial and spectral de-noising.
Furthermore, the method was compared with two commonly used pixel-based spectral de-noising techniques,
Savitzky-Golay (SAVGOL) smoothing and median filtering. The methods were compared using simulated data,
with Gaussian and Gaussian and spike noise added, and real HSI data. As an application, the methods were tested
to determine the efficacy of a visible-near infrared (VNIR) HSI camera to perform non-destructive automatic
classification of six commercial tea products. De-noising with the shearlet-based method resulted in a visual
improvement in the quality of the noisy image planes and the spectra of simulated and real HSI. The spectral
correlation was highest with the shearlet-based method. The peak signal-to-noise ratio (PSNR) obtained using
the shearlet-based method was higher than that for SAVGOL smoothing and median filtering. There was a clear
improvement in the classification accuracy of the SVM models for both the simulated and real HSI data that had
been de-noised using the shearlet-based method. The method presented is a promising technique for automatic
de-noising of close-range HS images, especially when the amount of noise present is high and in consecutive
wavelengths.

1. Introduction

Close-range hyperspectral imaging (HSI) and image processing
techniques are popular analytical tools in many scientific domains and
are used in applications such as the exploration of food properties [1],
pharmaceutical product characterisation [2,3], forensics analysis [4,5],
exploration of plant traits for phenotype studies [6,7], and micro-
biology [8]. The major advantage of HSI over other conventional ana-
lytical techniques is its non-invasive and non-destructive nature which

is further complemented by rapid data acquisition.
HSI combines two sensor modalities that are spectroscopy and

imaging, where the spectroscopy provides the chemical information
about the samples and the imaging adds a complementary domain of
spatial information [9]. The data generated by HSI can be understood
as spatial maps of spectral variation arranged in 3-D cubes (n × p × q).
The first two dimensions (n × p) of the cubes are usually the spatial
dimensions, and the third dimension (q) contains the spectral in-
formation. To extract the meaningful information from HS images,
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different data processing steps such as exploration, regression and
classification are often performed. However, before any data proces-
sing, as a standard first step, the cubes are usually pre-processed to
remove various types of noise from the data so as to increase the signal-
to-noise ratio (SNR) [10].

The information generated in HSI is often accompanied by noise,
which can arise from detector sensitivity, illumination conditions (e.g.
the choice of light source) and experimental conditions (e.g. inter-
ference from other light sources). The types of noise can range from
small signal-independent noise such as low-level Gaussian to high-level
mixed noise such as Gaussian, Poisson and spike [11]. Since the noise is
in the acquired signals, it can be observed in each individual spectrum.
However, it can also be observed as pixel-to-pixel intensity variations in
each spatial plane. For this reason, the noise is visible in both the spatial
and the spectral domains. The need for methodologies to deal with the
noise present in the data cubes generated by close-range HSI has al-
ready been highlighted in [12]. A typical approach to deal with noisy
signals in the chemometrics field is to remove the affected spectral
range from the dataset. This approach can be seen very often when the
extreme wavelengths of images are noisy, and the easiest option is to
remove that part of the spectrum. However, the downside of this ap-
proach is that with the removal of noisy wavelengths, relevant in-
formation in the data might also be removed. The other common ap-
proach to remove noise from the signal (spectra) while keeping the
information is to apply smoothing filters. Two commonly used filter
methods are Savitzky-Golay (SAVGOL) smoothing [12–14] and median
filtering. SAVGOL smoothing and median filtering can be used alone
and independently for each spectrum corresponding to a pixel of the HS
image. However, if the level of noise is too high in the spectrum, the use
of SAVGOL smoothing and median filtering can become tedious be-
cause of the need to determine the optimum window width for
smoothing. Also, if noise is present in successive wavelengths, SAVGOL
and median filters can result in a deformed spectral profile. The de-
formation mainly occurs when a large number of noisy wavelengths are
present inside the smoothing window, dominating the normal wave-
lengths. To deal with this, the filter-based methods are currently ap-
plied after removing the high noise wavelengths [15,16]. Furthermore,
the main drawback of both of these methods is that they can only be
used to deal independently with the noise in each spectrum of the HS
image and it is not possible to take into account the spatial relations
between the spectra of the pixels. Without removing the noise from the
spatial domain, the scores maps resulting from classification and re-
gression procedures can become noisy (misclassified pixels) leading to
inefficient data modelling.

Methods like SAVGOL and median filtering require testing and op-
timisation of parameters such as the window size, order of derivative
etc., which often requires expertise and visualisation skills to decide on
efficacy. However, the use of HSI for process analysis, where real-time
data processing is required, means that there is a need for automatic de-
noising methods. To the best of our knowledge, there is no existing
automatic method that deals simultaneously with both the spatial and
spectral noise in the data generated with close-range HSI. However, in
the field of remote sensing, the problem of automatic de-noising of HS
images is well understood. There are three main families of methods
that are used for automatic de-noising of HSI data. The first is the family
of methods that utilise the sparse representation of spatial planes such
as wavelets but do not consider the spectral noise [17]. The second is
the family of methods that combine decorrelation techniques such as
principal components analysis (PCA) with the sparse techniques [18].
However, these methods deal with the spatial and spectral noise sepa-
rately. The third is the family of methods, such as tensor decomposition
methods [19], that utilise the spatial and spectral noise together and are
based on the 3-D representation of data. However, the major drawback
of such tensor approaches is that the spectral and spatial dimensions are
treated equally whereas typically in HSI, spectral correlation is far
higher than spatial correlation. Also, the type and amount of noise

ranges from low signal-independent noise to mixed Gaussian, Poisson
and spike noise for different wavelengths. Therefore, a method utilising
both the spatial and spectral information together, and based on the
type of noise present in the data would be of great use for de-noising HS
images.

Recently, a wavelength-specific shearlet-based image noise reduc-
tion method was proposed for de-noising of HS images in the remote
sensing domain [11]. The method perfectly fits the needs of HS image
de-noising by considering both the spatial and spectral correlations and
also considering the types of noise present in different image planes.
The method first identifies the type of noise present in the image planes
via measurement of spectral correlation. Based on the spectral corre-
lation, the method categorises the noise into low-level Gaussian noise or
high levels of mixed noise. After identification of the type of noise, the
non-subsampled shearlet transform (NSST) is then performed on each
image plane. Later, to de-noise the low-level Gaussian noise wave-
lengths, the method assumes an additive noise model and performs
spatial de-noising using the BayesShrink threshold method [20]. To de-
noise the high-level mixed noise wavelengths, the method utilises the
NSST information from the neighbouring low-level Gaussian noise
wavelengths. The shearlet coefficients of adjacent low-level Gaussian
noise wavelengths are fused with the details of mixed noise wave-
lengths utilising a weighted linear combination criterion, which results
in spectral de-noising. Finally, after de-noising, the inverse of the NSST
is applied to reconstruct the image planes.

The aim of the present work is to present a wavelength-specific
shearlet-based image noise reduction method [11] for HS image de-
noising and to test its potential for de-noising close-range HS images.
Furthermore, the method was compared with two pixel-based spectral
smoothing techniques, i.e., SAVGOL and median filtering. The potential
of the method was tested using three different sets of HS images. The
first two image sets comprised supervised images containing known
amounts of Gaussian and mixed noise. The third image set was a real
VNIR HSI dataset generated for the classification of six commercial tea
products (oolong, black, green, yellow, Pu-erh and white). The per-
formance of the de-noising techniques was evaluated through visual
inspection, spectral correlation, peak signal-to-noise ratio (PSNR), and
through classifications performed with a multi-class support vector
machine (SVM). The PSNR was used to quantify the improvement in the
spatial domain and the spectral correlation was used to quantify the
similarity of the spectra after de-noising with the corresponding spectra
in the absence of noise, i.e. the clean spectra (spectral domain).

2. Material and methods

2.1. Samples and imaging sensor

De-noising and classification experiments were performed with
visible-near infrared (VNIR) hyperspectral images of six different
commercial tea products, which were purchased from a local market
(Glasgow, United Kingdom). The samples were obtained in airtight
sealed packaging and stored at ambient temperature. All samples of tea
were in loose-leaf form. Black, green and white tea were from Vahdam
Teas (New Delhi, India), oolong tea was from Yamamotoyama
(California, USA), Pu-erh tea was from The Tea Makers of London
(London, UK) and yellow tea was of an unspecified Chinese origin. Each
tea sample was transferred to a black plastic circular container (dia-
meter= 3.3 cm, depth= 1.3 cm) for analysis. The six samples were
placed adjacent to each other on the translation stage so that all six
samples were imaged in a single measurement. Imaging was performed
using a push-broom line scan HSI system comprised of a V10E spec-
trograph from SPECIM (Oulu, Finland) and a CCD camera (C8484-05C,
Hamamatsu Photonics, UK). The HSI system was used to acquire spatial
maps consisting of 1350×256 pixels over the spectral range
383–1000 nm with a spectral resolution of 2.45 nm. The pixel size of
the CCD camera is 6.45×6.45 μm2. Lighting was provided by two
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20W halogen light sources. The distance from the lens to the transla-
tion stage was 30 cm, and the stage was controlled by an independent
stage motor connected to the computer system (Zolix TSA 200 BF). The
speed of the translation stage, ∼3mm s−1, was optimised using a
checkerboard to avoid any distortion in the shape of the image arising
from the overlapping of the spectral and spatial information. A single
image, comprising more than 2000 pixels per tea sample, was acquired
of the six tea samples using a frame rate of 21 fps and an exposure time
of 5ms.

The acquisition and management of data were performed using in-
house code developed in Matlab (R2016b, Mathworks Inc., Natick,
United States). Before data analysis, the radiometric calibration of
images was performed using white and dark references. The correction
was performed for every pixel in the HS image according to Eq. (1),

=
−

−
I

I I
I IR i j k

raw i j k dark i j k

white i j k dark i j k
( , , )

( , , ) ( , , )

( , , ) ( , , ) (1)

where IR is the calibrated reflectance, Iraw is the raw intensity measured
from the test sample, Idark the intensity of the dark response, Iwhite is the
intensity of the uniform white reference, and i and j are spatial co-
ordinates and k is the wavelength in the image.

To demonstrate the effectiveness of the HSI de-noising method, two
more sets of HS images were simulated by adding different types of
noise to the VNIR images. The simulation was performed by manually
reducing the VNIR hypercubes to the cleanest (smoothest) spectral
profile range (546–791 nm). Of the two sets of simulated images, one
set was simulated with a known amount of Gaussian noise (zero mean
and 0.03 variance), and the other was simulated with mixed noise
comprising a combination of Gaussian (zero mean and 0.03 variance)
and spike noise (density of 0.08) at 20 randomly selected image planes.
The term density of 0.08 here means that the reflectance will change
from zero to one with a probability of 0.08. In the following text, mixed
noise (MN) will be used to represent the combination of Gaussian and
spike noise and Gaussian noise (GN) will be used to represent Gaussian
noise. A summary of the sets of images analysed is presented in Table 1.

2.2. De-noising methodology

The de-noising methodology has three main steps in its im-
plementation. The first step is to identify the type of noise present (low-
level Gaussian noise or mixed noise) to choose the de-noising techni-
ques for that particular wavelength. Different techniques here signify
the different ways of using the shearlet coefficients for de-noising. The
second step is to perform the sub-sampled shearlet transform on each
image plane to capture the shearlet coefficients. The third step is to
utilise the shearlet transform coefficients to perform de-noising in-
dividually for each wavelength based on the type of noise identified.
The detailed methodology is explained in the following Sections
(2.2.1–2.2.3).

2.2.1. Noise characterisation
In HSI, the noise varies from wavelength to wavelength and can

range from simple low-level Gaussian noise to high-level mixed noise
resulting from a combination of Gaussian and spike noise. The typical
additive noise model for any image plane of a data cube (n × p × q)
can be understood from Eq. (2):

= +Y X N (2)

where Y is the recorded image plane containing the useful informative
signal part (X) and the noise part (N). This assumed model is usually
correct if the noise present in the plane is limited to Gaussian white
noise, but this is not always the case. In the methodology presented
here, the nature of the noise is assumed to be unknown. To find the type
of noise present in image planes, the method utilises the correlation
coefficient, R, between two image planes, Yk and Yk+r, as in Eq. (3):

= = … −+
+

+
R k q rY Y( , ) 1, 2 ..k k r

cov
var var

Y Y
Y Y
( , )

( ) ( )
k k r

k k r (3)

From the correlation measurement between two image planes, it
can be understood that if the two image planes are very similar, then
they will have a very high correlation coefficient. However, in the
presence of noise, the correlation between the image planes will be
significantly reduced. Furthermore, the greater the noise, the more the
correlation will decrease. To differentiate between the low-level
Gaussian noise and the high-level mixed noise, the threshold for the
mean correlation between the image plane and its neighbouring image
planes was set. The mean correlation was obtained by choosing a
window, w1, containing 10% of the total number of wavelengths
centred around the wavelength considered, as in Eq. (4).

= ∈ +Y Y YR mean R¯ ( ) ( ( , ))k r w k k r1 (4)

The values obtained for the mean correlation for low-levels of noise
will be very high. Depending on the amount and the complexity of the
noise, the correlation will decrease. Therefore, the values will span a
heavy-tail distribution for the R̄. For such a distribution, the median is
already known to be the best estimator to represent the central ten-
dency of the distribution [21]. In the present methodology, the median
estimated from the distribution of the correlation coefficients was
chosen to be the threshold and to classify the image plane as either a
low- or high-level noise image plane.

2.2.2. Shearlet transform
After the classification of the image planes as low-level Gaussian

noise or high-level and/or mixed noise, the NSST coefficients for each
image plane were calculated independently. NSST is a special type of
discrete shearlet transform that provides an additional feature of in-
variance to the shift of the input signal [22]. The shearlet transform is a
special type of composite wavelet transform in which the mother wa-
velet matrix is an anisotropic dilation matrix along with the shear
matrix, compared to the dilated matrix associated with the scale
transformation and directional transformation in the composite wavelet
transform. The composite wavelet function can be understood as Eq.
(5),

 = − ∈ ∈ψ x M ψ S M x k j l k( ) |det | ( ( )) ( , , )j l k
j l j

, ,
/2 2

(5)

where ψ is the mother wavelet, M is an anisotropic dilation matrix, S is
a shear matrix and j, l and k are scale, directional and shift parameters,
respectively. In this work, we have limited the explanation to the NSST
only, however, more detailed information on the composite wavelet
transform and shearlet transform can be found in [22–24].

The implementation of NSST to decompose the image planes re-
quires two steps. The first is the application of non-subsampled pyramid
(NSP) filter banks and the other is the use of non-subsampled shearing
(NSS) filter banks. A non-subsampled filter bank has no shift variant
issues as there is no down- or up-sampling during the decomposition.
Furthermore, the NSP filter gives the multiscale decomposition of the
original image into high- and low-frequency sub-images of the same
size as the original image. The NSS part of the NSST performs direc-
tional filtering in the spatial domain and decomposes the high-fre-
quency sub-images into directional sub-images. For a typical applica-
tion, the filter banks are applied in an iterative way where the low-
frequency sub-images obtained are again decomposed to lower scale

Table 1
Details of image sets.

Image set Dimension
(height×width×wavelength)

Wavelength
range/nm

VNIR 1350×287×256 383-1000
VNIR+Gaussian Noise 1350×287×101 546-791
VNIR+Mixed Noise 1350×287×101 546-791
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high- and low-frequency sub-images, resulting in a multi-scale and
multi-directional decomposition. An example of the multi-scale and
multi-directional decomposition performed by the NSST can be un-
derstood with the three-scale decomposition shown in Fig. 1. In the
present case, a three-level shearlet decomposition with 16, 8 and 4
shearing directions at scales of 1, 2 and 3, respectively, was performed.

2.2.3. De-noising image planes
The coefficients obtained from the NSST of the image are mostly

very small and close to zero. But due to the presence of the noise, the
sparsity of the matrix of NSST coefficients is greatly reduced. Therefore,
to perform the de-noising with NSST, the aim is to re-attain the sparsity
of the matrix of NSST coefficients. To do this, a threshold is used to
distinguish the coefficients corresponding to noise from the coefficients
containing signal information. Different techniques were used for de-
noising the image planes identified with low and high levels of noise.
For the low-level noisy image planes, the threshold for the shearlet
coefficients, Ts t, , was determined assuming an additive noise model and
utilising the BayesShrink method [20], as shown in Eq. (6):

=T
σ
σs t
N s t

s t
,

, ,
2

, (6)

where the noise variance at scale s (s=1…j) and direction t (t=1…l)
is given by σN s t, ,

2 and is estimated as mentioned in [25]. The standard
deviation (σs t, ) of the signal measured from the sub-image Ys,t at scale s
and direction t is estimated as in Eq. (7):

= −σ max σ σ(( ), 0)Ys t N s t,
2

, ,
2

s t, (7)

where = ∑ =
Yσ i j( , )Y N i j

N
s t

2 1
, 1 ,

2
s t, 2

and i and j define the spatial coordinates and N is the maximum
value of (n, p).

Once the image planes with a low level of noise were de-noised,
then to de-noise the high and/or mixed noise image planes, the shearlet
coefficients of the adjacent low noise level image planes were fused to
the details of the mixed noise sub-images. The shearlet coefficients were
used to replace the details of the sub-images of the mixed noise level
image planes by the weighted average of the sub-image details of the
10% closest low noise level image planes. The weights used were

inversely proportional to the distance between the neighbouring wa-
velengths as explained in Eq. (8):

∑ = = ∑ +
∈ ∈

D̂ D̂w k w k r1 ( ) ( )r w r MN r w r LGN2 2 (8)

where w2 are the adjacent LGN image planes, and D̂MN and D̂LGN cor-
respond to de-noised mixed noise and low-level Gaussian noise image
planes, respectively. To reconstruct the de-noised image plane, the in-
verse of the NSST was applied to the coefficients. Any further classifi-
cation analysis was performed on the resulting de-noised images.

2.3. Savitzky-Golay smoothing

SAVGOL smoothing is a window-based technique that utilises dif-
ferent polynomial functions to smooth signals [13]. To perform
smoothing with SAVGOL, a window of fixed size is chosen, centred on
the signal point to be smoothed, and a polynomial is fitted to the
variables within the window. The value of the central variable is re-
placed by the value calculated by the polynomial function. The window
is moved point-by-point over the signal to perform the smoothing on
the complete spectrum. The window size and the polynomial function
are usually chosen manually, and the optimum choice is based on visual
inspection of the spectral profile. For the present work, a second order
polynomial and 15-point window were used. SAVGOL smoothing was
performed using the PLS Toolbox (version 8.11, Eigenvector Research
Inc., USA).

2.4. Median filtering

Median filtering belongs to the family of non-linear signal filtering
techniques and is often used to deal with high levels of noise such as
spikes in the data. Median filtering in the spectral domain can be un-
derstood as a moving window that replaces each observation with the
median value of the observations inside the window. When the number
of observations inside the window is odd the median is a single value,
however when the number of observations is even, then the median is
the average of the two middle values. In the present work, the median
filter was employed by unfolding the (n × p × q) HSI array to give a
(np× q) matrix, performing the median filtering with a 4-point window
and later reshaping the matrix back to the cube. To perform the fil-
tering, the “meadfilt1″ Matlab function was used.

2.5. De-noising performance

Spectral correlation and peak signal-to-noise ratio (PSNR) were used
to quantify the performance of the de-noising methods in the spectral
and spatial domains, respectively.

Spectral correlation provides a measure of the similarity of spectra
after de-noising with the corresponding spectra in the absence of noise
(i.e., the clean spectra), and was estimated via calculation of the cor-
relation coefficient between the de-noised and clean spectra utilising
the corr function in Matlab.

The PSNR was calculated as shown in Eq. (9):

=PSNR log
peakvalue

MSE
10 ( )10

2

(9)

where the mean square error is given by =
∑ −=MSE

Y i j Y i j

N

[ ( , ) ( , )]i j
N
, 1 1 2 2

2 and
Y1 and Y2 are the two image planes to compare (i.e., the image plane
after de-noising and the corresponding image plane in the absence of
noise, respectively) and peakvalue is either specified by the user or
selected from a range that is dependent on the image datatype (e.g. 255
for a uint8 image). The PSNR was calculated utilising the PSNR func-
tion in Matlab.

Fig. 1. Multiscale and multidimensional three-scale decomposition with a non-
subsampled shearlet transform (NSST) where A and D signifies the low and high
frequency sub-images, respectively, and l= 16, 8 and 4 at scales 1, 2 and 3,
respectively.
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2.6. Multiclass support vector machine classification

To perform the classification experiment on the HSI data sets, sup-
port vector machine (SVM) classifiers were developed. SVM utilises the
hyperplanes to define the decision boundaries to perform classification.
Furthermore, to deal with the data complexity, the SVM performs high
dimensional mapping of the data using kernel functions. Mapping to
higher dimensions is usually carried out to make the data linearly se-
parable. Furthermore, in the high dimensional space, the choice has to
be made to select the hyperplane that provides the largest separation of
the classes. As in our case we have six different classes corresponding to
six different tea products, the traditional SVM binary classifier was
combined with the error correcting output code (ECOC) ensemble
method. The ECOC deals with the multiclass problem by creating sev-
eral independent binary classification models.

The SVM along with ECOC was implemented in Matlab via the
Statistics and Machine Learning Toolbox (R2016b). The coding design
used for the ECOC-SVM model was one-vs-one, where a model was
developed with one class being assigned positive and another class
being assigned negative and all other classes were neglected. The al-
gorithm exhausts all combinations of class pair assignments leading to k
(k-1)/2 models, where k is the number of classes to be considered. High
dimensional mapping of the data was performed with a radial basis
function (RBF) kernel function with a scale parameter of 2.5. The
spectra from the images for six different classes were selected in a su-
pervised way using the “roipoly” function in Matlab. The “roipoly”
function provides the graphical interface to manually extract the in-
formation from the data cube. For each individual tea class, spectra
were extracted from 200 pixels, which were selected at random from
the image collected, leading to a total of 1200 spectra for classification
model development. For the development of a robust model, the model
was cross-validated with a 10-fold cross-validation method. In 10-fold
cross-validation, the calibration data is divided into ten equal parts. For
making the model, 9 out of 10 parts were used and to cross-validate, the
10th part was used. This was then repeated ten times, and the average
prediction accuracy was recorded. The whole process was performed
with 100 iterations and the mean accuracy and standard deviation were
recorded.

3. Results

3.1. Noisy and de-noised spectra from simulated images

Fig. 2 presents the spectrum extracted from the raw reflectance (2a),
GN added to reflectance (2b) and MN added to reflectance (2c) data
from a spatial location at (370, 135) in the simulated hyperspectral
image. The spectral noise was added at 20 different random wave-
lengths over the data cube and its effect can be seen in Fig. 2(b,c) when

compared to the raw reflectance profile in Fig. 2(a).
Fig. 3 presents the effect of different de-noising methods applied to

the spectra shown in Fig. 2. Fig. 3(a,b) shows the results of SAVGOL
smoothing, with a 15 point window and a second order polynomial, of
the spectra with Gaussian and mixed noise added. Fig. 3(c,d) shows the
results from application of median filtering with a 4 point window.
Fig. 3(e,f) illustrates the result of utilising the shearlet-based de-noising
methodology. The spectra in red in Fig. 3 represent the clean re-
flectance profiles, while the solid blue and yellow lines represent the
noisy and de-noised spectra, respectively.

In Fig. 3, it can be seen that the shearlet-based de-noising method
outperformed SAVGOL smoothing and median filtering. The reason for
the poor performance of SAVGOL smoothing in the case of simulated
noise can be understood as being due to the window size and the
smoothing function used. Since SAVGOL smooths each spectrum by
fitting a polynomial to a window of adjacent wavelengths, if noise
contributes significantly to several of the wavelengths, then the poly-
nomial fitting will be less effective. Median filtering works better than
SAVGOL smoothing since even if there are several outlier intensity
values in the spectrum, they will not have as much influence on the
smoothed value. Nevertheless, there are peaks to be found in the
spectra after median filtering, due to the presence of several peaks
within the window used for the smoothing, resulting in the median
value being influenced by this noise. Furthermore, the peaks resulting
from median filtering now appear at new wavelengths. This is because
median filtering is performed for each wavelength resulting in trans-
ferral of noise to wavelengths adjacent to the noisy wavelengths.
However, in the shearlet-based methodology, the de-noising of the
waveband is performed using the shearlet coefficients of the adjacent
low GN image planes, therefore, the high-intensity noise wavelengths
do not affect the spectral de-noising as in the case of SAVGOL
smoothing and median filtering. This is because the high-intensity noise
wavelengths have no influence when performing the de-noising since
they are not taken into account in the calculation of the weighted
average of shearlet coefficients.

In Fig. 3(e,f), it can be seen that some small differences can still be
found in the spectrum after de-noising. The reason for these small
disturbances can be understood as resulting from the averaging of the
shearlet coefficient, especially when the automatically selected GN
image planes are distant, as averaging with the shearlet coefficients of
these GN planes leads to small disturbances in the spectral profile.
However, these disturbances are minute compared to the noise present
in the spectrum after smoothing with SAVGOL or median filtering. To
quantify these small disturbances and the spectral similarity, spectral
correlation was used.

Fig. 4 presents the spectral correlation calculated between a single
spectrum extracted at a pixel location of 370,135 from, on the one
hand, the noisy, SAVGOL, median filtered and shearlet de-noised

Fig. 2. A single spectrum at pixel location (370, 135) extracted from following image sets: (a). VNIR, (b). VNIR+Gaussian noise, and (c). VNIR+Mixed noise. 20
random wavelengths were used to simulate Gaussian and mixed noise images.
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images, and, on the other hand, the clean image. The blue dashed line
and red solid line shows the GN and MN cases, respectively. The
spectral correlation was calculated to quantify the similarity of the
spectral profiles obtained from different de-noising techniques. It can
be seen in Fig. 4, that the spectral correlation for the spectrum with GN
added was always high for all the de-noising techniques compared to
the spectrum with MN added. The reason is that the MN noise is much
more complicated, resulting in a higher number of noisy wavelengths in
the spectrum. Furthermore, the new shearlet-based method gave the
highest correlation of 99.9% followed by median filtering and then
SAVGOL smoothing.

3.2. Noisy and de-noised image planes from simulated images

Fig. 5 presents the image planes (at 588 and 586 nm) with GN added
used in the simulation studies. The plane corresponding to 588 nm is
the de-noised band whereas 586 nm represents the clean adjacent band
affected by the de-noising methods. Fig. 5(a,e) presents the original
reflectance image plane with Gaussian noise added, Fig. 5(b,f) the
SAVGOL smoothed data, Fig. 5(c,g) the median filtered data and
Fig. 5(d,h) the image planes after application of the shearlet-based de-
noising method. The six circular objects in the image represent six
different commercial tea products, i.e. oolong, black, green, yellow, Pu-

erh and white. The presence of the Gaussian noise can be seen as a ‘fog’
over the image plane (Fig. 5(a)). It can be seen clearly by visual in-
spection that the shearlet-based de-noising method outperformed both
SAVGOL and median filtering to give a clearer image.

Fig. 6 presents the image planes (for 588 and 586 nm) with MN
added used in the simulation studies. Fig. 6(a,e) presents the reflectance
image plane with MN added, Fig. 6(b,f) the SAVGOL smoothed data,
Fig. 6(c,g) the median filtered data, and Fig. 6(d,h) the image planes
after application of the shearlet-based de-noising method. The presence
of mixed noise (Fig. 6(a)) can be seen as a ‘fog’ accompanied by some
high-intensity (bright) pixels resulting from the spike noise. The
shearlet-based de-noising method clearly outperformed SAVGOL and
median filtering. However, median filtering seems to provide better
results than SAVGOL smoothing for image planes containing GN or MN.
This is because SAVGOL smoothing dilutes the noise of several con-
secutive wavelengths by fitting the polynomial whereas the median
filter is calculated directly based on the intensities present inside the
window resulting in a better de-noising. However, both the median
filter and SAVGOL smoothing also affect the consecutive wavelengths
by spreading the noise. The spreading is more important when the noise
is present in consecutive wavelengths. In the case of SAVGOL
smoothing, the noisy wavelengths dominate the shape of the poly-
nomial and lead to spreading of the noise to the consecutive

Fig. 3. Noisy and de-noised spectra from pixel
location (370, 135), the red line shows the
clean spectrum, the blue line shows the noisy
spectrum and the yellow line shows the spec-
trum after de-noising (a). SAVGOL smoothing
filter applied to the spectrum with Gaussian
noise added, (b). SAVGOL smoothing filter
applied to the spectrum with mixed noise
added, (c). Median filtering applied to spec-
trum with Gaussian noise added, (d). Median
filtering applied to spectrum with mixed noise
added, (e). de-noising with shearlet-based
method for spectrum with Gaussian noise
added, and (f). de-noising with shearlet-based
method for spectrum with mixed noise added.
(For interpretation of the references to colour
in this figure legend, the reader is referred to
the web version of this article).
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wavelengths. In the case of median filtering, a larger number of noisy
wavelengths in a small window affects the calculation of the median.
Also, median filtering does not use any measure to pre-identify the
amount of noise. Therefore, the correction is performed for each wa-
velength, which results in a distribution of the noise to the adjacent
wavelengths. The spreading of the noise can be seen in Figs. 5(f) and
(g), 6 (f) and (g) resulting from SAVGOL and median filtering, respec-
tively, when compared to Figs. 5(e) and 6 (e), the clean image planes.
However, this was not the case with the shearlet-based method as it
does not affect any adjacent wavelengths because the method starts
with identifying the wavelengths containing noise resulting in wave-
length-specific de-noising.

The potential of the shearlet-based de-noising method is further

quantified using the PSNR as presented in Fig. 7. The PSNR represents
the ratio of the maximum possible signal intensity to the corrupting
noise present in the signal. Fig. 7 shows the PSNR for the 20 randomly
selected image planes used to simulate the noise. The PSNRs were es-
timated taking the raw reflectance image planes with no added noise
(i.e. clean) as the reference for the de-noised image planes. It can be
seen in Fig. 7 that the shearlet-based de-noising method (in yellow and
sky-blue) increased the PSNR and attained the highest levels for the
majority of image planes where GN and MN had been added. Median
filtering increased the PSNR more than SAVGOL smoothing and was as
effective as the new shearlet-based de-noising method for several wa-
velengths. The PSNR obtained from the shearlet-based de-noising
methodology was the same for data containing GN (in yellow) and MN
(in sky blue). The PSNR obtained for SAVGOL smoothed data with
added noise was higher for GN (in dashed thick blue) compared to MN
(in dashed purple). Similarly, the PSNR obtained with the median filter
was higher for data with added GN (in thick dashed and dot red) at
several wavelengths compared to MN (in dashed and dot green). The
reason for this is that MN is more complex than GN and therefore with
median filtering and SAVGOL smoothing, the PSNR increased more for
the GN than for the MN case. The improved PSNR indicates that the
signal contains more information compared to the noise and that data
modelling based on the improved PSNR should be more successful.
However, a higher PSNR does not guarantee successful modelling be-
cause the affected adjacent wavelengths resulting from the de-noising
method is also a concern.

The improvement in the classification performance of the SVM
classifier after de-noising can be noted in Table 2. The shearlet-based
de-noising method gave the highest accuracy of 87.37 ± 0.30% and
87.36 ± 0.35% for data cubes with added GN and MN, respectively.
The median filter was second in terms of classification accuracy with
comparable accuracy obtained for the data cubes with added GN
(79.00 ± 0.48%) and MN (78.23 ± 0.47%). SAVGOL smoothing re-
sulted in the lowest accuracy of 57.18 ± 0.52% and 49.77 ± 0.44%,
for the data with GN and MN added, respectively. For the data con-
taining MN and subjected to SAVGOL smoothing, the accuracy was
even lower than for the data containing MN (56.21 ± 0.41%). The
poor performance of SAVGOL smoothing is due to the spreading out of
the effect of the noise over several consecutive wavelengths by the

Fig. 4. Correlation for the spectra extracted from the pixel at location (370,
135) for noisy and de-noised data with clean data. The blue line dashed shows
the Gaussian noise and the red line shows the mixed noise. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article).

Fig. 5. The image planes corresponding to six different tea samples (oolong, black, green, yellow, Pu-erh and white (from left to right)) and the simulated noisy and
de-noised image planes for data with Gaussian noise added. (a). Reflectance image plane (588 nm), (b) SAVGOL smoothed image plane, (c). Median filtered image
plane, (d). Shearlet de-noised image plane, (e). Clean adjacent reflectance image plane (586 nm), (f). Adjacent image plane after SAVGOL smoothing, (g). Adjacent
image plane after median filtering, and (h). Adjacent image plane after shearlet de-noising.
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Fig. 6. The image planes corresponding to six different tea samples (oolong, black, green, yellow, Pu-erh and white (from left to right)) and the simulated noisy and
de-noised image planes for data with mixed noise added. (a). Reflectance image plane (588 nm), (b) SAVGOL smoothed image plane, (c). Median filtered image
plane, (d). Shearlet de-noised image plane, (e). Clean adjacent reflectance image plane (586 nm), (f). Adjacent image plane after SAVGOL smoothing, (g). Adjacent
image plane after median filtering, and (h). Adjacent image plane after shearlet de-noising. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).

Fig. 7. Peak signal-to-noise ratio (PSNR) for the 20 wa-
velengths with added noise: purple dashed (SAVGOL
smoothed data with mixed noise), thick blue dashed
(SAVGOL smoothed data with Gaussian noise), thick red
dashed and dot (median filtered data with Gaussian noise),
green dashed and dot (median filtered data with mixed
noise), thick yellow (shearlet de-noised data with Gaussian
noise) and dashed sky-blue (shearlet de-noised data with
mixed noise). (For interpretation of the references to
colour in this figure legend, the reader is referred to the
web version of this article).

Table 2
SVM classification model accuracies (%) obtained using different de-noising methods with simulated and real datasets (see Table 1). The value given is the
mean ± one standard deviation resulting from 100 iterations of a 10-fold cross validated model.

Image set Raw Savitzky-Golay smoothing Median filtering Shearlet de noising

VNIR+Gaussian Noise (Simulated) 55.63 ± 0.42 57.18 ± 0.52 79.00 ± 0.48 87.37 ± 0.30
VNIR+Mixed Noise (simulated) 56.21 ± 0.41 49.77 ± 0.44 78.23 ± 0.47 87.36 ± 0.35
VNIR (Real) 42.90 ± 0.44 67.44 ± 0.55 59.67 ± 0.56 78.27 ± 0.55
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fitting of the polynomial inside the window. This reason can also ex-
plain the better performance of median filter compared to SAVGOL
smoothing.

3.3. De-noised VNIR image set spectra

Fig. 8 presents a complete spectrum (383–1000 nm) extracted from
the raw reflectance and the de-noised VNIR hypercubes for the six
different commercial tea products. Fig. 8(a) presents the spectrum after
SAVGOL smoothing, Fig. 8(b) after median filtering and Fig. 8(c) shows
the results of the shearlet-based de-noising method. The red line depicts
the spectrum after the de-noising treatment, with the raw reflectance
spectrum given in blue. It can be seen that the raw reflectance spectrum
(blue) contains noise at different wavelengths over the complete range,
especially at the beginning (383–500 nm) and end (900–1000 nm) of
the spectrum. In Fig. 8(a) it can be seen that SAVGOL filter smooths the
spectrum quite well from 500 to 900 nm. However, at the edges of the
spectrum, SAVGOL smoothing does not work as well. In Fig. 8(b) it can
be seen that median filtering also performed well between 500–900 nm,
but was less effective than SAVGOL smoothing at the very noisy ends of
the spectrum. In the case of the shearlet-based method (Fig. 8(c)), it can
be seen that the spectrum around the edges (383–500 nm and
900–1000 nm) is smoother compared to both SAVGOL and median
filtering. This is because the shearlet-based de-noising method utilises
the shearlet coefficients of the neighbouring low Gaussian noise image
planes to perform the weighted averaging. With the algorithm, a total of
59 wavelengths were identified as containing noise, and were de-noised
automatically.

The VNIR (383–1000 nm) reflectance spectral profiles of food pro-
ducts contain different chemical information such as pigments,
moisture content, and physical information such as particle size. Noise-
free spectral features related to this information must be extracted to
form the basis for the success of any classification modelling. In the case
of tea products, the VNIR spectra contain information related to dif-
ferent chemical components. Some key wavelengths identified in a
previous study were 485 nm corresponding to the total liquor colour,
522–625 nm to thearubigins constituent group TRS1, 688 and 732 nm
to thearubigins, 706 nm to total polyphenols, 743 nm to liquor bright-
ness and 745 nm to theaflavin [26].

3.4. De-noised VNIR image set image planes

Fig. 9 presents the noisy and de-noised image planes for the real
VNIR cube. Fig. 9(a) shows the raw noisy image planes from the VNIR
hypercube corresponding to 405 nm, where intense noise is visible. The
chosen waveband used to display the image plane was automatically
identified by the algorithm for de-noising. Fig. 9(b)–(d) present the

results of de-noising with SAVGOL smoothing, median filtering and the
shearlet-based de-noising method, respectively. In Fig. 9(d), it can be
seen that after de-noising the image planes reveal six different tea
samples thus demonstrating the improved performance of the presented
de-noising method over SAVGOL (Fig. 9(b)) and median filtering
(Fig. 9(c)).

3.5. SVM classification on VNIR image set

The results of classification (Table 2) showed an improvement in the
classification accuracy after utilising the shearlet-based de-noising
method compared to raw reflectance, SAVGOL smoothed and median
filtered data. The reason for this is the high signal-to-noise ratio ob-
tained after the de-noising of the image planes. The accuracy of the
model was increased from 42.90 ± 0.44% to 78.27 ± 0.55% after de-
noising with the shearlet-based methodology. For SAVGOL smoothing,
the classification accuracy increased to 67.44 ± 0.55% and for median
filtering, it increased to 59.67 ± 0.56%. In this case, SAVGOL

Fig. 8. A single spectrum at pixel location (370,135) extracted from the VNIR hypercube, blue represents the raw reflectance signal, and red represents the de-noised
spectra. (a). SAVGOL smoothing, (b). Median filtering, and (c). Shearlet-based de-noising method. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).

Fig. 9. Noisy and de-noised image planes (405 nm) extracted from real hy-
perspectral data from a VNIR camera. (a). VNIR noisy image plane, (b).
SAVGOL de-noised image plane, (c). Median filter de-noised image plane, and
(d) Shearlet de-noised image plane.
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smoothing outperformed median filtering because at the two ends of
the spectra there are many consecutive noisy peaks that are taken into
account in the calculation of the median value.

4. Conclusions

The data generated from HSI often contain noise. For an efficient
data processing strategy, it is important to deal with the noise present in
the data by either reducing or removing it. However, simply removing
noise (wavelengths) can lead to loss of information from the dataset.
Therefore, exploiting different data pre-processing techniques to reduce
the noise in the datasets is always the better option as the information
in the dataset is largely retained.

Commonly used methods such as SAVGOL smoothing and median
filtering can deal with a small amount of noise and if the noise is not
present in neighbouring wavelengths. However, when the noise level
increases and the noise is present in consecutive wavelengths, SAVGOL
smoothing and median filtering can result in distorted spectral profiles
leading to spreading of the noise to adjacent wavelengths. Furthermore,
both SAVGOL smoothing and median filtering are performed for every
waveband as no steps are present to determine the wavelengths that
need to be de-noised automatically. This, results in over-smoothing of
the spectral profiles. Another drawback is the need to determine the
correct window size, which is often performed manually. Different
window sizes might result in an improvement in the de-noising results,
however, visual inspection is needed to select the optimum window
size.

However, the presented shearlet-based technique deals with the
noise in an intelligent, fully automatic way by first classing the wave-
lengths into non-noisy, low GN and MN, thus reducing the chances of
over-smoothing of the wavelengths and spreading of noise to adjacent
wavelengths. The method then deals with the spatial and spectral noise
synergistically and also adapts to the type of noise present in the data.
The de-noising of the low GN noise wavelengths is performed through
retention of the sparsity of the shearlet coefficients, which is completely
independent of other wavelengths. Finally, to de-noise the MN wave-
lengths, the method fuses the information from the shearlet coefficients
of the neighbouring GN wavelengths. This study also demonstrated the
potential of the shearlet based de-noising methodology as seen in the
visual improvement of image planes, the increase in spectral correla-
tion, the increase in PSNR for image planes and the improved classifi-
cation accuracy of the multi-class SVM model, compared to SAVGOL
smoothed and median filtered data. The shearlet-based methodology is
a useful technique for automatic de-noising of close-range HSI data
where the spectral domain exhibits broad signals (i.e., information from
adjacent spectral bands is correlated). Hence, this methodology will
provide new opportunities for the use of a wide variety of HSI techni-
ques, e.g. NIR, UV, visible and fluorescence, for real-time decision
making such as in a process environment.
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