
HAL Id: hal-02317019
https://agroparistech.hal.science/hal-02317019

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Metatranscriptome analysis of the microbial
fermentation of dietary milk proteins in the murine gut

Floor Hugenholtz, Mark Davids, Jessica Schwarz, Michael Müller, Daniel
Tomé, Peter Schaap, Guido G. Hooiveld, Hauke Smidt, Michiel Kleerebezem

To cite this version:
Floor Hugenholtz, Mark Davids, Jessica Schwarz, Michael Müller, Daniel Tomé, et al.. Metatranscrip-
tome analysis of the microbial fermentation of dietary milk proteins in the murine gut. PLoS ONE,
2018, 13 (4), pp.e0194066. �10.1371/journal.pone.0194066�. �hal-02317019�

https://agroparistech.hal.science/hal-02317019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Metatranscriptome analysis of the microbial

fermentation of dietary milk proteins in the

murine gut

Floor Hugenholtz1,2☯, Mark Davids2,3☯, Jessica Schwarz4, Michael Müller4¤, Daniel Tomé5,
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Abstract

Undigestible food ingredients are converted by the microbiota into a large range of metabo-

lites, predominated by short chain fatty acids (SCFA). These microbial metabolites are sub-

sequently available for absorption by the host mucosa and can serve as an energy source.

Amino acids fermentation by the microbiota expands the spectrum of fermentation end-prod-

ucts beyond acetate, propionate and butyrate, to include in particular branched-SCFA. Here

the long-term effects of high protein-diets on microbial community composition and function-

ality in mice were analyzed. Determinations of the microbiota composition using phylogenetic

microarray (MITChip) technology were complemented with metatranscriptome and SCFA

analyses to obtain insight in in situ expression of protein fermentation pathways and the phy-

logenetic groups involved. High protein diets led to increased luminal concentrations of

branched-SCFA, in accordance with protein fermentation in the gut. Bacteria dominantly par-

ticipating in protein catabolism belonged to the Lachnospiraceae, Erysipelotrichaceae and

Clostridiaceae families in both normal- and high- protein diet regimes. This study identifies

the microbial groups involved in protein catabolism in the intestine and underpins the value of

in situ metatranscriptome analyses as an approach to decipher locally active metabolic net-

works and pathways as a function of the dietary regime, as well as the phylogeny of the

microorganisms executing them.

Introduction

Components of our daily food such as fibers and a part of our dietary protein are not efficiently

digested and absorbed in the small intestine. These food ingredients proceed toward the large

intestine where they are converted by the microbiota into a large range of metabolites, of
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which short chain fatty acids (SCFA) are the most abundant. These microbial metabolites are

subsequently available for absorption by the host mucosa and can serve as an energy source.

Approximately ten grams of protein reach the human colon daily [1], which include both

host (pancreatic enzymes and mucins) as well as dietary proteins. The gut microbiota has a high

proteolytic capacity and ferments the proteins into SCFA, branched chain fatty acids (BCFA),

ammonia and phenolic and indolic compounds [2–5]. These BCFA are generated by branched-

chain amino acid catabolism, i.e., the degradation of valine, leucine and isoleucine [6], while the

phenolic and indolic compounds are degradation products of aromatic amino acids.

Nowadays, the consumption of diets that contain high protein levels is quite common and

has been proposed to support body weight reduction, where both fat or carbohydrates replace-

ment by protein results in weight loss [7–10]. With respect to the effect of high protein dietary

intake on the composition of the gut microbiota, it has been shown that long term consump-

tion of high levels of protein and animal fat are associated with the Bacteroides enterotype

[11,12], but it should be noted that so far there is no confirmation that the high protein content

in the diets directly leads to this enterotype. In rats and mice a short term (2 weeks) high pro-

tein dietary intervention did change the microbial community, where the relative abundance

of Clostridium coccoides (Lachnospiraceae) and Clostridium leptum groups (Ruminococcaceae)
and Faecalibacterium prausnitzii (Ruminococcaceae) decreased due to the intervention [13,14].

Longer term, up to six weeks, high protein diets also induced microbiota shifts in rats, where

butyrate producing species belonging to Lachnospiraceae and Ruminococcaceae decreased and

Escherichia coli increased [15]. With very long term high-protein/high-fat dietary intervention,

16 month in mice, the microbiota shift maintains and results in similar survival then a low fat

diet [16]. However, to date little is known about the effect of this type of high-protein diets and

the microbiota shifts on the bacterial fermentation of protein by the gut microbiota.

In a previous study the effect of long-term high protein (HP) diets was studied in a mouse

model, and could be shown to result in a lower body weight, reduced adiposity and hepatic

lipid accumulation [17]. Here we describe the effects of long-term high-protein dietary inter-

ventions on gut microbiota composition and activity in mice, using 16S ribosomal RNA

(rRNA) gene-targeted community analysis and metatranscriptome profiling approaches, to

unravel patterns of activity within the murine caecal microbial ecosystem.

Methods

Ethics statement

All animal experiments were approved by the Animal Experimentation Board at Wageningen

University (record #2010017) and carried out according to the guidelines of the European

Convention of Vertebrate Animals Used for Experimentation, under European Council Direc-

tive 86/609/EEC dated November, 1986.

Mice and diets

The animals used in this study are previously described by Schwarz and co-authors [17]. Male

C57BL/6J mice (age 8 weeks) were purchased from Charles River (L’Arbresle, France) and

were housed in the animal facility of the Wageningen University. The mice were divided into

four groups of 10 animals and housed in pairs in light and temperature-controlled animal

housing facilities (12/12 (light/dark), 20˚C). The mice had free access to food and tap water.

During the first two weeks of the study all mice received the same diet, containing (in %w/

totalw) casein (14), corn starch (36.1), sucrose (36.1), soy oil (4), mineral mixture (3.5), vitamin

mixture (1), cellulose (5) and choline (0.23). This control diet (NPLF) was given to one group

of mice during the whole experiment. In the other groups the amount of protein, fat and
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carbohydrates was changed (Table 1). The responses of the mice to the dietary interventions

was reported previously [17]. The mice were sacrificed after 12 weeks of dietary intervention

and were anaesthetised with Isoflurane, the intestinal content was collected from the ileum,

caecum and colon and snap frozen in liquid nitrogen and stored at -80˚C.

Short-chain fatty acid analysis in caecal luminal content

Short chain fatty acids were measured in mouse intestinal samples at section. Luminal content

of the caecum (ten mice per group) was collected in H3PO4 and isocaproic acid (as an internal

standard) containing buffer solution. Samples were stored at -20˚C until further processing.

The day of analysis, samples were thawed, centrifuged at 14.000 rpm (5 min), and supernatant

was collected and stored at 5˚C. The samples were then subjected to gas chromatography

(Fisons HRGC Mega 2, CE Instruments, Milan, Italy) at 190˚C using a glass column fitted

with Chromosorb 101 with a carrier gas (N2 saturated with methanoic acid).

Microbial community composition

Metagenomic DNA was extracted from the ileum, caecum and colon samples (4 mice per diet)

using the repeated bead beating plus column (RBB+C) method [18]. The amount that was

used for DNA extraction for the ileum was all what we could squeeze out, the caecum roughly

a quarter of ceacal content (0.1–0.2 grams) and for the colon a colonic pellet (0.1 grams). The

microbial communities in the intestinal samples were analysed with the Mouse Intestinal

Tract Chip (MITChip). This phylogenetic microarray consists of 3,580 different oligonucleo-

tides specific for the mouse intestinal microbiota ([19]. The array targets the V1 to V6 region

of 16S rRNA genes of bacteria. The 16S rRNA genes were amplified from 20 ng of intestinal

metagenomic DNA with the primers T7prom-Bact-27-F and Uni-1492-R (Table 2). The PCR

products obtained were transcribed, labelled with Cy3 and Cy5 dyes and fragmented. Finally,

the samples were hybridized on the arrays at 62.5˚C for 16 hours in a rotation oven (Agilent

Technologies, Amstelveen, the Netherlands). After the slides were washed and scanned, data

was extracted with the Agilent Feature Extraction software (version 9.1). The data was normal-

ized and analysed using a set of R-based scripts combined with a custom-designed relational

database, which operates under the MySQL database management system.

RNA extraction, mRNA enrichment, cDNA synthesis and illumina

sequencing

Four intestinal caecum content samples from each dietary treatment were used to analyze the

metatranscriptome activity profiles. The RNA was extracted from 0.1–0.2 grams of ceacal

Table 1. The composition of ingredients in the four diets. NPLF: Normal protein low fat. NPHF Normal protein

high fat. HPLF: High protein low fat. HPHF: high protein high fat [17].

NPLF NPHF HPLF HPHF

(g/kg) dry matter

Milk protein 140 160 484 580

Corn starch 361.35 291.3 189.35 80

Sucrose 361.35 291.4 189.35 80

Soybean oil 40 40 40 40

Palm oil 0 120 0 123

Minerals 35 35 35 35

Vitamins 10 10 10 10

a-Cellulose 50 50 50 50

Choline 2.3 2.3 2.3 2.3

https://doi.org/10.1371/journal.pone.0194066.t001
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content. The content was suspended in 500 μL ice-cold TE buffer (Tris-HCL pH 7.6, EDTA

pH 8.0). Total RNA was obtained via the Macaloid-based RNA isolation protocol [23,24] with

in addition the use of Phase Lock Gel heavy tubes (5 Prime GmbH, Germany) during phase

separation. The RNA purification was performed using the RNAeasy mini kit (Qiagen, USA),

including an on-column DNAseI (Roche, Germany) treatment [23]. The total RNA was eluted

in 30 μL ice-cold TE buffer and the RNA quantity and quality were assessed using a NanoDrop

ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, USA) and Experion

RNA Stdsens analysis kit (Biorad Laboratories Inc., USA), respectively. The mRNA enrich-

ment was performed using the mRNA enrichment kit (MICROBExpressTM, Ambion,

Applied Biosystem, the Netherlands) according to the manufacturer’s protocol. Following the

enrichment, the quantity and quality of the RNA were assessed again (see above) to confirm

the efficacy of the mRNA enrichment procedure. One μg of the enriched mRNA sample was

used to reverse-transcribe the RNA to cDNA, and subsequently generate double stranded

cDNA using the SuperScript1 Double-Stranded cDNA Synthesis kit (Invitrogen, the Nether-

lands, 11917–010), and employing the SuperScript1 III Reverse Transcriptase (Invitrogen,

the Netherlands 18080–044) and random priming using random hexamers (Invitrogen,

48190–011) [24–26]. To remove RNA from the double stranded cDNA preparations, RNAse

A (Roche, Germany) treatment was performed, followed by phenol-chloroform extraction and

subsequent cDNA purification and concentration by ethanol precipitation. The product was

checked on 1% agarose gel and 3 to 8 μg of cDNA was sent for sequencing (GATC Biotech,

Germany). Single read Illumina Libraries were prepared from the double-stranded cDNA

according to the ChiP-seq protocol [27] with insert sizes between 200–300 bp, suing barcoded

tags for library constructions to enable parallel sequencing (GATC Biotech, Germany).

Sequencing was performed using Illumina Hiseq2000 and using 5 pM concentration of the

library and the single-end protocol [24].

Data filtering

Sequencing generated between 13.4 and 177 million reads per sample. The data set supporting

the results of this article is available in the NCBI small reads archive (sra) repository, under

accession number SRP043409. The data was filtered, assembled, annotated and classified as

previously described (Davids et al., 2016). Briefly, the taxonomic origin of the contigs was

assigned by alignment of the predicted protein sequences with the NCBI’s non-redundant

database, retrieving the taxonomic family classification of the protein sequence with the high-

est similarity. Classification up to family level was chosen, determined in our previous study to

be able to have enough confidence in the assignment and still enough precision in the involved

community member [28]. Functional annotation was achieved by assignment of KEGG

orthology identifiers to all predicted protein sequences, using the KEGG KAAS server (Moriya

et al., 2007; http://www.genome.jp/tools/kaas). Expression levels of individual genes were

determined by aligning the mRNA reads with the assembled protein-encoding contigs and

enumerating the total amount of nucleotides aligned with the corresponding ORFs.

Table 2. List of primers used in this study [20–22].

Primer name Sequence Application

T7prom-Bact-

27-F

5’-TGA ATT GTA ATA CGA CTC ACT ATA GGG GTT TGA TCC TGG
CTC AG–3’

MITChip

Uni-1492-R 5’-CGG CTA CCT TGT TAC GAC-3’ MITChip

PROK1492R 5' -GGW TAC CTT GTT ACG ACT T-3' QPCR

BACT1369F 5'-CGG TGA ATA CGT TCY CGG-3' QPCR

https://doi.org/10.1371/journal.pone.0194066.t002
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Functional analysis and metabolic pathway mapping

The expression levels of each of the protein encoding regions in each of the samples were nor-

malized by scaling each gene by the total number of nucleotides that were mapped to ORFs of

that same sample. The normalized expression levels were used to determine both relative activ-

ity and functional analysis in Canoco 5.0. Metabolic mapping of the metatranscriptome pro-

files was performed quantitatively by mapping the KEGG annotated protein sequences onto

metabolic pathway maps using the iPath v2 module (http://pathways.embl.de/iPath2.cgi#).

Gene expression levels of the metabolic pathways was indicated by the line width, which was

determined from the log 10 values of the read count per KEGG annotated protein.

Specific functions were selected on KEGG annotations and relative activity was mapped in

bar plots or boxplots, statistical significance was tested using the Wilcoxon test.

Results & discussion

Long-term effects of high protein diets on the composition and activity of the gut microbiota

were assessed in a 12-week dietary intervention study in mice. The effects of high protein

(casein) were studied both in a low- and high-fat dietary background, to evaluate whether die-

tary fat content affects the outcome of the high protein intervention. Male C57BL/6J mice of

10 weeks (young adults) were given the control, a normal protein and low fat diet, for two

weeks, followed by a 12 week dietary intervention. Mice were divided into four groups (n = 10

per group), receiving the control diet (normal protein low fat, NPLF), a normal protein high

fat diet (NPHF), a high protein low fat diet (HPLF) or a high protein high fat diet (HPHF)

(Table 1). The effects of these dietary interventions were measured in terms of microbiota

composition and activity, the latter being determined based on the fermentation output, mea-

sured by luminal SCFA levels, as well as transcription-activity levels.

Dietary proteins differentially modulate luminal SCFA levels

The main fermentation metabolites of dietary protein are short chain fatty acids, predomi-

nated by acetate, propionate and butyrate. During protein fermentation also BCFA are formed

from the degradation of branched amino acids. Gas chromatography was used to measure

concentrations of acetate, propionate, butyrate, valerate and the BCFA iso-butyrate and iso-

valerate in caecal luminal content of mice receiving the different diets.

Overall, the high protein diets led to an increase of SCFA and BCFA concentrations in the

caecum (Fig 1). However, due to the high variation between individual mice, a significant

increase could only be detected for iso-butyrate in the HPHF group relative to the NPHF group,

and for valeric acid in the HPLF group compared to the NPLF group. In these analyses it should

also be taken into account that the relative amount of cornstarch in the diets was drastically

decreased in diets with increased protein and fat content. Notably, this implies that despite the

reduced availability of cornstarch for microbial fermentation in the HPHF diet, the microbiota

still generated higher overall SCFA and BCFA concentrations that likely derive from protein

fermentation. Protein fermentation has been proposed to account for up to 17% of the overall

SCFA production in the caecum (Macfarlane, et al., 1992). Apparently, high level protein fer-

mentation by the microbiota supports higher BCFA concentrations in the caecal lumen as com-

pared to fermentation of the alternative, readily digestible nutrients (e.g. cornstarch).

Dietary proteins modulate intestinal microbiota composition

Intestinal content of four mice per dietary treatment was used to analyze the microbiota com-

position after 12 weeks of diet intervention, separately analyzing ileal, caecal and colonic
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microbiota, using the MITChip platform. This platform employs a 16S rRNA targeted phylo-

genetic microarray designed for the comprehensive and deep profiling of mouse intestinal

microbiota composition [29,30,20,31]. MITChip analysis revealed clearly distinct microbiota

composition profiles in the ileum as compared to those obtained for caecal and colonic con-

tent. Notably, the ileal microbiota composition patterns did not cluster according to the die-

tary intervention, whereas the caecal and colonic microbiota profiles tended to cluster closely

together and sub-clustered according to the diet (S1 Fig). The caecum is considered as the

intestinal region where most prominent microbiota fermentation takes place (Nguyen et al.,
2015, Hugenholtz et al., 2016). Moreover, the caecum allowed the extraction of an amount of

intestinal content that provided RNA amounts compatible with metatranscriptome analysis.

Therefore, our analyses focused on the composition and metatranscriptome analysis of the

microbiota residing in this intestinal region (see below).

MITChip analyses revealed distinct microbiota composition at probe level in the caecum

from animals that were fed the normal protein (NPLF and NPHF) or high protein content

(HPLF and HPHF) diets (Fig 2A). Notably, within the NP diets the fat level resulted in distinct

clustering of the microbiota from mice on the low (NPLF) and high (NPHF) fat content diets,

whereas microbiota composition at probe level failed to discriminate the HP diets on basis of

their fat-content. This finding illustrates that within the NP diet context the other main nutri-

tional component (i.e., fat content) has a prominent influence on the microbiota, whereas this

effect is lost or overruled by the high protein content in the HP diet context.

Fig 1. Caecal luminal SCFA concentrations in μmol/g content measured with gas chromatography. � Indicates significance between two groups (Ttest, P< 0.05). In

light grey are both the normal protein diets: Normal Protein-Low Fat (NPLF) and Normal Protein-High Fat (NPHF). In dark grey are both the high protein diets: (High

Protein-Low Fat (HPLF) and High Protein-High Fat (HPHF).

https://doi.org/10.1371/journal.pone.0194066.g001
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Fig 2. 2a. Hierarchical clustering of the caecal samples on log10 transformed probe level data of the MITChip. The clustering was made using Pearson distance and via

the Ward linking method. 2b. Redundancy analysis on genus-level phylogenetic groups of the MITChip data. The explanatory variables were the dietary groups, weight

of the mice, acetate, propionate, butyrate, valerate, iso-butyrate and iso-valerate. Explanatory variables account for 85.8% of the total variation, and in the figure 57.5% of
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Microbiota and fermentation-metabolite data integration

In order to relate changes in caecal microbiota composition to the different diets, the weight of

the mice (previously published in [17]), as well as to SCFA and BCFA as the main metabolites

of microbial fermentation, hybridization signals of in total 96 genus-level phylogenetic groups

were subjected to redundancy analysis (RDA). The RDA included the concentrations of ace-

tate, propionate, butyrate, iso-butyrate, valerate, iso-valerate, the weight of the mice and the

diets as explanatory variables. Overall, these explanatory variables accounted for 85.8% of the

total variation, 57.5% of which was covered by the first two canonical axes (Fig 2B). Samples

from animals consuming different diets clustered separately along these canonical axes, and

the LFNP, HFNP and HFHP diets as explanatory variables had a significant (Monte Carlo Per-

mutation test, p<0.05) impact on the total variation of the data. Microbial groups that corre-

lated with the LFNP diet included Bifidobacterium, Lactobacillus delbrueckii et rel.,

Lactobacillus plantarum et rel., Lactobacillus acidophilus et rel., Lactobacillus gasseri et rel., and

Ruminococcus obeum et rel. Notably, these groups also correlated with caecal acetate concen-

trations. Notably, Ruminococcus obeum can use a wide range of sugars [32], and lactobacilli are

known for their rapid sugar import and metabolism [33]. The higher abundances of these typi-

cal saccharolytic bacterial groups suggest that in the mice on the LFNP diet, the higher relative

amounts of the carbohydrates in this diet, i.e., cornstarch and sucrose, are incompletely

digested and absorbed in the small intestine, and thus available for microbial fermentation in

the caecum. The HFNP diet as well as the body-weight of the mice strongly correlated with

higher abundances of several groups within Clostridium cluster XIVa. Moreover these groups

anti-correlate with the HP dietary groups, similarly seen in rats on high-protein diets [13,15].

Inversely, Akkermansia muciniphila was anti-correlated with the HFNP diet and body-weight,

where A. muciniphila was reported before to decrease in abundance in diet induced obese

mice [34,29]. Samples taken from animals fed the HP diets grouped closely together and corre-

lated with elevated levels of BCFA as well as with a higher abundance of Parabacteroides dista-
sonis et rel. Both Parabacteroides distasonis and the Unclassified Porphyromonadaceae belong

to Porphyromonadaceae, which is decreasing in abundance in the mice fed NPHF (see meta-

transcriptome section below).

Effect of high protein and high fat on overall microbial metatrancriptome

patterns

The activity profiles of the microbiota obtained from the caecum of mice were determined by

metatranscriptome analysis in each of the diet-groups at the end of the dietary intervention

period. To this end, the caecal contents of four mice of the LFHP, HFHP, HFNP and three

mice of the LFNP group were used for RNA extraction, mRNA enrichment, cDNA synthesis

and illumina metatranscriptome sequencing. The sequencing efforts generated between 3.4 x

105 and 19.2 x 105 (with a single outlier of 5.6 x 106) high quality mRNA-derived sequence

reads per sample. To determine the function and taxonomy of these reads, they were merged

and de novo assembled into larger contigs using the pipeline described previously [28], creat-

ing a single contig reference set for all samples. A total of approximately 3.8 x 104 contigs

could be assembled with an overall length of 29.8 x 106 bases (n50 = 945). These contigs

encoded a total of approximately 5.5 x 104 predicted protein-encoding open reading frames.

Between 54% and 74% of the mRNA reads could be assigned to the predicted protein-

the variation is shown. The samples are colour coded per dietary group: in light blue NPLF, dark blue NPHF, in orange HPHF and in red HPLF. The nominal variables

are indicated in black arrows and the species that had 50% or more of their variation on the first two axes are shown with blue arrows.

https://doi.org/10.1371/journal.pone.0194066.g002
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encoding genes (Table 3). Clustering of the expression levels of the different samples resem-

bled that of the MITChip-derived microbiota composition profiles (S2 Fig). Therefore, analo-

gous to microbial composition, the microbiota activity profiling enabled the detection of the

impact of the dietary fat content in the NP diets, whereas this effect of the fat content appeared

to be lost or overruled by the high protein content in the HP diets.

Effect of high protein and high fat diets on microbiota function profiles

To focus only on functions that are differentially expressed within the microbiota as a function

of the different diets, we employed an in house R script to detect KEGG modules that are dif-

ferentially expressed. Remarkably, the different fat levels in the diets (HF versus LF) were not

significantly correlated to any differentially expressed KEGG modules. In contrast, the com-

parison of samples derived from NP and HP diet fed mice enabled the detection of KEGG

modules that displayed significantly different expression levels. The KEGG modules enriched

in the NP diet derived samples were all associated with sugar metabolism, whereas the modules

enriched in the HP diet derived samples were consistently associated with protein metabolism

(Table 4). These findings are in good agreement with the clustering analyses as well as the

Table 3. Number of reads from the illumina sequencing, rRNA filtering, assembly of the mRNA reads and functional assignment of the coded proteins on the

assembled mRNA contigs.

Sample name Total reads mRNA Assembled mRNA reads Bacterial protein coding in assembled contigs

HPLF_3 3.49E+07 7.14E+05 73.7% 83.1%

NPLF_2 3.29E+07 1.58E+06 66.2% 83.1%

NPLF_3 3.11E+07 1.92E+06 64.0% 88.6%

HPLF_4 1.93E+07 3.83E+05 64.7% 80.2%

HPLF_1 1.81E+07 4.02E+05 76.4% 78.2%

NPHF_1 1.40E+07 4.48E+05 62.1% 83.7%

NPLF_1 1.61E+07 7.28E+05 62.6% 80.1%

HPHF_1 2.49E+07 6.38E+05 73.2% 73.0%

HPHF_2 1.77E+08 5.58E+06 73.3% 82.0%

HPHF_3 1.34E+07 3.37E+05 75.8% 75.5%

NPHF_2 1.83E+07 4.03E+05 68.0% 74.9%

NPHF_3 2.35E+07 5.60E+05 72.2% 59.7%

HPLF_2 3.29E+07 6.78E+05 75.0% 70.6%

NPHF_4 2.40E+07 5.99E+05 64.7% 65.2%

HPHF_4 1.77E+07 5.78E+05 80.5% 53.1%

https://doi.org/10.1371/journal.pone.0194066.t003

Table 4. Enriched modules within the NP or HP dataset. Significant higher KEGG numbers (Ttest, P<0.05) were taken together for the NP diets or HP diets and the

likelihood for the expression of a module was calculated (with P<0.05).

Module nr of KEGGs in

modules

nr of KEGGs

found

Module explanation

Enriched in

NP

M00377 10 4 Reductive acetyl-CoA pathway (Wood-Ljungdahl pathway) [PATH:map01200 map00720]

M00422 5 3 Acetyl-CoA pathway, CO2 = > acetyl-CoA [PATH:map00680]

M00196 4 3 Multiple sugar transport system [PATH:map02010] [BR:ko02000]

Enriched in

HP

M00018 10 4 Threonine biosynthesis, aspartate = > homoserine = > threonine [PATH:map01230

map00260]

M00299 4 3 Spermidine/putrescine transport system [PATH:map02010] [BR:ko02000]

M00236 3 3 Putative polar amino acid transport system [BR:ko02000]

https://doi.org/10.1371/journal.pone.0194066.t004
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anticipated dietary impacts on the nutrients available for fermentation in the caecum of the

mice that were fed on the different diets.

Effect of high protein and high fat on microbial community activity

The microbial families Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae dominated in

the overall activity associated with the degradation of proteins, supporting their high relative

contribution in the total mRNA activity profile in all the samples (S3A Fig). Erysipelotrichaceae
has relatively higher abundances in the HP diets, while the abundances of Lachnospiraceae
decreased in the HP diets. Many of the butyrate producing bacteria belong to Lachnospiraceae,

Ruminococcaceae and Eubacteriaceae and all of these families tended to decrease in the HP,

supporting earlier studies in rodents [13,15,14].

To further support an eventual role of microbial groups in protein fermentation, the meta-

transcriptome datasets were mined for genes involved in proteolysis (S3B Fig), amino acid

metabolism (S3C Fig), and amino acid transport (S3D Fig), based on their KEGG orthology

annotation. Especially the Erysipelotrichaceae displayed an increased contribution to the over-

all protein degradation, which was most prominently detected in samples obtained from mice

that were fed the HPLF diet, whereas a similar trend was observed in the samples obtained

from HPHF-fed mice (Fig 3). Conversely, the Lachnospiraceae tended to decrease their relative

contribution to the overall protein degradation, illustrated by the reduced expression of pepti-

dase and amino acid metabolism functions by this bacterial group in the HPLF compared to

the NPLF diet. These two families display opposite features in response to the protein level in

the diet, suggesting amino acid catabolism activity in Erysipelotrichaceae and carbohydrate

dependence in Lachnosipraceae. Remarkably Bacteroidetes families hardly contributed to the

overall protein catabolism (S3B, S3C and S3D Fig), even though their abundance was corre-

lated with the HP diets in the MITChip analysis. Although members of Bacteroides have previ-

ously been associated with amino acid intake in humans [11] and increased in mice on a high-

protein diet [14], in the present study this microbial group did not seem to prominently partic-

ipate in transport and catabolism of amino acids.

In contrast to the observed increased relative abundance of protein degradation related

transcripts, one of the glycolysis-associated genes encoding the 6-phosphofructokinase, was

less expressed in the HPLF diet, which was mainly due to the decreased expression observed

for Lachnospiraceae (S3E Fig). The Lachnospiraceae appeared to be less effective in the utiliza-

tion of protein sources and were more dependent on carbohydrate utilization in the gut. These

results are in agreement with the observation that the Clostridium coccoides group, belonging

to the Lachnospiraceae, was found in reduced abundance in response to high protein levels in

the diet in rat experiments [13].

To investigate the specific activity patterns of the three predominantly active microbial fam-

ilies, i.e. the Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae, in more detail, their spe-

cific-activity was plotted on the metabolic map available in the iPATH software suite (S4 Fig).

Nevertheless, each of the microbial families displayed quite distinct expression patterns. For

example, Lachnospiraceae strongly expressed genes coding for enzymes involved in the conver-

sion of phosphoenolpyruvate to oxaloacetate, and lipid biosynthesis activity, whereas the Erysi-
pelotrichaceae hardly displayed these activities. In turn, the Erysipelotrichaceae appeared to be

much more focused on the conversion of malate, fumarate and succinate. Finally, the predom-

inant Clostridiaceae representatives expressed both these activities, as well as a broad spectrum

of pathways related to amino acid metabolism. Notably, each of the iPATH mapped pathways

for the activity patterns of the families Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae
appeared to display gaps, suggesting incomplete or incorrect annotations of genes in the
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metatranscriptome data. This may either be due to their low in situ expression levels or incor-

rect functional annotation, or taxonomic misclassification of the predicted proteins. Many of

the inaccuracies in assignment of function and taxonomic origin of a sequence derived from

the mouse cecum is likely due to inaccurate annotation assignments in the NCBI database as

well as the substantial dissimilarity between the reference genomes and the metatranscriptome

data obtained from the microbial community residing in the murine intestinal tract. Addition-

ally, the limited depth of metatranscriptome analysis could also provide a limitation in the

detection of complete and/or lowly expressed pathways.

Overall, members of the Erysipelotrichaceae appeared to benefit most significantly from the

HPLF diet, and the expression profiles assigned to this group confirmed its focus on pathways

for the degradation of a several amino acids. In the HPHF diet group, possibly due to the

higher fat content, the advantage of the Erysipelotrichaceae appeared to be reduced relative to

the LF diets and they appeared to be at least partially replaced by members of the Clostridiaceae
that expressed a wider range of amino acid catabolic pathways.

The observed expression profiles of genes encoding enzymes involved in SCFA production

suggest that Erysipelotrichaceae produced predominantly acetate as the main end product of

Fig 3. Expression levels of peptidases, amino acid metabolism related proteins and amino acid transporters originating from the Erysipelotrichaceae,

Clostridiaceae and Lachnospiraceae. All the genes that were predicted according to their KEGG orthology to belong to either peptidases, amino acid metabolism or

amino acid transporters, were accumulated and plotted in a box plot. On the vertical axis the number of reads are depicted.

https://doi.org/10.1371/journal.pone.0194066.g003
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protein catabolism, whereas Clostridiaceae and Lachnospiraceae were predicted to produce

both acetate and butyrate (Fig 4). However, the Erysipelotrichaceae expressed genes involved

acetyl-coA to butyryl-coA conversion, using the energy-conserving crotonyl-coA pathway

[35], suggesting that also this family contributes to butyrate production. Notably, the expres-

sion of genes encoding butyrate-kinase and butyryl-CoA:acetate-CoA-transferase that are also

involved in the crotonyl-CoA pathway was not detected in Erysipelotrichaceae, which is likely

due to the erroneous annotations of the homologous acetate-kinase and other SCFA transfer-

ase functions in this bacterial group [36–38]. Genes that encode the enzymes required for pro-

pionate production appeared barely expressed, and were exclusively assigned to the bacterial

families Porphyromonadaceae and Sphingomonadaceae. The very low expression detected for

the propionate production pathway may indicate that for a more complete reconstruction of

the microbiome activity profiles, metatranscriptome datasets with a higher depth of analysis

would be required. Analogously, we failed to detect the expression of genes encoding enzymes

involved in BCFA production, which may also require a higher depth of metatranscriptome

analysis considering that concentrations of these metabolites were 2–3 orders of magnitude

lower than those of acetate, propionate and butyrate (Fig 1). Alternatively, some of the

enzymes involved might not be classified accurately in the KEGG system and may therefore be

missed. Despite these limitations in assigning specific enzyme and pathways, the enriched

modules associated with amino acid metabolism in the metatranscriptome data established the

role of the microbiota in the fermentation of dietary proteins. The unaltered pattern of specific

activities assigned to Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae indicates their

consistent contribution to the in situ protein catabolism despite the substantial differences in

protein content of the respective diets.

Fig 4. Average relative abundances of metatranscriptome derived families that have activity towards SCFA production. Acetate production via acetate kinase,

acetyl-CoA synthase and phosphate acetyltransferase (K00925, K00625, K01895, K13788; Propionate production via propionate CoA-transferase and acetyl-CoA

synthase (K01895, K01026); Butyrate production via butyrate kinase, acetoacetate CoA-transferase and phosphate butyryltransferase (K01034, K01035, K01896, K00929,

K00634). Error bars are SD of total activity per type of SCFA (Acetate, Propionate or Butyrate) in each dietary group.

https://doi.org/10.1371/journal.pone.0194066.g004
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Conclusion

Here we show that prolonged feeding of high protein level diets for a period of 12 weeks

exerted a prominent effect on the composition of caecal microbiota and its protein fermenta-

tion capacity, supporting elevated SCFA production in the caecal lumen as compared to fer-

mentation of the alternative nutrients (i.e., cornstarch or fat). In addition, the data also

revealed a prominent influence on the microbiota composition of the fat content in diets that

contain normal protein levels. The microbial community members most active in the different

diet groups belonged to the families of the Lachnospiraceae, Erysipelotrichaceae and Clostridia-
ceae, and were predicted to produce mainly acetate and butyrate based on the metatranscrip-

tome profiles. The relative activity of especially the Erysipelotrichaceae appeared to be

increased in mice consuming the high protein diets, although the Clostridiaceae expressed a

wider range of different amino acid metabolism associated pathways. Moreover the total activ-

ity of the genes involved in these metabolites does not correspond to the concentration of ace-

tate, propionate and butyrate measured in the caecum. So there is need for metabolite flux

measurements, rather than luminal steady state concentrations. Furthermore a more complete

reconstruction of the microbiome activity profiles is necessary to provide a comprehensive

understanding of the role of Erysipelotrichaceae and Clostridiaceae in the in situ fermentation

of dietary protein. Such improved understanding would be strongly facilitated by pure and

mixed in vitro culture studies using representatives of these microbial families to better charac-

terize their metabolic repertoire and the genes involved in the relevant pathways, which would

enable a more accurate metatranscriptome mapping. In conclusion, the data presented here

provide clear metabolic indications concerning the microbial groups involved in protein

catabolism in the intestine, but more complete understanding of the precise role of these

microbes will require a better understanding of their physiological characteristics and may

also require metatranscriptome datasets with a higher depth of analysis.

Supporting information

S1 Fig. Hierarchical clustering of all the samples on log10 transformed probe level data of

the MITChip. The clustering was made using pearson similarity and via the Ward linking

method. The letters below or indicative for the origin of the sample: C for caecum, L for colon

and I for ileum.

(TIF)

S2 Fig. Hierarchical clustering on normalized (annotated) bacterial metatranscriptome

data. Clustering of the 15 samples was done using pearson similarity and via the Ward linking

method. In light grey are both the normal protein diets: Normal Protein-Low Fat (NPLF) and

Normal Protein-High Fat (NPHF). In dark gray are both the high protein diets: (High Protein-

Low Fat (HPLF) and High Protein-High Fat (HPHF).

(TIF)

S3 Fig. S3a Relative abundance of total metatranscriptome (activity) on family level. All the

genes that were predicted with a KEGG orthology were accumulated and their taxonomic ori-

gin on family level is plotted here. Families with activity over 0.5% abundances in any of the

conditions are plotted. S3bcd. Relative abundance of families expressing peptidases (b), amino

acid metabolism related proteins (c) and amino acid transporters (d). All the genes that were

predicted according to their KEGG orthology to belong to either peptidases, amino acid

metabolism or amino acid transporters, were accumulated and their taxonomic origin on fam-

ily level is plotted here. Families with activity over 0.5% abundances in any of the conditions

are plotted. S3e. Expression level of 6-phosphofructokinase in the glycolysis pathway. This
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enzyme catalizes a step in the glycolytic pathway and its gene was transcribed at a lower level

in the HPLF diet, which was mainly due to the decreased expression from Lachnospiraceae.

(TIF)

S4 Fig. Metabolic activity of Lachnospiraceae: Green; Clostridiaceae: Red; Erysipelotricha-
ceae: Blue. The expression patterns of all the KEGG numbers per individual family were plot-

ted in with the iPATH software suite. In each of the microbial families unique expression

patterns were found, which are indicated within the grey circles. Lachnospiraceae strongly

expressed genes coding for enzymes involved in the conversion of phosphoenolpyruvate to

oxaloacetate, and lipid biosynthesis activity. The Erysipelotrichaceae appeared to be much

more focused on the conversion of malate, fumarate and succinate. The Clostridiaceae repre-

sentatives were concluded to express both these features and a broad spectrum of pathways

related to amino acid metabolism.

(TIF)
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