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Abstract

Modeling relations between individuals is a classical question in so-
cial sciences, ecology, etc. In order to uncover a latent structure in the
data, a popular approach consists in clustering individuals according to
the observed patterns of interactions. To do so, Stochastic block models
(SBM) and Latent Block models (LBM) are standard tools for clustering
the individuals with respect to their comportment in a unique network.
However, when adopting an integrative point of view, individuals are not
involved in a unique network but are part of several networks, resulting
into a potentially complex multipartite network. In this contribution, we
propose a stochastic block model able to handle multipartite networks,
thus supplying a clustering of the individuals based on their connection
behavior in more than one network. Our model is an extension of the
latent block models (LBM) and stochastic block model (SBM). The pa-
rameters –such as the marginal probabilities of assignment to blocks and
the matrix of probabilities of connections between blocks– are estimated
through a variational Expectation-Maximization procedure. The numbers
of blocks are chosen with the Integrated Completed Likelihood criterion,
a penalized likelihood criterion. The pertinence of our methodology is
illustrated on two datasets issued from ecology and ethnobiology.
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1 Introduction
Networks have become fundamental tools in various fields, such as ecological
theory or sociology to name but a few. Statistical analysis aims at studying the
structure of these networks and allows the discovery as well as the representa-
tion of clusters or communities [see Matias and Robin, 2014, for a review]. The
recent years have witnessed a growing interest for complex networks such as
multiplex networks –when several types of relations are simultaneously studied
on a common set of individuals– [Kéfi et al., 2016, Barbillon et al., 2016] or time
evolving networks [Matias and Miele, 2017]. In this paper, we are interested in
the modeling and inference of multipartite networks.

Multipartite networks arise when the individuals (nodes) at stake can be in
advance partitioned into groups defined by their nature. In what follows, these
groups will be referred to as functional groups. As a first example, let us consider
interactions in ecology where individuals are living species. Functional groups
may be species of plants, pollinators, herbivores, ants, seed dispersal birds, etc.
A number of studies in ecology have suggested that analyzing the interactions
between pairs of functional groups (e.g. plants/pollinators or plants/ants...)
separately does not reveal the potential of this information, and considering
simultaneously the various interaction networks could contribute to a better
understanding of the processes at stake [see Pocock et al., 2012, Kéfi et al.,
2016, Dáttilo et al., 2016, for instance]. In an ecosystemic approach, the network
resulting from the observation of the interactions between plants on the one hand
and pollinators, ants or seed dispersal birds (for instance) on the other hand, is
typically a multipartite network.

Ethnobiology is the scientific study of the relations between environment
and people. One of the problematic at stake for instance in Thomas and Caillon
[2016] is to understand how social relations between individuals (here seed circu-
lation) may structure and guaranty biodiversity in the cultivated crop species. In
this case, two functional groups are involved, namely farmers and crop species.
The interactions between farmers are seed circulations represented by a simple
network. The inventories of the crop species grown by each farmers are also
available, inducing a bipartite network between the same farmers and the crop
species. When considered simultaneously, the two networks then constitute a
multipartite network.

These two datasets issued respectively from ecology and ethnobiology will
be treated in this paper. However, our work can be applied to many other appli-
cation fields. As an example, marketing can also supply multipartite networks
data when individuals are connected through social networks but can also be
described by their on-line purchases. An application in pharmaco-sciences was
also considered by Robert [2017].

Multipartite networks require the development of specific statistical tools.
Some extensions of standard descriptive tools –such as community detection–
have been proposed in the literature (see for instance Yang and Leskovec [2012]
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or Gaskó et al. [2017]). When aiming at clustering similar unities based on their
connectivity patterns without any a priori hypothesis about the patterns to
be found (e.g. modularity, centrality, hierarchy), probabilistic mixture models
have proved their efficiency. In particular, when a unique network is at stake,
Stochastic block models (SBM) [Snijders and Nowicki, 1997] and Latent Block
models (LBM) [Govaert and Nadif, 2003] are standard tools for clustering the
individuals according to the observed patterns of interactions.

In this paper, we extend block models to multipartite networks. Our general-
ization encompasses SBM and LBM, thus handling simultaneously interactions
between individuals belonging to the same functional group as well as interac-
tions between individuals from different functional groups. This joint modeling
of several networks allows to study structured interactions among individuals
of a network as well as the impact of a part of the individuals on the other
interactions. The joint modeling will provide clusterings of individuals in each
functional group on the basis of all the interactions they are implied in.

Ability of proposing a joint model for various (simple or bipartite) networks
is an important step for understanding the structure of communities within a
complex (eco)system.

The paper is organized as follows. Section 2 is dedicated to the introduction
of notations supplying a flexible tool to describe multipartite networks. We
also give a quick description of our two datasets and illustrate the notations
on these specific cases. The block model for multipartite networks is described
in Section 3 while its maximum likelihood inference is presented in Section
4. The likelihood function is maximized through a variational version of the
Expectation-Maximization algorithm and the model selection task is performed
using an adapted penalized likelihood criterion. Finally, the statistical analyses
of the two datasets with discussion are presented in Section 5. Perspectives are
discussed in the last section.

2 Notations and data
We first introduce some notations and illustrate them on our two motivating
examples.

A collection of networks Assume thatQ functional groups of individuals are
at stake; for any q = 1 . . . Q, let nq be the number of individuals (or equivalently
individuals, individuals or individuals) in the q-th functional group.

A multipartite network can be seen as a collection of networks: each network
may be simple i.e. describing the relations inside a given functional groups
or bipartite i.e. describing the relations between individuals belonging to two
different functional groups. We index the collection of networks by pairs (q, q′)
(q and q′ in [[1, Q]]). If we deal with a simple network then q = q′. The set E
denotes the list of pairs of functional groups for which we observe an interaction
network.
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For any (q, q′) ∈ E , the interaction network is encoded in a matrix Xqq′

such that Xqq′

ij = 1 if there is an edge from unit i of functional group q to
unit i′ of functional group q′, 0 otherwise. If q 6= q′, Xqq′ is said to be an
incidence matrix. Xqq is an adjacency matrix : it is symmetric if the relation
inside the functional group q is undirected, non-symmetric otherwise. Then, the
multipartite network we consider is denoted by X =

{(
Xqq′

)
, (q, q′) ∈ E

}
.

Remark 1 For the sake of simplicity, in this paper, we only present the model
and the inference methodology for binary interactions (presence or absence en-
coded by 0/1). However, as discussed in Section 6, our work can be extended to
multipartite valued interactions or multipartite multiplex interaction networks.

Illustration of the datasets • Example 1 is in ecology and is issued from
Dáttilo et al. [2016]. The authors are interested in studying jointly the mu-
tualistic relations between plants and pollinators, plants and ants, and plants
and frugivorous birds. It then results into 4 functional groups, namely plants
(q = 1), pollinators (q = 2), ants (q = 3) and birds (q = 4). Using the notations
previously introduced, we get E = {(1, 2), (1, 3), (1, 4)} and each interaction ma-
trix Xqq′ is an incidence matrix corresponding to a bipartite network where
X1q′

ii′ = 1 if the plant species i has been observed at least once in a mutual-
istic interaction with the animal species i′ of functional group q′ during the
observation period, 0 otherwise.
• Example 2 is issued from Thomas and Caillon [2016] and Thomas et al.

[2015]. In this dataset, we observe on the one hand, seed circulation between
farmers –resulting into a non-symmetric adjacency matrix – and on the other
hand the crop species grown by the farmers, resulting into an incidence matrix.
Adopting the notations previously introduced, we set q = 1 for the farmers,
q = 2 for crop species, and E = {(1, 1), (1, 2)}. X11

ii′ = 1 if farmer i gives seeds
to farmer i′ (oriented relation), 0 otherwise and X12

ij = 1 if farmer i cultivates
crop species j, 0 otherwise.

More details about these datasets are given in Section 5.

3 A block model for multipartite network
In order to account for heterogeneity among individuals, we propose a mixture
model explicitly describing the way edges connect nodes in the various networks.
As will be discussed hereafter, our model is an extension and a combination of
the SBM and the LBM.

Assume that for each functional group q (q ∈ [[1, Q]]), the nq individuals are
divided intoKq clusters (or equivalently blocks). ∀q ∈ [[1, Q]] and ∀i ∈ [[1, nq]], let
Zqi be the latent random variable such that Zqi = k if individual i of functional
group q belongs to cluster k. The random variables Zqi ’s are assumed to be
independent and their distributions are such that: ∀k ∈ [[1,Kq]],∀q ∈ [[1, Q]],∀i ∈
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[[1, nq]]:

P(Zqi = k) = πqk, (1)

with
∑Kq

k=1 π
q
k = 1, ∀q ∈ [[1, Q]]. In what follows, Z denotes the set of latent

variables:
Z = (Zqi )i∈[[1,nq ]],q∈[[1,Q]] .

Now, we set a mixture model on the connectionsX in the following way. For
any (q, q′) ∈ E , conditionally on the latent variables, the entries of the matrices(
Xqq′

ii′

)
are assumed to be independent and distributed as follows: ∀(i, i′) ∈ Sqq′ ,

Xqq′

ii′ |{Z
q
i = k, Zq

′

i′ = k′} ∼ind Bern(αqq
′

kk′) (2)

meaning that the probability of connection from i of functional group q to i′
of functional group q′ only depends on the clusters to which they belong. The
sets Sqq′ are additional notations which are necessary to handle particular cases
of adjacency matrices (when q = q′). As stressed before, if (q, q) ∈ E , the
corresponding adjacency matrix Xqq may be symmetric or not (depending if
the relation at stake is directed or not). Moreover, the diagonal can be assumed
to be zero or not depending if loop interactions may occur or not. In order to
be able to handle all these situations, for any (q, q) ∈ E , we define Sqq as the
set of possible edges:

• Sqq = [[1, nq]]
2 ifXqq represents a directed network with possible self-loops.

• Sqq = {(i, i′) ∈ [[1, nq]]
2|i 6= i′} if Xqq represents a directed network with-

out self-loop.

• Sqq = {(i, i′) ∈ [[1, nq]]
2|i ≤ i′} if Xqq represents a non-directed network

with self-loops.

• Sqq = {(i, i′) ∈ [[1, nq]]
2|i < i′} if Xqq represents a non-directed network

without self-loop.

For any (q, q′) ∈ E such that q 6= q′, we set Sqq′ = [[1, nq]] × [[1, nq′ ]]. With this
definition, we encode any interaction network by Xqq′ := (Xqq′

i,i′ )(i,i′)∈Sqq′ .
In what follows, we will refer to this block model for multipartite networks

as Multipartite Block Model (MBM).

Comments on the conditional dependencies

• As discussed previously, our model is a generalization of SBM and LBM.
Indeed, Equations (1)-(2) exactly define the SBM if E = {(1, 1)} and the LBM
if E = {(1, 2)}. Our extension sets that the latent structures Z are shared
among the matrices i.e. if a functional group q is at stake in several interaction
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Figure 1: DAG for Example 1 (top) and Example 2 (bottom)

matrices the same latent random variables Zq = (Zqi )i∈[[1,nq ]] impact the distri-
butions of the corresponding interaction matrices. In other words, the clusters
gather individuals sharing the same properties of connection in the collection of
networks.
• In terms of probabilistic dependence, conditionally on the clustering vari-

ables Z, the quantities
(
Xqq′

ii′

)
are independent. However, Z being latent, their

marginalization introduces dependence between the entries of each matrix Xqq′ .
Moreover, the marginalization with respect to the latent variables Z may intro-
duce a probabilistic dependence between the observed matrices(
Xqq′

)
(q,q′)∈E

. Indeed, all the matrices involving a given functional group q

are then dependent when marginalizing. Obviously, if each functional group
appears in only one element of E , the MBM reduces to independent SBMs or
LBMs.
• As a consequence of the previous comment, the clustering variables

(Zqi )q∈[[1,Q]],i ∈[[1,nq ]] are dependent once conditioned by the observations X.
•We illustrate the various probabilistic dependences described above by giv-

ing the probabilistic directed acyclic graph (DAG) corresponding to Examples
1 and 2 in Figure 1.

In the following section, we develop an adapted version of the Variational
Expectation Maximization (VEM) algorithm to maximize the likelihood func-
tion. The estimated clusters Ẑ =

(
Ẑqi

)
q∈[[1,Q]],i ∈[[1,nq ]]

will be a by-product of

the inference method. We also propose a penalized likelihood criterion to select
the numbers of clusters K = (K1, . . . ,KQ).
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4 Parameter inference and model selection
Unknown parameters For a given vector K = (K1, . . . ,KQ), let θK =
(α,π) be the unknown parameters of the model defined by Equations (1) and
(2) where

π = (πqk)
k∈[[1,Kq ]],q∈[[1,Q]]

∈ TK

with TK
(

= ⊗Qq=1 TKq

)
and ∀K ∈ N∗,

TK =

{
(w1, . . . , wK) ∈ [0, 1]K |

K∑
k=1

wk = 1

}
.

α is the vector of the connection parameters:

α =
(
αqq

′

kk′

)
(k,k′)∈Aqq′ ,(q,q′)∈E

.

If q 6= q′, Aqq′ = [[1,Kq]] × [[1,Kq′ ]]. Otherwise, the definition of Aqq depends
on the nature of the interaction expressed in Xqq. If the interaction is directed,
then Aqq = [[1,Kq]]

2; on the contrary, if the relation is not directed then Aqq′ =

{(k, k′) ∈ [[1,Kq]]| k ≤ k′}2. As a consequence α ∈ OK = [0, 1]
∑

(q,q′)∈E |A
qq′ |

where | · | stands for the cardinal.

Subsection 4.1 is dedicated to the calculus of the likelihood function. This
likelihood is maximized in Subsection 4.2 for a fixed K. Subsection 4.3 deals
with the choice of K.

4.1 Complete and marginal likelihoods
In this section, the numbers of clusters K is fixed. For the sake of clarity, we
prefer the notation θ over θK when no confusion is possible.

Let `(X; θ) denote the likelihood of the observations X for parameter θ.
Equations (1) and (2) allow to write explicitly the so-called complete likelihood
`c(X,Z; θ) = f(X|Z;α)f(Z;π) :

log `c(X,Z; θ) =
∑
q,i,k 1Zq

i =k log(πqk)+∑
(q,q′)∈E

∑
(i,i′)∈Sqq′

∑
(k,k′)∈[[1,Kq ]]2

1Zq
i =k1Zq′

i′ =k
′b(X

qq′

ii′ , α
qq′

kk′) (3)

with
b(Xqq′

ii′ , α
qq′

kk′) = Xqq′

ii′ log(αqq
′

kk′) + (1−Xqq′

ii′ ) log(1− αqq
′

kk′) . (4)

Z being latent variables, the log-likelihood of the observed data log `(X; θ) is
obtained by integrating the complete likelihood over all the possible values of
Z.

log `(X; θ) = log
∑
Z∈Z

`c(X,Z; θ) . (5)

7



However, Z = ⊗Qq=1[[1,Kq]]
nq , which implies that, when Q and the Kq’s increase

this summation becomes intractable. In this context, the variational version of
the EM algorithm has proved to be a powerful tool for maximum likelihood
inference [see Govaert and Nadif, 2008, Daudin et al., 2008].

The next section describes a variational version of the EM algorithm adapted
to our model. The details are postponed to Appendix A.

4.2 Variational EM for maximum likelihood
The EM algorithm [Dempster et al., 1977] applies when the observed data can
be enhanced by latent variables. The EM alternates between performing an
expectation (E) step computing

Q(θ|θ(t−1)) = E[log `c(X,Z; θ)|X; θ(t−1)]

and a maximization (M) step computing

θ(t) = arg max
θ∈Θ

Q(θ|θ(t−1)).

The (E)-step requires to compute the conditional distribution P(Z|X; θ) for any
θ. However, as stressed in Section 3, the (Zqi ) are not independent when condi-
tioned by the observationsX, making this calculation unfeasible in a reasonable
computational time when Z is large.

The variational version of the EM algorithm replaces the complex distribu-
tion P(Z|X; θ) by an optimized simpler version and maximizes a lower bound of
the observed likelihood. More precisely, letRτ ,X be any probability distribution
on Z, we define Iθ(Rτ ,X) as:

Iθ(Rτ ,X) = log `(X; θ)−KL[Rτ ,X ,P(·|X; θ)] (6)
= ERτ,X

[log `c(X,Z; θ)] +H(Rτ ,X) (7)
≤ log `(X; θ) (8)

where KL is the Kullback-Leibler divergence and H(Rτ ,X) is the entropy of
Rτ ,X . The inequality in (8) derives from the positivity of the KL divergence
and the equality Iθ(Rτ ,X) = log `(X; θ) holds iff Rτ ,X(Z) = P(Z|X; θ).

The principle of the VEM algorithm is to choose Rτ ,X in a family of dis-
tributions P such that the conditional expectation ERτ,X

[log `c(X,Z; θ)] can
be computed explicitly. As a result, iteration (t) of VEM consists in the two
following steps:

• M Step θ(t) = arg maxθ Iθ(Rτ (t−1),X),

• VE Step

τ (t) = arg max
τ

ERτ,X
[log `c(X,Z; θ)] +H(Rτ ,X)

= arg min
τ

KL[Rτ ,X ,P(·|X; θ(t))] .

8



The variational EM generates a sequence (θ(t), τ (t))t≥0 increasing the lower
bound Iθ(Rτ ,X) of the likelihood log `(X; θ).

The key point of the procedure is the choice of P, making the calculus
tractable but rich enough to be a good approximation of the true conditional
distribution P(Z|X; θ). Following Govaert and Nadif [2008] and Daudin et al.
[2008], we adopt the mean-field strategy [Jaakkola, 2000] and chose P as:

P =

{
Rτ |Rτ (Z) =

Q∏
q=1

nq∏
i=1

hKq
(Zqi ; τ qi )

}
,

where hKq
(·; ξ) is the density of a 1 trial - multinomial distribution of parameter

ξ ∈ TKq
, i.e. RX,τ is such that the latent variables Z are independent and

PRτ,X
(Zqi = k) = τ qik with

Kq∑
k=1

τ qik = 1, ∀q ∈ [[1, Q]],∀i ∈ [[1, nq]].

From this particular choice of P, we derive the following VEM algorithm.

Variational EM algorithm for MBM

At iteration (t), given the current state τ (t−1),

• M Step ∀(q, q′) ∈ E , ∀(k, k′) ∈ Aqq′

α
qq′(t)
kk′ =

∑
(i,i′)∈Sqq′ X

qq′

ii′ τ
q(t−1)
ik τ

q′(t−1)
i′k′∑

(i,i′)∈Sqq′ τ
q(t−1)
ik τ

q′(t−1)
i′k′

and ∀q ∈ [[1, Q]],∀k ∈ [[1,Kq]]:

π
q(t)
k =

nq∑
i=1

τ
q(t−1)
ik /nq .

• VE StepGet τ (t) solving the following sytem: ∀q ∈ [[1, Q]],∀k ∈ [[1,Kq]],∀i ∈
[[1, nq]],

0 = −(1 + log τ qik) + log π
q(t)
k +

∑
q′∈Eq

nq′∑
i′=1

K′q∑
k′=1

b
(
Xqq′

ii′ , α
qq′(t)
kk′

)
τ q
′

i′k′


+1(q,q)∈E

∑
j∈Sqq

i

Kq∑
k′=1

b
(
Xqq
ij , α

qq(t)
kk′

)
τ qjk′ + 1(q,q)∈E1(i,i)∈Sqqb

(
Xqq
ii , α

qq(t)
kk

)
+λqi

with

9



·
∑Kq

k=1 τ
q
ik = 1,

· Eq = {q′ ∈ [[1, Q]]|q′ 6= q and (q, q′) ∈ E},
· ∀(q, q) ∈ E ,∀i ∈ [[1, nq]],

Sqqi = {i′ ∈ [[1, nq]] | i′ 6= i, (i, i′) ∈ Sqq} ,

and the (λq
′

j )1≤q′≤Q,1≤j≤nq′ are the Lagrange multipliers.

The details of the calculus are given in Appendix A. We denote by θ̂ and τ̂ the
resulting estimates. The estimated clustering is the MAP : ∀q ∈ [[1, Q]],∀i ∈
[[1, nq]],

Ẑqi = arg max
k∈[[1,Kq ]]

τ̂ qik.

In practice, the algorithm may converge towards a local optimum. As a
consequence, the initialization τ (0) has a strong impact on the estimates. Obvi-
ously, a completely random initialization will lead to a poor optimization. One
can derive a τ (0) from a first clustering of the individuals in each functional
group by performing a Hierarchical Cluster Analysis, based on the Manhattan
distances between all the rows or columns of the interaction matrices related
to the functional group. More sophisticated initializations will be discussed
hereafter, in Subsection 4.4.

4.3 Penalized likelihood criterion
In practice, the numbers of clusters K = (K1, . . . ,KQ) are unknown and have
to be estimated. For standard LBM Biernacki et al. [2000] propose to use the
Integrated Completed Likelihood criterion (ICL). In this paper, we adapt it to
our MBM. In what follows, MK refers to the model defined by Equations (1)
and (2) with K = (K1, . . . ,KQ). ICL is a Bayesian model selection criterion
derived as follows.

First assume that the Z are observed and set a prior distribution on θK de-
noted πMK

(θ). Bayesian model selection is based on the integrated complete
likelihood:

logmc(X,Z;MK) = log

∫
ΘK

`c(X,Z; θK)dπMK
(θK)

Considering the following prior distributions on θ:

αqq
′

kk′ ∼ B(a, a) and (πq1, . . . π
q
KQ

) ∼ Dir(b, . . . , b)

we can supply an explicit expression for logmc(X,Z;MK). From this explicit
expression, we are able to derive its asymptotic approximation, in the same
spirit as the standard Bayesian Information Criterion (BIC):

10



logmc(X,Z;MK)

∼n1...nQ→∞ max
θK∈ΘK

log `c(X,Z; θK)− pen(MK)

with

pen(MK) = 1
2

{∑Q
q=1(Kq − 1) log(nq)

+
(∑

(q,q′)∈E |Aqq
′ |
)

log
(∑

(q,q′)∈E |Sqq
′ |
)}

.
(9)

The proof of this result is given in Appendix B.
Similarly to LBM or SBM, in our model, Z is not observed. Two strategies can
be adopted: either the Z are imputed using their maximum a posteriori value
[Biernacki et al., 2000], either the Z are integrated out [see Daudin et al., 2008]
with the conditional distribution P(Z|X; θ̂). We adopt the last strategy and
derive the following model selection criterion:

ICL(MK) = EZ|X;θ̂K

[
log `c(X,Z; θ̂K)

]
− pen(MK)

where pen(MK) has been defined in Equation (9). Finally, P(Z|X; θ̂,MK)
being non-explicit, it is replaced in practice by RX,τ̂ , leading to the following
penalized selection criterion:

ÎCL(MK) = ERX,τ̂

[
log `c(X,Z; θ̂K)

]
− pen(MK) . (10)

Remark 2 ICL is known to automatically encourage clustering configurations
with well separated clusters. Its capacity to outline the clustering structure in
the data has been tested in the literature, either in mixture models [Baudry et al.,
2008], LBM [Keribin et al., 2014] or SBM [Mariadassou et al., 2010].

4.4 Practical algorithm
The practical choice of the model and the estimation of its parameters is a com-
putational intensive task. Indeed, assume that each number of cluster Kq can
vary from Kq,inf and Kq,sup, then, ideally, we should compare

∏Q
q=1(Kq,sup −

Kq,inf) models. For each model, the variational EM algorithm has to be run
starting from a large number of initializations (due to its sensibility to its start-
ing point), resulting into an unreasonable computational cost. Instead, we pro-
pose to adopt a stepwise strategy, resulting into a faster exploration of the
model space and judicious initializations of the VEM algorithm. The procedure
we suggest is the following one.
Starting from a modelM(0) =M(K

(0)
1 , . . . ,K

(0)
Q ). Them-th iteration is written

as follows.

Model selection strategy for MBM

11



Given a current modelM(m) =M(K
(m)
1 , . . . ,K

(m)
Q )

• Split proposals:
For any q ∈ [[1, Q]] such thatK(m)

q < Kq,sup, consider the modelM(K
(m)
1 , . . . ,K

(m)
q +

1, . . . ,K
(m)
Q )

· Propose K(m)
q initializations by splitting any of the K(m)

q clusters
into two clusters.

· From each of the K(m)
q initialization points, run the VEM algorithm

and keep the better estimate, i.e. the one which maximizes the lower
bound I:

(θ̂(q,m,+), τ̂ (q,m,+))

· Compute the corresponding ICL.

• Merge proposals:
For any q ∈ [[1, Q]] such thatK(m)

q > Kq,inf , consider the modelM(K
(m)
1 , . . . ,K

(m)
q −

1, . . . ,K
(m)
Q ).

· Propose K(m)
q (K(m)

q −1)

2 initializations by merging any pairs of clusters
among the K(m)

q clusters.

· From each initialization point, run the VEM algorithm and keep the
better estimates:

(θ̂(q,m,−), τ̂ (q,m,−))

· Compute the corresponding ICL.

• Let us define

M(m) =
⋃

q∈[[1,...Q]]

{
M(K

(m)
1 , . . . ,K(m)

q + 1, . . . ,K
(m)
Q )

M(K
(m)
1 , . . . ,K(m)

q − 1, . . . ,K
(m)
Q ) } ∪M(m) .

SetM(m+1) = arg max
M∈M(m)

ICL(M).

IfM(m+1) 6=M(m) iterate, otherwise stop.

This algorithm is implemented in the R-package GREMLIN, available on GitHub.
Note that the tasks at each iteration can be easily parallelized.
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5 Applications
We now apply our methodology on our two examples respectively in ecology
and ethnobiology.

5.1 Ecology: interactions plants / animals
Dataset The dataset –compiled and conducted by Dáttilo et al. [2016] at Cen-
tro de Investigaciones Costeras La Mancha (CICOLMA), located on the central
coast of the Gulf of Mexico, Veracruz, Mexico– involves three general types of
plant-animal mutualistic interaction: pollination, seed dispersal by frugivorous
birds, and protective mutualisms between ants and plants with extrafloral nec-
taries. The dataset –which is one of the largest compiled so far with respect to
species richness, number of interactions and sampling effort– includes n1 = 141
plant species, n2 = 173 pollinator species, n3 = 46 frugivorous bird species and
n4 = 30 ant species. The dataset includes 753 observed interactions of which
55% are plant-pollinator interactions, 17% are plant-birds interactions and 28%
are plant-ant interactions. The dataset is plotted in Dáttilo et al. [2016] using
two alternative representations: either a unique plot involving all the individu-
als where the color of a node refers to the functional group, or three bipartite
networks, each of them involving the same functional group “plants”. These two
alternative network representations highlight the fact that there is a need for a
mesoscopic representation of the three networks.

Inference We run the procedure described in Subsection 4.4 starting from sev-
eral automatically chosen initial points K(0), with numbers of clusters bounded
between 1 and 10. The computational time on an Intel R© Xeon(R) CPU
E5-1650 v3 @ 3.50GHz x12 using 6 cores is less than 10 minutes. The ICL

criterion selects 7 clusters of plants, 2 clusters of pollinators, 1 cluster of birds
and 2 clusters of ants. The estimated parameters are reported in Table 1. The
resulting mesoscopic view of the multipartite network is plotted in Figure 2

Discussion From Figure 2, we deduce that the plants of clusters 7 and 2 only
interact with ants (noting that the plants of cluster 7 attract more ant species
belonging to cluster 1). The plants of clusters 3 and 6 are only in interaction
with birds, the difference between the two clusters being due to the strength of
the connection. Our ecosystemic approach highlights the central role played by
the pollinators. The difference between the two clusters of pollinators derives
from the existence of the cluster 1 of plants.

In order to illustrate the contribution of our method, we also analyze each
bipartite network separately (using an LBM) and compare the results in terms
of clustering. The clusterings are compared through the Adjusted Rand Index
(ARI): if ARI = 1 then the clusterings are equal (up to a label switching
transformation). The ARIs are given in Table 2.

Using standard LBM, we obtain 2 clusters of ants, 1 cluster of birds and
3 clusters of pollinators. The clusterings of ants and birds are not modified
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Pollinators Ants Birds
1 2 1 2 1

π̂qk 0.06 0.94 0.1 0.9 1
P
la
nt
s

1 0.4675 0.0957 0.0075 0 0.0006∗ 0.0013∗
2 0.1606 0.0042∗ 0 0.5431 0.0589 0
3 0.1351 0 0.0003∗ 0 0 0.0753
4 0.0784 0.1652 0.0343 0.6620 0.1542 0
5 0.1061 0.1918 0.0638 0 0 0.0163
6 0.0142 0 0 0 0 0.5108
7 0.0380 0 0 0.8492 0.3565 0

Table 1: Estimated parameters for MBM: π̂qk are in the first row and column,
other rows and columns contain the estimates α̂qq

′

kk′ . α̂
qq′

kk′ identified by ∗ are not
plotted in Figure 2.

by the ecosystemic approach, their ARI being equal to 1. The clustering of
the pollinators is slightly modified, going from 3 clusters to 2 clusters but the
additional block only contains few individuals, thus leading to a high ARI. Since
the plants functional group is involved in the three bipartite networks, we obtain
3 clusterings when analyzing them separately. These three clusterings are –as
expected– very different from our MBM clustering (the ARIs being respectively
equal to 0.118, 0.415 and 0.163, see Table 2). When aiming at proposing a
clustering taking into account the 3 bipartite networks, one may adopt a naive
strategy by combining (by intersection) these three clusterings. We then obtain
12 blocks of plants and the ARI with the MBM clustering is 0.617. However,
this number of clusters (12) is too large with respect to the model selection
criterion. Our MBM clustering is a parsimonious trade-off.

Table 2: Comparison of clusterings when the networks are jointly modeled by
the MBM (denoted Full) and when the networks are considered apart as bipar-
tite networks. Inter denotes the clustering obtained by intersecting the three
clusterings on plants for each bipartite network. The selected number of clusters
(in parenthesis) and the ARIs are provided.

Full/Flovis Full/Ants Full/Birds Full/Inter

Plants (7/3) (7/3) (7/3) (7/12)
0.118 0.415 0.163 0.617

Flovis (2/3)
0.997

Ants (2/2)
1.000

Birds (1/1)
1.000
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Figure 2: Mesoscopic view of the interconnected network. The size of the nodes
are proportional to the size of the clusters and the width of the edges are pro-
portional to the probability of connection between/within clusters. Edges cor-
responding to probabilities of connection lower than 0.01 are not plotted.

5.2 Seed circulation and crop species inventory
Dataset Seed circulation among farmers is a key process that shapes crop
diversity [Coomes et al., 2015, Pautasso et al., 2013]. With the courtesy of So-
phie Caillon, we analyze data on seed circulation and inventory data. Data on
seed circulation within a community of first-generation migrants (30 farmers)
were collected by a field survey in the island of Vanua Lava in the South Pacific
archipelago nation of Vanuatu. A farmer is considered as a giver for another
farmer if he/she has given at least one crop since they arrived in the new set-
tlement site in Vanua Lava. It results in a connected and directed network of
seed circulation. Besides the circulation network, inventory data for each farmer
were also collected. They consist in the list of crop landraces they grow. This
was aggregated at the species level, leading to 37 crop species. These inven-
tory data can be seen as a bipartite network. The seed circulation data were
analyzed in Thomas and Caillon [2016] and the inventory data were analyzed
in a meta-analysis in Thomas et al. [2015]. On the basis on the joint modeling
we propose in this paper, we aim to provide a clustering on farmers and crop
species on the basis of the seed circulation network and the inventory bipartite
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network. The two functional groups at stakes are the farmers and the species.

Inference The MBM is inferred by the proposed VEM algorithm and the
numbers of clusters are selected by the ICL criterion. Three clusters of farmers
and two clusters of crop species were selected. The inferred model is displayed
as a mesoscopic view in Figure 3. The clusters were renumbered to make them
correspond to the probability of connection: the larger cluster number, the
larger marginal probability of connection for the members of the cluster.

Discussion The discovered clusters are straightforwardly interpretable: Clus-
ter 3 gathers farmers who circulate seeds within the cluster and give to the two
other clusters, Cluster 2 circulates seeds within the cluster contrary to Cluster
1 who only receives from Cluster 3; the two clusters of crop species are Cluster
2 with more common crop species and Cluster 1 with other species. Clusters 3
and 2 of farmers grow crop species from Clusters 1 and 2 whereas Cluster 1 of
farmers grows mainly crop species from Cluster 2. It turns out that Cluster 3
gathers mainly the first migrants and Cluster 1 the last migrants. The pattern
of connection is then explained by the fact that first migrants helped the others
to settle by providing seeds. Moreover, the first migrants had more time to
collect more crop species to grow. Table 3 provides the comparison between the
obtained clustering (MBM) and a stand-alone clustering on farmers resulting
from an SBM on the circulation network and the clusterings on farmers and crop
species from an LBM on the inventory network. The clusterings on crop species
remain quite close while the clusterings on farmers are different since the MBM
shall make a trade off between the circulation and the inventory for farmers. To
ease the comparison between clusterings on farmers, the same renumbering rule
was applied for all the different clusterings so that the larger cluster numbers
correspond to larger marginal probability of connection. Figure 4 is an allu-
vial plot which compares the three obtained clusterings of farmers. It shows
how the trade-off is made between the two stand-alone clusterings in the MBM
clustering. It appears quite obvious that Cluster 1 given by the MBM gathers
only farmers from Cluster 1 in the seed circulation network and from Clusters 1
and 2 from the inventory data since this cluster aggregates farmers with fewer
connections and who grow less crop species than the others. The same kind
of observation can be made for Cluster 3 given by the MBM which aggregates
farmers who were in the cluster of the most connected farmers and in the two
clusters of farmers who grow more seed.

6 Discussion
In this paper, we proposed an extension of LBM and SBM which can handle
multipartite networks, resulting into the so-called MBM. Multipartite networks
encompass a lot of various situations such as the two examples dealt with in the
paper. Besides, MBM can be also useful for many other contexts with different
multipartite structures. Several extensions can be thought of with no additional
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Figure 3: Summarized network provided by the MBM. Nodes correspond to
the clusters detected by the MBM: clusters of farmers are in red and clusters
of crop species are in green. Size of a node is proportional to the number of
farmers or crop species belonging to the considered cluster. The width of the
edges are proportional to the probability of connection between/within clusters.
The probability of connection below 0.2 are not plotted.

significant difficulty. For instance, one may be interested in considering not only
binary interactions but also valued interactions (Xqq′

ii′ ∈ N or R) or multiplex
interactions (Xqq′

ii′ ∈ {0, 1}d). These extensions raise no major difficulties since
they only require to modify the function b(Xqq′

ii′ , α
kk′

qq′ ). Covariates can also be

taken into account by writing P(Xqq′

ii′ = 1|Zqi = k, Zq
′

i′ = k′) = φ
(
αkk

′

qq′ + yii′β
)

where yii′ are the covariates.
The main limiting factor is the size of networks. Indeed, the inference algorithm
that we propose is suitable for networks up to 1000 nodes in order to keep com-
putational time reasonable. If willing at studying larger networks, one should
develop adapted inference algorithms.
In a more general perspective, the study of ecological or sociological interac-
tions supplies a wide variety of complex networks such as multilevel networks or
multi-layer networks (see for instance Pilosof et al. [2016] or Lazega and Snijders
[2015]). Some of them can be treated as multipartite networks and then by a
MBM. The others require the development of suited models which might also
rely on a latent variable modeling. They will be the subject of future works.
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Table 3: Comparison of clusterings when the networks are jointly modeled by the
MBM (denoted Full) and when the networks are considered apart as a circulation
network for farmer and bipartite network for indiviuals and crop species. Inter
denotes the clustering obtained by intersecting the two clusterings on farmers.
The selected number of clusters (in parenthesis) and the ARI are provided.

Full/Exc Full/Inv Full/Inter

Ind (2/3) (3/3) (3/5)
0.297 0.105 0.273

Spe (2/2)
0.891
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A. VEM details
Let us recall the quantities at stake in VEM. Iθ(Rτ ,X) is a lower bound of the
log-likelihood defined as:

Iθ(Rτ ,X) = log `(X; θ)−KL[Rτ ,X , p(·|X; θ)] (11)
= ERτ,X

[log `c(X,Z; θ)] +H(Rτ ,X) (12)

with –in our case– Rτ ,X ∈ P where

P =

{
Rτ | ∀Z ∈ Z,Rτ (Z) =

Q∏
q=1

nq∏
i=1

hKq
(Zqi ; τ qi )

}
,

and hKq (·; ξ) is the density of a 1 trial - multinomial distribution of parameter
ξ ∈ TKq , i.e. RX,τ is such that the latent variables Z are independent and
PRτ,X

(Zqi = k) = τ qik with

Kq∑
k=1

τ qik = 1, ∀q ∈ [[1, Q]],∀i ∈ [[1, nq]].

VEM is an alternate optimization of Iθ(Rτ ,X) with respect to τ and θ. We will
now detail these two steps in the particular case of our block model for binary
multipartite networks.
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Figure 4: Alluvial plot comparing the clustering on farmers obtained from an
SBM on the circulation network (clExc), an LBM on the inventory network
(clInv) and the MBM (clMBM) on both networks. The cluster numbers are
related with the probability of connection, the larger cluster number, the larger
marginal probability of connection (between farmers for clExc, between farmers
and crop species for clInv).

1

2

1

2

3

1

2

3

clExc clMBM clInv

Explicit expression for Iθ(Rτ ,X).

Using the expression of the complete log-likelihood given in Equations (3) and
(12), we obtain:

Iθ(Rτ ,X) = −
∑
q,i,k τ

q
ik log τ qik +

∑
q,i,k τ

q
ik log(πqk)

+
∑

(q,q′)

∑
(i,i′)

∑
(k,k′) E

[
1Zq

i =k1Zq′
i′ =k

′

]
b(Xqq′

ii′ , α
qq′

kk′)
(13)

with
b(Xqq′

ii′ , α
qq′

kk′) = Xqq′

ii′ log(αqq
′

kk′) + (1−Xqq′

ii′ ) log(1− αqq
′

kk′) .

E
[
1Zq

i =k1Zq′
i′ =k

′

]
has to be carefully calculated, when i = i′. To that purpose,

let us introduce the following notations :

• ∀q, Eq = {q′ ∈ [[1, Q]] | q′ 6= q and (q, q′) ∈ E} . Eq is the set of incidence
matrices involving the functional group q.

• ∀(q, q′) ∈ E ,∀i ∈ [1, nq]] we define :

Sqqi = {i′ ∈ [[1, nq]] | i′ 6= i, (i, i′) ∈ Sqq} .
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Using these notations we detail the expression of Iθ(Rτ ,X).∑
(q,q′)

∑
(i,i′)

∑
(k,k′)

E
[
1Zq

i =k1Zq′
i′ =k

′

]
b(Xqq′

ii′ , α
qq′

kk′) =
∑
q

∑
q′∈Eq

∑
(i,i′)

∑
(k,k′)

τ qikτ
q′

i′k′b(X
qq′

ii′ , α
qq′

kk′)

+1(q,q)∈E
∑
(i,i′)

∑
(k,k′)

E
[
1Zq

i =k1Zq

i′=k
′

]
b(Xqq

ii′ , α
qq
kk′)

=
∑
q

∑
q′∈Eq

∑
(i,i′)

∑
(k,k′)

τ qikτ
q′

i′k′b(X
qq′

ii′ , α
qq′

kk′) + 1(q,q)∈E
∑
i

∑
i′∈Sqq

i

∑
(k,k′)

E
[
1Zq

i =k1Zq

i′=k
′

]
b(Xqq

ii′ , α
qq
kk′)

+1(q,q)∈E
∑
i

∑
(k,k′)

E

1Zq
i =k1Zq

i =k′︸ ︷︷ ︸
=0 if k 6=k′

 b(Xqq
ii , α

qq
kk′)

=
∑
q

∑
q′∈Eq

∑
(i,i′)

∑
(k,k′)

τ qikτ
q′

i′k′b(X
qq′

ii′ , α
qq′

kk′) + 1(q,q)∈E
∑
i

∑
i′∈Sqq

i

∑
(k,k′)

τ qikτ
q
i′k′b(X

qq
ii′ , α

qq
kk′)

+1(q,q)∈E
∑

i | (i,i)∈Sqq

∑
k

E
[
12
Zq

i =k

]
︸ ︷︷ ︸
=1Z

q
i
=k

b(Xqq
ii , α

qq
kk) .

As a consequence, we get:∑
(q,q′)

∑
(i,i′)

∑
(k,k′) E

[
1Zq

i =k1Zq′
i′ =k

′

]
b(Xqq′

ii′ , α
qq′

kk′)

=
∑
q

∑
q′∈Eq

∑
(i,i′)

∑
(k,k′) τ

q
ikτ

q′

i′k′b(X
qq′

ii′ , α
qq′

kk′)

+1(q,q)∈E
∑
i

∑
i′∈Sqq

i

∑
(k,k′) τ

q
ikτ

q
i′k′b(X

qq
ii′ , α

qq
kk′)

+1(q,q)∈E
∑
i | (i,i)∈Sqq

∑
k τ

q
ikb(X

qq
ii , α

qq
kk) .

(14)

Optimization of Iθ(Rτ ,X) with respect to τ , (θ being fixed)

For a fixed θ, we need to find τ such that ∀q ∈ [[1, Q]], ∀k ∈ [[1,Kq]], ∀i ∈ [[1, nq]]:

∂

∂τ qik

Iθ(Rτ ,X) +

Q∑
q′=1

nq′∑
j=1

λq
′

j

 Kq∑
k′=1

τjk′ − 1

 = 0 (15)

where (λq
′

j )1≤q′≤Q,1≤j≤nq′ are the Lagrange multipliers. Combining Equations
(13) and (14), we get:

0 = −(1 + log τ qik) + log πqk +

∑
q′∈Eq

nq′∑
i′=1

K′q∑
k′=1

b(Xqq′

ii′ , α
qq′

kk′)τ
q′

i′k′

 (16)

+1(q,q)∈E
∑
j∈Sqq

i

Kq∑
k′=1

b(Xqq
ij , α

qq
kk′)τ

q
jk′ + 1(q,q)∈E1(i,i)∈Sqqb(Xqq

ii , α
qq
kk)

+λqi .
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This system has no explicit solution but can be solved numerically using a fixed
point strategy as in Daudin et al. [2008].

Optimization of Iθ(Rτ ,X) with respect to θ, τ being fixed.
We have to compute the derivatives of Iθ(Rτ ,X) with respect to θ, the vari-
ational parameters τ being fixed. We thus obtain: ∀(q, q′) ∈ E ,∀(k, k′) ∈
[[1,Kq]]× [[1,Kq′ ]]:

αqq
′

kk′ =

∑
(i,i′)∈Sqq′ X

qq′

ii′ τ
q
ikτ

q′

i′k′∑
(i,i′)∈Sqq′ τ

q
ikτ

q′

i′k′

and ∀q ∈ [[1, Q]],∀k = [[1,Kq]]:

πqk =
1

nq

nq∑
i=1

τ qik .

B. Derivation of the ICL criterion
Explicit expression of the marginal complete likelihood The prior we
consider is the following one:

αqq
′

kk′ ∼ B(a, a) and (πq1, . . . π
q
Kq

) ∼ Dir(b, . . . , b). (17)

We work for a fixed K, thus we use the following shortcut : θ = θK . By
definition,

logmc(X,Z;MK) = log

∫
`c(X,Z; θK)π(θK ;MK)dθK .

The prior on θ being such that π(θ) = π(α)π(π) we obtain :

logmc(X,Z;MK) = log

∫
f(X,Z;α)π(α)dα+ log

∫
f(Z;π)π(π)dπ .

Taking advantage of the conditional independences in the model defined by
Equations (1) and (2) combined with the independence of the parameters in the
prior distribution, we can decompose logmc into the following sum :

logmc(X,Z;MK) =
∑

(q,q′)∈E

log

∫
f(Xqq′ |Zq,Zq

′
; (αqq

′
))π(αqq

′
)dαqq

′

+

Q∑
q=1

log

∫
f(Zq;πq)π(πq)dπq .
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Using the fact that f(Zq;πq) =
∏Kq

k=1(πqk)N
q
k with

Nq
k =

nq∑
i=1

1Zq
i =k (18)

and the conjugacy of the Dirichlet prior distribution, we easily deduce the fol-
lowing formula:∫

f(Zq;πq)π(πq)dπq =
Γ(bKq)

Γ(b)Kq

∏Kq

k=1 Γ(Nq
k + b)

Γ(nq + bKq)

where Γ is the Gamma function. Now, we can reformulate f(Xqq′ |Zq,Zq
′
;αqq

′
)

as:

f(Xqq′ |Zq,Zq
′
;αqq

′
) =

∏
(i,i′,k,k′)

(αqq
′

kk′)
Xqq′

ii′ 1Z
q
i
=k1Z

q′
i′

=k(1− αqq
′

kk′)
(1−Xqq′

ii′ )1Z
q
i
=k1Z

q′
i′

=k

=

Kq,Kq′∏
k,k′=1

(αqq
′

kk′)
Sqq′

kk′ (1− αqq
′

kk′)
Nqq′

kk′−S
qq′

kk′

with
Sqq

′

kk′ =
∑

(i,i′)∈Sqq′ X
qq′

ii′ 1Zq
i =k1Zq′

i′ =k

Nqq′

kk′ =
∑

(i,i′)∈Sqq′ 1Zq
i =k1Zq′

i′ =k
.

(19)

With the beta prior distribution on each αqq
′

kk′ , we get:∫
f(Xqq′ |Zq,Zq

′
; (αqq

′
))π(αqq

′
)dαqq

′
=

Kq,Kq′∏
k,k′=1

Γ(2a)

Γ(a)2

Γ(a+ Sqq
′

kk′)Γ(a+Nqq′

kk′ − S
qq′

kk′)

Γ(2b+Nqq′

kk′)
.

Finally, we obtain:

logmc(X,Z;MK) =

 ∑
(q,q′)∈E

|Aqq
′
|

 (log Γ(2a)− 2 log Γ(a))

+
∑

(q,q′,k,k′)

log Γ(a+ Sqq
′

kk′) + log Γ(a+Nqq′

kk′ − S
qq′

kk′)

−
∑

(q,q′,k,k′)

log Γ(2b+Nqq′

kk′)

+

Q∑
q=1

log Γ(bKq)−Kq log(b)− log Γ(nq + bKq)

+

Q∑
q=1

Kq∑
k=1

log Γ(Nq
k + b)


where Nq

k has been defined in Equation (18) and Sqq
′

kk′ and Nqq′

kk′ in Equation
(19)
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Asymptotic approximation Using the same arguments as in Daudin et al.
[2008] and Brault [2014], we obtain the following asymptotic approximation.
Assume that ∀q ∈ [[1, Q]], nq →∞, then :

logmc(X,Z;MK) = max
θK∈ΘK

log `c(X,Z; θK)− pen(MK)

where

pen(MK) =
1

2

Q∑
q=1

(Kq − 1) log(nq)

+
1

2

 ∑
(q,q′)∈Sqq′

|Aqq
′
|

 log

 ∑
(q,q′)∈Sqq′

|Sqq
′
|

 .

The first term comes from the application of the Stirling formula to the Gamma
function when approximating f(Zq;πq). The second term comes from a BIC
approximation of the part f(Xqq′ |Zq,Zq

′
;αqq

′
).
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