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Summary 

• We aimed at identifying which drivers control the spatio-temporal variability of fruit 

production in three major European temperate deciduous tree species: Quercus robur, 

Quercus petraea, and Fagus sylvatica.  

• We analysed the relations of fruit production with airborne pollen, carbon and water 

resources and meteorological data in 48 French forests over 14 years (1994-2007). 

• In oak, acorn production was mainly related to temperature conditions during the pollen 

emission period, supporting the pollen synchrony hypothesis. In beech, a temperature signal 

over the two previous years eclipsed the airborne pollen load.  

• Fruit production in Quercus and Fagus was related to climate drivers, carbon inputs and 

airborne pollen through strongly non-linear, genus-specific relations. 

• Quercus and Fagus also differed as regards the secondary growth vs. fructification trade-off. 

While negative relationships were observed between secondary growth and fruit production 

in beech, more productive years benefited to both secondary growth and reproductive effort 

in oak. 

Keywords: beech, temperate oaks, fructification, gross primary productivity, pollen, 

temperature, secondary growth. 
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Introduction 

Fruit production is a crucial step in the life cycle of trees (Silvertown 1980). A regular 

occurrence of fruit production is required for the natural regeneration of forests. Fruit 

production is also a pre-requisite for species migration whether natural or human-assisted 

(Vander Wall 2001; Benito-Garzon and Fernandez-Manjarres 2015; Koralewski et al. 2015; 

Aubin et al. 2016). In anemophilous perennial plant species such as forest trees, fruit production 

highly varies across years. The occurrence of a high production event synchronized among 

individuals from a regional population is known as a “masting” event (Kelly 1994; Koenig and 

Knops 2000; Kelly and Sork 2002; Wesolowski et al. 2015; Fernández-Martínez et al. 2017; 

Nussbaumer et al. 2016; Vacchiano et al. 2017). The hypotheses of predator satiation and 

maximization of pollination efficiency (i.e. higher seed/flower ratios in high-flowering years) 

have been proposed to explain the evolutionary emergence of masting (Kelly and Sork 2002; 

Satake and Bjornstad 2008; Pearse et al. 2016).  

The occurrence of a mast year depends on the successful development of a large mass of viable 

flowers and fruit (Smaill et al. 2011; Fernandez-Martinez et al. 2012; Kasprzyk et al. 2014; 

Pearse et al. 2014; Pearse et al. 2016; Monks et al. 2016). The development of flowers highly 

affects fruit production and, in temperate forest trees, it starts with the floral transition of 

dormant buds during the growing season that preceeds fructification (Miyazaki et al. 2014; 

Delpierre et al. 2016b). It is not perfectly clear which environmental cues or internal resources 

determine floral transition. Yet, available nitrogen has been demonstrated as a strong signal in 

Fagus crenata (Miyazaki et al. 2014), and can be inhibited by too high spring temperatures 

(Kon et al. 2005). Both carbon and nitrogen resources are required for bud development and 

flowering in spring (Han and Kabeya 2017), which occurs close to leaf-out, and they are mostly 

drawn from the tree reserves. Because pollination is a density-dependent process in self-

incompatible plants such as most forest trees, the efficiency of flower production is better in 

years when a large part of the tree population produces flowers (a process known as pollen 

coupling; Pearse et al. 2016). Density-dependence is further relaxed in years with high pollen 

phenological synchrony among trees (Koenig et al. 2015), which may depend on temperature 

conditions during bud burst (Bogdziewicz et al. 2017b). Adverse weather conditions (i.e. rain, 

high humidity, low wind) may affect pollen transport and compromise pollination (Kasprzyk et 

al. 2014), while late frost events may damage flowers (Vitasse et al. 2018). When pollination 

occurs, several hazards may compromise the formation of viable fruit. The least known phase 

occurs between pollination and fecundation; it lasts one to two months in temperate forest trees 
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and may be compromised by too high temperatures (Hedhly et al. 2007). Considering these 

biological facts, a relatively high number of studies have investigated the role of local climate 

in determining fruit production in temperate forest trees (mostly temperature, Sork and Bramble 

1993; Kelly et al. 2013; Pearse et al. 2014), as well as the role of air pollen concentrations 

(Kasprzyk et al. 2014) or climate conditions during pollen emission (Bogdziewicz et al. 2017b). 

Some studies even considered teleconnections (e.g. NAO, Fernandez-Martinez et al. 2017) as 

possible drivers of fruit production synchrony across stands at a continental scale (Vacchiano 

et al. 2017). However, the development of viable fruit following fecondation also requires 

carbon (mostly provided by photosynthesis; Hoch et al. 2013; Ichie et al. 2013) and nitrogen 

resources (Han et al. 2014), and non-limiting water (Misson et al. 2011). The impact of resource 

availability has been investigated more rarely on large datasets, albeit indirectly from the 

autocorrelation of fruit time series. 

European beech (Fagus sylvatica) has been described as a “flowering masting” species, i.e. 

flowering and the subsequent airborne pollen concentrations are the main limitations to fruit 

production (Kasprzyck et al. 2014; Bogdziewicz et al. 2017b). Previous-year temperatures, 

often in the form of temperature differences between year-1 and year-2 growing seasons, have 

also been invoked as a putative driver of fructification in beech (Bogdziewicz et al. 2017b; 

Vacchiano et al. 2017). However, their functional interpretation is still unclear (Kelly et al. 

2013; Pearse et al. 2014; Monks et al. 2016). A lower number of studies have addressed 

European deciduous oaks (Quercus petraea and Quercus robur). These studies reported a lower 

dependence of fruit production on pollen concentrations per se in oak (Kasprzyck et al. 2014), 

but evidenced an impact of pollination duration or temperature during the pollen season 

(Bogdziewicz et al. 2017b). 

In mast years, fruit production may represent a substantial amount of tree carbon productivity. 

In a mature beech forest, nut production averages 42% (10-79%) of annual wood production, 

and 12% (3-20%) of net primary productivity (Mund et al. 2010). In sessile oak, acorn 

production can reach 52% of annual wood production (Delpierre et al. 2016a). In beech, as 

opposed to oak that has small female flowers, the resource investment of non-fertilized female 

inflorescences is high from the start (Abe et al. 2016). This high resource cost of reproduction 

prompted researchers to formulate hypothetical resource-investment scenarios (Crone and Rapp 

2014; Pearse et al. 2016). Broadly, these scenarios can be categorized into (i) those involving 

differential allocation of current-year acquired resources (termed resource-matching, resource-

switching in Pearse et al. 2016), and (ii) those involving accumulation of resources over years 

(termed resource-storage and veto in Pearse et al. 2016). Recent studies demonstrated that the 
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carbon needed for fruit formation was mostly derived from current-year photosynthesis (Hoch 

et al. 2013; Ichie et al. 2013). This finding reinforces the idea that fruit act as a competing 

resource sink interacting with other organs in the resource economy of trees. Several studies 

tracing carbon allocation to different organs suggest that beech allocates less carbon to wood 

growth during mast years (Mund et al. 2010; Mueller-Haubold et al. 2013; Mueller-Haubold et 

al. 2015), whereas no reduced allocation to wood is observed in beech or oak in other reports 

(Alla et al. 2012; Hoch et al. 2013; Ichie et al. 2013). Similarly, studies linking fruit production 

and diameter growth yielded contrasting results, with a frequent negative link between these 

two variables in beech (Monks and Kelly 2006; Drobyshev et al. 2010; Hacket-Pain et al. 2015) 

and a positive one in oak (Askeyev et al. 2005; Perez-Ramos et al. 2010; Martin et al. 2015). 

Fewer data are currently available as regards other resources such as nitrogen. Studies on Fagus 

crenata showed that nitrogen reserve formation was lower in mast years (Han et al. 2014), and 

possibly compromised flowering in the following year (Miyazaki et al. 2014). This mechanism 

may at least partly explain the repeatedly reported negative one-year autocorrelation of fruiting 

time series in temperate trees.  

Previous papers established that beech and oak showed contrasting behaviours in terms of 

fructification, its proximate drivers (i.e. pollen vs. weather conditions), or the trade-off between 

reproductive effort and growth. However, they lack a clear ranking of the role of weather 

determinants, pollen limitation, and current- and previous-year resource availability in 

determining fruit production variability. These studies rarely addressed interactions among 

variables, thresholds, non-linear responses or resource availability, apart from indirectly 

including lag-1 autocorrelation of the fruit production time series. In this paper, we aim at filling 

this gap studying the influences of weather determinants, carbon resource availability, the 

airborne pollen load, and pollen-related meteorology on the spatio-temporal variability of fruit 

production over 14 years (1994-2007) in 48 European temperate beech (Fagus sylvatica L.) and 

oak (Quercus petraea and Q. robur) stands. We also assessed the link between fruit production 

and wood growth in these species to test for a growth versus fructification trade-off. 

 

Materials and Methods 

Sampling design 

Data were collected from 48 broadleaved stands of the French Permanent Plot Network for the 

Monitoring of Forest Ecosystems (RENECOFOR) (Ulrich 1995). The stands covered a wide 

range of environmental conditions (Fig. 1 and Online Resource 1). Each stand had a surface of 
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approximately two ha, with a central 0.5-ha fenced zone. The slope was less than 5 % in most 

stands, and elevation ranged from 20 to 1,400 m asl (mean: 350 m). The maximum soil water 

holding capacity (SWHCm, in mm) was estimated according to textural properties, soil depth, 

and coarse element percentages from two trenches per plot (Brêthes et al. 1997; Piedallu et al. 

2011). SWHCm ranged from 45 to 200 mm, with an average value of 120 mm (Online Resource 

1). 

Climate data 

Mean monthly temperatures and rainfall data were obtained from the 81 closest available 

stations of the French Climate Network (Météo-France) (Fig. 1). To estimate water supply over 

the 1994-2007 period, we first computed a monthly climatic water balance (CWB) by 

calculating the difference between rainfall (R) and potential evapotranspiration (PET, 

calculated with Turc’s formula) (Lebourgeois and Piedallu 2005). Secondly, we calculated a 

monthly soil water balance using SWHCm values and climatic data. The Thornthwaite formula 

(Online Resource 2) was chosen to compute soil water balance (Thornthwaite and Mather 1955) 

because this method gives accurate estimations of monthly water content fluctuations from a 

limited number of parameters and has been successfully used in previous ecological studies 

(Lebourgeois et al. 2013; Trouvé et al. 2015; Piedallu et al. 2016). A complementary dataset of 

meteorological variables at the hourly temporal scale was obtained from SAFRAN atmospheric 

reanalysis (with 8-km spatial resolution, Vidal et al. 2010). It included global radiation, rainfall, 

wind speed, air humidity, and air temperature. We used these variables for climate forcing in 

the CASTANEA model (see “Process-based simulation data” section).  

The NAO (North Atlantic Oscillation) refers to a meridional oscillation of atmospheric masses, 

with centers of action near the Icelandic low and the Azores high (Hurrell et al. 2003). Studies 

have already shown that NAO anomalies correlate with weather conditions at the continental 

scale (Mares et al. 2002; Hurrell and Deser 2010) and with local ecosystem functioning 

(Ottersen et al. 2001; Stenseth et al. 2003; Menzel et al. 2005; George 2014). Previous studies 

highlighted that NAO indices may be correlated with fruit production (Wright et al. 1999; 

Fernández-Martínez et al. 2017), so we also considered monthly NAO indices as candidate 

variables in our statistical modeling. The NAO index time series were downloaded from the 

Climate Prediction Center of the National Weather Service (NOAA, < 

www.cpc.ncep.noaa.gov/ >). 
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Annual fruit production 

Litterfall was collected seasonally from 1994 to 2007 (Peaucelle 2011). Ten collectors were 

distributed in the 0.5-ha fenced central part of each plot. Litter collectors were 0.5-m² square 

traps treated against U.V. radiation and designed with a water drainage system. A sifter (2x2 

mm) was placed at the bottom of the trap to retain litter. Trap distribution was regular, with 3 

(2) lines throughout the 0.5-ha squared (rectangular) plot. Depending on the stand, 3 to 5 

samplings were performed annually. The litter samples were separated according to organs: 

leaves, small branches (< 2cm diameter), and fruit (acorns and nuts) (Online Resource 3). All 

compartments were air-dried at 105° C for 24 hours before weighing. Seasonal data were 

aggregated over biological years from April 1 (i.e. the estimate of the start of the growing 

season, Peaucelle 2011) to March 31 of the following year. Litterfall mass values from sampling 

periods overlapping two consecutive biological years were split proportionally to the number 

of days belonging to each year. To ensure the robustness of the dataset, a given collection was 

considered as valid only if at least 8 out of 10 collectors were available on the plot. A biological 

year of collection was considered as valid only if less than 10 % of the days of the year and no 

autumn day (from September 1 to December 31) were missing. Finally, litterfall production 

was calculated by dividing the collected data by the total surface area of all the traps, and was 

then reported to one hectare. Forty-one stands were monitored for at least 10 years, and 12 

stands over the whole study period (1994 to 2007). Finally, totals of 347 and 219 annual fruit 

production data were made available for oak and beech, respectively (Online Resource 3). 

These data were calculated both as annual fruit biomass (kg ha-1 y-1) and fruit number (number 

of fruit ha-1 y-1). 

Pollen count data 

To assess the influence of pollen limitation, we used pollen count data from the “Réseau 

National de Surveillance Aérobiologique” (RNSA). The data consist of bi-hourly counts 

(aggregated to the daily time scale in the present case) expressed as the number of pollen grains 

per m3 of air, affiliated to a particular taxon (determined at the genus level, i.e. oak and beech) 

by microscopy analysis. The RNSA network consists of ca. 90 stations spread across 

continental France. For each forest stand, we estimated the daily pollen aerial concentration as 

the inverse-distance-weighted average concentration measured in all RNSA stations in a 100-

km radius (corresponding to 3.2 RNSA stations on average, 65 km away from a given stand). 
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For each site-year, we defined the start / peak / end of the pollen season as the day of year when 

5% / 50% / 95% of the cumulative annual pollen emissions were reached. 

Process-based simulation data 

We used the ecophysiological process-based model CASTANEA (Dufrêne et al. 2005; Davi et 

al. 2009; Delpierre et al. 2012) to simulate tree carbon (C) resource availability (Guillemot et 

al. 2014), in the form of gross primary productivity (GPP), net primary productivity (NPP), and 

tree internal C reserve concentrations. CASTANEA simulates the stand–atmosphere CO2 

exchanges at the half-hourly scale by combining photosynthesis, autotrophic respiration, carbon 

allocation, soil organic carbon, and soil hydrology sub-models. The model proved able to 

reproduce the interannual fluctuations of CO2 fluxes in European forests (Delpierre et al. 2012) 

as well as spatial (Guillemot et al. 2014) and interannual variability of aerial growth (Guillemot 

et al., 2017) in oak and beech. In this work, we used the CASTANEA parameterization 

developed in a previous work over the RENECOFOR network (Guillemot et al. 2014). Every 

year from 1994 to 2007, the hourly-to-daily simulated GPP, NPP, and C reserves were 

aggregated over different time periods (gC m-2 month-1 or season-1 or year-1). The C balance 

was simulated for all 20 beech stands, but only for 23 oak stands out of 28 because model input 

parameters were not available for all stands. 

Tree-ring chronologies 

Stands were mature (mean age: 104 years in 2007), with typical basal areas (means: 19 - 23 m-

2 ha) and dominant heights (means: 25 - 29 m) for broadleaved trees in managed high forests 

(Online Resource 4). To study the relationship between fruit production and growth, trees were 

cored in 2009. Unfortunately, it was not possible to core all the stands and all the trees as we 

did in 1997 (Lebourgeois et al. 2005; Mérian et al. 2011). Thus, among the 48 stands, a sub-

sample of 30 stands was cored (25 oak stands and 5 beech stands) (Online Resource 4). In each 

plot, 10 dominant trees were cored (two cores per tree, 500 cores for oak, 100 cores for beech, 

8,400 ring measurements) and cross-dated using pointer years (Mérian et al. 2011). Raw tree-

ring widths were standardized to remove the well-known strong signal linked to cambial age, 

stand characteristics and other resource variables (soil chemistry, soil water balance…) (Online 

Resource 5). To this aim, tree-ring widths predicted by the RandomForest model (see Statistical 

Modeling section) were subtracted from the observed values to define residual tree-ring widths 

(i.e. standardized values, ResRW). ResRW data were then used as an explanatory variable to 

test for the growth vs. fructification trade-off.  
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Statistical Modelling  

We used the non-parametric statistical method RandomForest (RF) to model the spatio-

temporal variability of fruit production. RF is a machine-learning algorithm based on 

bootstrapped decision trees. Unlike classical regression techniques for which the relationship 

between the response and predictors is pre-specified (for example, straight line, quadratic) and 

the test is performed to prove or disprove the relationship, RF assumes no such relationship. 

Since no assumptions are made about the nature of the relationships among the response and 

predictor variables, RF allows for the possibility of interactions and nonlinearities among 

variables. Consequently, RF is effective in uncovering structure in data with hierarchical or 

non-additive variables. For all these reasons, there has been increasing interest in the use of 

RandomForest techniques in ecological studies within the last 10 years (Breiman 2001; Liaw 

and Wiener 2002; Lin and Jeon 2006; Prasad et al. 2006; Strobl et al. 2009). Briefly, RF 

classifies a dependent variable (fruit production in the present case) among groups defined as a 

combination of intervals of multiple predictors, resulting in a so-called “decision tree”. RF 

builds each decision tree with both randomly chosen dependent variables and predictors (mtry). 

In fact, mtry is the randomly chosen subset of the total number of initial predictors used to find 

the best split at each branching node. By fitting a high number (ntree) of training individual 

decision trees (i.e. a “forest” of decision trees), RF captures the variance of several predictors 

concomitantly, so that a high number of variables can participate in the prediction. This 

optimizes predictive accuracy in the final tree (Breiman 2001), which is selected on the basis 

of its predictive ability quantified from data unused during the training phase (“out-of-bag” 

(OOB) data). Here, the optimized values for mtry and ntree were 4 and 2,000, respectively 

(Oshiro et al. 2012). RF gives two complementary variable accuracy values (Ishwaran 2007; 

Ehrlinger 2015): variable importance (vimp) and minimal depth (depth). If a predictor is 

important in the model, then randomly assigning values for that predictor should worsen 

predictions. vimp expresses this effect, with a higher vimp value indicating a more important 

predictor. Depth assumes that the most discriminant main predictors are those that most 

frequently split nodes nearest to the trunks of the trees where they partition large groups in the 

dataset. Lower values of depth indicate predictors important in splitting large groups of data. 

RF returns the RMSE of adjusted values calculated on the training data. It also returns the 

RMSE of predicted values (OOB error). It is a valid estimate of the test error for the model, 

since the response for each observation is predicted using only the trees that were not fit using 

that observation (OOB predictions). RF gives also the percentage of explained variance (i.e. the 
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measure of how well OOB predictions explain the target variance of the training set). For the 

best predictors, we drew partial dependence plots (PdP), which display the predicted response 

(Y) as a function of one of the predictors (X). PdP gives a graphical depiction of the effect of 

X, highlighting both the form and, if any, the threshold of the predicted response (Ehrlinger 

2015). We also drew conditioning plots (coplots) to highlight how (Y) depended on two 

variables (X1, X2). Y was examined as a function of X1 conditional on X2 within n groups of 

X2 intervals. These methods were applied using the RandomForests (Breiman 2001) and 

ggRandomForests packages (Ehrlinger 2015) within R 3.4.3 statistical software.  

Putative candidate variables of fruit production 

To apply RF modelling, we selected stands and years with a complete dataset of potential 

predictors. Thus, among the initial 48 stands and 566 fruit biomass site-years, analyses were 

performed on 43 stands (20 beech stands and 23 oak stands) accounting for 460 site-years (204 

and 256, respectively). For climate data, we studied a pool of 285 candidate variables 

combining values or differences from current and previous years (Kelly et al. 2013; Vacchiano 

et al. 2017) at an annual, seasonal, or monthly scale for rainfall, temperature, wind speed, global 

radiation, PET, CWB… (See Climate Data section). We also included monthly NAO values 

(12 values per year). C resource availability was assessed from a pool of 122 simulated GPP, 

NPP and C reserves (gC m-2 month-1 or season-1 or year-1). For pollination, we studied seven 

variables: total annual pollen counts (gr m-3 y-1), mean daily number of pollen grain (over the 

whole year or over the period of pollen emission), dates of the (i) onset, (ii) peak, and (iii) end 

of pollen emission, and duration (number of days) of emission. Atmospheric pollen 

concentrations do not provide any direct information on pollination success, so we used the 

pollen concentration time series and climate data to define a set of “pollen meteorology 

indexes”. We hypothesized that warm and dry conditions during the period of pollen flight 

would generally increase pollination success, allowing for longer pollen residence time in the 

atmosphere (Kasprzyck et al. 2014). Hence the 108 pollen meteorology indexes were computed 

as the average temperature (daily min, max, or average), relative humidity and average rainfall, 

or number of days in 1- to 60-day windows from (i) the start date of pollen emission, and (ii) 

the observed peak date of pollen emission. Finally, for oak, current and previous-year detrended 

tree-ring width (ResRW) was also considered as an explanatory variable for acorn production. 

We further tested the importance of stand characteristics, phenological variables (leaf 

unfolding, leaf colouring, growing season length (Lebourgeois et al. 2010), and soil nutritional 

values (pH, carbon-nitrogen ratio, saturation rate, nitrogen and phosphorus contents in the first 
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two soil horizons) (Brêthes et al. 1997). As those variables never entered as discriminant 

predictors of fruit production in the RF models, we excluded them from the rest of the analysis. 

Finally, we studied 524 variables as predictors of the fruit produced annually throughout all 

site-years. We performed RF modelling at the genus scale (i.e. considering F. sylvatica on the 

one hand and grouping Q. petraea and Q. robur on the other hand). For oak, we mixed data 

from the two species because (i) pollen data were only available at the genus level, (ii) too few 

data were available for Quercus robur to compute an accurate specific model, and (iii) similar 

fruiting patterns were observed between Q. petraea and Q. robur stands growing under similar 

ecological conditions (data not shown). We designed five nested RF models for oak and beech 

according to the nature of the candidate predictors (Table 1): model C included only climate 

data; model CG included simulated carbon balance (GPP, NPP, tree C reserves) data in addition 

to model C; model CGP included pollen data in addition to model CG; model CGPCP included 

pollen meteorology data in addition to model CGP; model CGPW (for oak) included tree-ring 

width data in addition to model CGPCP. All these models included previous-year fruit 

production to account for a possible lag-1 effect (i.e. a negative auto-correlation). Following 

previous works (Kelly et al. 2013; Vacchiano et al. 2017) that evidenced a strong influence of 

a temperature difference signal, all models included the ∆T(Jun to Jul)-1-2 variable (that is, the 

difference in average June-July temperatures between the last-but-one year (year-1) and the 

last-but-two year (year-2) preceding the current year; Vacchiano et al. 2017). The functional 

interpretation of ∆T is still unclear and possibly related to resource availability (Vacchiano et 

al. 2017) and to resource-limited floral induction (Monks et al. 2016), so we further included 

the year-1 and year-2 simulated components of the carbon balance in all models but the C 

model, which only included climate data (see above). As parsimony is an underlying 

requirement in the modeling effort to reduce the risk of overfitting (Evans et al. 2009), only the 

six best candidate predictors were retained for each final model. Relationships among predictors 

were also analyzed to avoid collinearity problem (Dormann et al. 2013) (Online Resource 15). 

As RF models gave qualitatively similar results for fruit biomass and fruit number (i.e. similar 

environmental drivers, data not shown), we chose to only present fruit biomass models. 
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Results 

Fruit production and airborne pollen concentrations 

Oak stands produced an annual mean of 251 kg of acorns per ha (Fig. 2a), with an average 

amount of ca. 250,000 acorns ha-1 y-1 (Online Resource 3). Beech stands produced a mean of 

174 kg of nuts ha-1 y-1 (Fig. 2b), i.e. an average number of more than one million nuts per ha 

(Online Resource 3). For all three species, fruit represented only around 5 % of the total amount 

of litterfall (Online Resource 3), and no link emerged between stand dendrometric 

characteristics and fruit production.  

Although the total amounts of nuts was highly variable among stands, a fruit-bearing cycle with 

a two-year return period appeared in beech (Fig. 2b and 3b). A high-production year was 

followed by a reduced production year (lag-1 autocorrelation = -0.54, p<10-9, Online Resource 

6), with high synchronization among populations (Online Resource 7). The highest across-

population median value was observed in 2004 (573 kg ha-1) and the lowest in 2005 (2.9 kg ha-

1).  

Oak fruit production appeared highly variable over the years for a given stand as well as across 

stands. The oak fruit-bearing cycle appeared quite different with (i) a less pronounced 

bisannuality of fruit production as compared to beech (but still on average a significant lag-1 

autocorrelation = -0.14, p<0.03, Online Resource 6), and (ii) no clear synchronization among 

populations (Fig. 2a and 3a) (Online Resource 7). Some stands produced acorns relatively 

regularly, whereas others produced acorns at very irregular intervals. For these stands, a long 

period (5 to 10 years) with no or very low acorn production was followed by a very high 

production year. The highest median fruit production values were observed in 2007 (438 kg ha-

1). That year was also the most “synchronized” year: high production (up to 125 % of the mean 

value) was observed for more than 60 % of the stands. 

The airborne pollen concentration time series reconstructed for oak (Fig. 2c) and beech (Fig. 

2d) displayed contrasted patterns. Whether considering daily means or annual sums, airborne 

pollen concentrations were one order of magnitude higher in oak than in beech. In beech, air 

pollen concentrations were clearly biennial (Fig. 2d and 3d) (lag-1 autocorrelation = -0.41, 

p<10-7, Online Resource 6); that behaviour was not so marked in oak (lag-1 autocorrelation = -

0.23, p<0.01, Online Resource 6). In beech, pollen emission was synchronized across stands 

(Fig. 2c and 3c).  
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Ecological determinism of fruit production 

Oak stands 

The best RF models (CGPCP and CGPW) explained around 16% of the spatio-temporal 

variance of acorn biomass (Table 1 and Fig. 4). The mean temperature in the 16-day period 

following the onset of pollen emission (Tpol16) and spring (April) temperature were the most 

important predictors, followed by previous September temperature, summer and spring water 

balance, and August GPP. In the CGPW model, RF also linked current-year wood growth and 

fruit crop. Whatever the model, neither the airborne pollen concentration nor previous-year 

resources (under the form of simulated components of the carbon balance or previous-year 

acorn crop) were identified as discriminant predictors of acorn production.  

Partial dependence plots showed strong nonlinearity of the acorn production response, with a 

sharp shift in predicted biomass for air temperature thresholds of 13°C for the onset of pollen 

emission, 11°C in April, and 16.5°C in previous September (Fig. 4). Warm temperatures during 

these periods were associated with increased acorn biomass. The highest marginal effect was 

observed during pollen emission, when a 13°C to 17°C rise more than tripled acorn biomass 

(Fig. 4). In April, a 2.5-increase in predicted biomass was observed when the temperature rose 

from 11°C to 15°C. Given the major role of these drivers, the partial dependence of the 

remaining variables looked flat (Fig. 4). Lastly, predicted fruit biomass was all the higher as 

annual radial growth increased (ResRW > 0) (Fig. 4). Conditioning plots showed that the 

interaction of increasing temperatures in the 16-day period following the onset of pollen 

emission (Tpol16) with increasing April temperatures, summer GPP or summer CWB (less 

negative, i.e. wetter, values) favored a high fruit biomass production (Fig. 5a, c-d). Similarly, 

the co-occurrence of both high spring temperatures and high radial growth was observed at site-

years of high acorn production (Fig. 5b). Overall, the RF models overestimated observed low 

values and underestimated observed high fruit production values (Online Resource 8). 

 

Beech stands 

The proportion of variance explained by the RF models was higher for beech (~ 45%) than for 

oak (~ 16%) (Table 1 and Fig. 6). The RF models highlighted a high dependency of fruit 
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production on temperature, followed by pollen and GPP. Fruit production was closely linked to 

thermal conditions, (i) during the previous years through ∆T(Jun to Jul)-1-2  (i.e. the difference 

in average June-July temperatures between year -1 and -2) and T(Jun-Jul)-2 (i.e. the average 

June-July temperature (in °C) in year -2), and (ii) in February and October of the current year. 

Unlike for oak, the airborne pollen concentration and NAO variables appeared relevant to 

predict fruit biomass, but no pollen meteorology indexes were selected by the RF models (Table 

1 and Fig. 6). Lastly, RF models identified late-season GPP (November) as a marginal predictor 

of fruit production.  

Among the predictors selected to explain the variance in beech fruit production, ∆T(Jun-Jul)-1-

2 was clearly dominant, and made the partial dependence of the remaining variables look rather 

flat (Fig. 6). A positive difference in summer temperatures between the two previous years (i.e. 

the summer of year -1 warmer than the summer of year -2) led to a ~ 3-fold fruit biomass 

increase (Fig. 6). Warmer conditions in current February and October also promoted annual 

fruit production. The respective thresholds were 6°C and 11°C, corresponding to rises in 

biomass values of 45% and 67%. In contrast, a warm summer two years before fruit production 

(~17°C threshold) decreased annual production by 40% (Fig. 6). Finally, daily values of 

airborne pollen concentrations above 5 gr m-3 led to a 30% increase of biomass. Increasing 

November GPP also promoted biomass, with a threshold value of 5 gC m-2 (+20%, Fig. 6). 

Conditioning plots showed that when summer temperature differences (∆T) were negative (i.e. 

when the summer of year-1 was colder than the summer of year-2), the fruit biomass remained 

low whatever the values of the other parameters (Fig. 7a-c). Thus, pollen and autumn 

environmental drivers (temperature in October or GPP in November) promoted biomass more 

efficiently in the case of positive differences in summer temperatures between the two previous 

years. Similarly to oak, the RF models overestimated observed low values and underestimated 

observed high fruit production values (Online Resource 9). 
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Discussion 

1. Contrasting determinants of fruit production in oak and beech 

In oak, fruit production in year y increased with current spring temperatures (Fig. 4), as already 

observed across the Quercus genus under both warm temperate (Fearer et al. 2008) and 

Mediterranean climates (Koenig et al. 1996; Pearse et al. 2014). More precisely, we evidenced 

that temperatures during the 16-day window following the start of pollen emission was a key 

predictor of fruit production in oak. These results support the pollen synchrony hypothesis 

already reported in oak (Bogdziewicz et al. 2017a, b for Q. petraea, Q. robur and Q. ilex and 

Koenig et al. 2015 for Californian oaks). Moreover, they are reinforced by the negative 

correlation observed in our data between pollen emission duration and temperature (Spearman 

ρ=-0.53, p<10-9, Online Resource 10). Interestingly, we did not identify pollen count data as a 

predictor of fruit production in oak; this suggests that the measured regional air pollen 

concentration was not a critical determinant of fruit production in our dataset. Similar 

observations were made on oaks in Eastern (Kasprzyk et al. 2014; Bogdziewicz et al. 2017b) 

and Mediterranean Europe (Fernandez-Martinez et al. 2012), in line with the decoupling of 

flower and fruit production (Ducousso et al. 1993; Bogdziewicz et al. 2017b) in these species.  

Oaks are highly self-incompatible (Ducousso et al. 1993). Therefore we hypothesize that years 

of high synchronization of pollen emission among trees is characterised by high competition 

among pollen grains emitted by genetically (hence phenologically) distant individuals, 

favouring pollination success (Almeida-Neto and Lewinsohn 2004; Savolainen et a. 2007). On 

the other hand, in years of low synchronization, female flowers would more frequently be 

pollinated by pollen emitted by genetically similar trees, belonging to their phenological class 

(e.g. “early” or “late” tree), yielding a lower pollination success due to higher genetic 

resemblance. More generally, we should point out that most of the discussions about pollination 

success (Pearse et al. 2015, Bogdziewicz et al. 2017a, b) take into account pollen emissions, 

but rarely take into account female flower responsiveness (Rapp et al. 2013). Yet this latter 

point deserves attention because the development of male and female flowers is asynchronous 

(protandry) in oak, and the time window of pistillate flower responsiveness is rather short 

(Ducousso et al. 1993). Thermal dependence of flower formation can be hypothesized to 

interpret the positive dependence of fruit production of year y September temperatures on year 

-1 (y-1) September temperatures (Fig. 4), but finds no direct support in the literature. 
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Aside from the prominent influence of temperature, our results show that oak fruit production 

may be limited by resource (carbon and water) availability. We evidenced a positive 

dependence of acorn production on the August carbon (GPP) and water availability of the 

current year, when the phenological synchrony limitation is released (Fig. 5). This result is 

coherent with data showing that the mass development of acorns occurs mostly in August-

September in northern temperate oaks (Sharp and Sprague 1967; Bonnet-Masimbert 1984; N. 

Delpierre, unpublished results on sessile oak). With respect to carbon, these results confirm the 

role of current-year photosynthesis (Hoch et al. 2013, Ichie et al. 2013, Han and Kabeya 2017), 

as opposed to dependence on carbon reserves accumulated during previous years. RF analysis 

indeed did not retain simulated carbon reserves or previous-year GPP or previous-year acorn 

crop as influent predictors of current-year acorn production. The small but positive influence 

of the August water balance was not particularly expected in these mesic forests (as opposed to 

its usual mention under Mediterranean climates, e.g. Perez-Ramos et al. 2010, Bogdziewicz et 

al. 2017a), and will deserve further investigations. It may echo the higher sensitivity of organ 

growth to water limitation, as compared to the sensitivity of photosynthesis, (Hsiao and 

Acevedo 1974; Körner, 2015), reported for wood growth in mesic conditions (Delpierre et al. 

2016a). 

In beech, our results confirm a prominent relationship with the temperature differential index 

(∆T) of the two previous years, as initially proposed by Kelly et al. (2013) and reported in 

Vacchiano et al. 2017. The functional interpretation of temperature differential indexes has been 

discussed by Pearse et al. 2014. These authors showed that the success of ∆T to explain 

interannual variability of Quercus lobata fruit production was “not as a cue but rather explained 

by its close relationship to the proximate drivers that have a direct, mechanistic relationship 

with acorn crop size”. The proximate drivers in question were temperature during previous 

April (related to the pollen coupling hypothesis) and the previous-year acorn crop (related to 

the resource-limitation hypothesis). Our RF modelling approach included putative predictors 

related to both sets of hypotheses (i.e. pollen weather conditions for pollen coupling, and 

simulated C resources in the previous years for resource-limitation). The fact that these 

variables were not included in the final RF models (Table 1) suggests a low impact of these 

drivers on fruit production in beech, leaving open the question of the functional meaning of ∆T 

(Kelly et al. 2013). We further noticed that removing ∆T or T from the set of putative drivers 

over the previous years did not allow for previous-year resource variables to enter the RF model, 

whether simulated from CASTANEA or measured on the previous year crop. This did not 
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support the resource-limitation or resource-signalling hypothesis (postulated e.g. in Vacchiano 

et al. 2017). However, we highlighted that a large part of our C-resource variables were 

simulated, not measured (except on previous year crops). Although the model we used for 

simulations fitted well with measured C flux (Delpierre et al. 2012), wood growth (Guillemot 

et al. 2017) and C reserve (Davi et al. 2009) data, its evaluation in the RENECOFOR stands 

remained partial. Therefore we cannot be fully sure about the validity of the C-resource data 

used in the RF approach. We did not include simulated N resources (Han et al. 2014) in our 

analyses because CASTANEA simulations of the N cycle still need validation against local 

data. 

Besides the influence of ∆T, we evidenced positive relationships between fruit production in 

beech and current-year February and October temperatures, as well as with November GPP 

(Fig. 6). The latter was not particularly expected because (i) only a small part of fruit production 

is shed in November in beech (Lebret et al. 2001), and (ii) fruit maturation (i.e. fruit mass 

increase) is reported to occur much earlier, in July and August (Oswald, 1984). Interestingly, 

the ∆T variable fully eclipsed the role of the airborne pollen load, which appeared as the most 

important predictor of fruit production in beech (Kasprzyk et al. 2014; Bogdziewicz et al. 

2017b) when ∆T was not taken into account (data not shown, but in this “no-∆T” model, the 

R²=0.28 was much lower than in the present model R²>0.40, Table 1). In both cases (i.e. 

considering ∆T or not in the RF model), we observed a clear threshold-type dependence of fruit 

production on the airborne pollen load (Fig. 6). The average beech airborne pollen 

concentration in the RNSA data (7 grains m-3 of air) was one order of magnitude lower than for 

oak (41 grains m-3 of air), consistent with other datasets accounting for the relative abundances 

of tree species (Geburek et al. 2012). We hypothesized that these low pollen loads reduced the 

probability of pollination (Lyles et al. 2015) and in turn fructification in beech. Beech airborne 

pollen loads showed a distinct biennial pattern (Fig. 2d and 3d), which echoed the bienniality 

of floral initiation already reported in this species (Bonnet-Masimbert 1984). Bienniality is 

possibly caused by hormonal inhibition of reproductive bud initiation during a year of fruit 

production, similarly to observations in orchard trees (Mc Laughlin and Greene 1991). 

 

2. Descriptive power of statistical analyses for fructification time series 

We chose to work on quantitative, continuous fructification data, contrary to other approaches 

based on semi-quantitative categorical tree crop data (Drobyshev et al. 2010; Hacket-Pain et al. 
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2015; Vacchiano et al. 2017). Whichever the data type (quantitative or categorical), analyses of 

long-term forest tree fructification time series are characterised by their low descriptive power. 

A review of the literature showed that the percentage of variance in the fructification time series 

explained by statistical models steeply decreases with the number of site-years (Online 

Resources 11 and 12). This pattern probably arose from the progressive reduction ability of 

statistical models to describe datasets of increasing variance related to environmental conditions 

and/or population ontogeny or genetic differentiation. As we aimed to describe spatio-temporal 

variation of fruit production across temperate forests, we gave the opportunity to our machine-

learning approach to include both spatial (stand age, dendrometric measurements, soil nutrient 

and water reserve characteristics) and spatio-temporal (pollen, weather-related and simulated 

carbon fluxes) predictors. Since spatial predictors were systematically excluded by the RF 

algorithm, we can conclude that populations cannot be differentiated based on the site 

characteristics we tested.  

Another source of variance that possibly affected the descriptive ability of our approach is the 

presence of noise in both the dependent variables (fructification time series) and predictors. The 

average amount of fruit produced per stand area unit was difficult to measure in forests1 (Online 

Resource 13), notably in tree species presenting pulsed intermittent fruit production 

characterised by a very large amplitude. Contrary to most published studies, we worked with 

natural quantitative biomass data (not log-transformed or categorical data, Online Resource 11). 

We believe that an accurate description of the spatio-temporal variability of fruit production 

(which is by essence highly variable, hence heteroscedastic, in temperate forests) will be best 

approached using quantitative biomass data because they preserve the natural variability of the 

signal. This natural variability needs to be described if we are to extrapolate the results in a 

quantitative mechanistic framework aimed at understanding the impact of fructification on 

ecosystem functioning. The RF framework we used for our analysis was a non-parametric 

method, therefore free of any assumption about data distribution (Breiman 2001).  

The pollen count data used as predictors were not measured in forests, but in urban areas located 

4 to 101 (mean 65) km from the RENECOFOR stands. For beech, the overall cross-site 

synchronicity of the pollen time series (54% of site pair combinations yielded significant 

                                                           
1 e.g. intra-stand spatial variation of fruit production reached an average coefficient of variation of 106% across 
ten litter traps representing a 2.5-m² sampling area over four years of moderate to good acorn production (2013-
2016) in a temperate sessile oak forest (FR-Fon ICOS research station, www.barbeau.u-psud.fr) (Berveiller D, 
Delpierre N. and Dufrêne E., unpublished data). 
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correlations of their pollen rank time series) gave us confidence in the use of distant pollen data 

as a proxy for local forest pollen concentrations. Pollen time series were much less synchronous 

across oak stands (23% of stand pair combinations yielded significant correlations of their 

pollen rank time series). Such spatial heterogeneity may have compromised the use of distant 

pollen measurements as representative estimates of local pollen concentrations. 

 

3. Assessing the hypothesis of a growth vs. reproduction trade-off 

The hypothesis-testing of a trade-off between traits is often impaired by multiple collinearities 

among the candidate traits and environmental variables (Knops et al. 2007; Hacket-Pain et al. 

2015). To avoid such a hurdle, we first standardized tree ring width data (TRW, a proxy for tree 

secondary growth, Online Resource 5) and thereafter used ring width indexes as predictors in 

the RF model. We observed a positive link between growth and the stand reproductive effort in 

oak (Fig. 4), so that no trade-off was observed in this dataset between these two carbon sinks. 

Such positive relationships have already been observed in both temperate and Mediterranean 

Quercus species at the population level (Askeyev et al. 2005; Perez-Ramos et al. 2010; Alla et 

al. 2012; Martin et al. 2015), while negative relationships have also been reported at the 

individual tree level (Martin et al. 2015). Together with the identification of positive links 

between summer (August) carbon and water availability on fruit production (Fig. 5), these 

results support the hypothesis that resource availability is an important driver of plant 

production in Quercus species: “good” production years favour structural C investments in 

multiple tissues (Perez-Ramos et al. 2010).  

Our dataset was more restricted for beech stands, with only 66 site-years’ worth of TRW data 

collected in only 5 stands, so that we did not include this predictor in the main analysis. Yet, 

the RF analysis conducted on this shorter dataset revealed an opposite pattern in beech as 

compared to oak (Online Resource 14). In beech, the link between secondary growth and 

reproductive effort was negative. This confirms a trade-off between these two traits, as already 

exposed in the literature for this species (Drobyshev et al. 2010; Mund et al. 2010; Hacket-Pain 

et al. 2015), and more generally in the Fagus genus (Kon et al. 2005).  

Finally, since previous-year C resources were not selected in the fruit production models, the 

hypothesis of C-resource accumulation as a necessary condition for fruiting (termed resource-

storage in Pearse et al. 2016) is not supported by our results. 
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Conclusions and perspectives 

We tested the influence of weather conditions, airborne pollen (under the form of both pollen 

load and pollen climatology), and carbon and water resources as putative predictors of fruit 

production. In oak, our results confirmed that fruit production was linked to temperature cues, 

and further evidenced a marginal positive dependence on current summer carbon and water 

resources. Temperatures during the pollen emission period were the best predictor of fruit 

production, supporting the pollen synchrony hypothesis based on an unprecedented large 

dataset (see Bogdziewicz et al. 2017b for evidence on a smaller dataset). In a previous study 

conducted on the same tree populations, we identified carbon acquisition as the main  ̶ but not 

sole  ̶  driver of wood production in oak (Guillemot et al. 2015). Since the role of carbon inputs 

appeared to be of secondary importance as regards fruit production, our results point to a 

differential role of resource (carbon) availability in the limitation of organ (wood vs. fruits) 

growth in oak. In beech, our results confirmed earlier studies reporting a trade-off between 

secondary growth and reproductive effort. We further confirmed that fructification of beech 

was primarily related to the differential summer temperature index (∆T, Kelly et al. 2013). Our 

results add to the discussion relative to the interpretation of the ∆T index since the RF approach 

did not select variables of previous-year resources, whether under the form of simulated C 

fluxes from the two preceding years or the form of previous-year fruit crop, considered jointly 

with ∆T in the same RF model or separately from ∆T in another RF model. Yet, these variables 

have been found or hypothesized as correlated with the ∆T index (Monks et al., 2016; 

Vacchiano et al. 2017). When ∆T was not taken into account, the RF model pointed to the 

amount of airborne pollen as the best predictor of fruit production in beech. All processes 

involving pollen, i.e. initiation and maturation of male flowers, anther dehiscence, pollen flight, 

and pollination, respond to environmental cues. Internal (carbon and/or nutrient resource) tree 

limitations also respond to environmental cues, but they remain largely unknown and deserve 

further investigations.  

Our study aimed to understand the sources of variability of fruit production in temperate 

deciduous trees throughout large spatial and temporal scales. To this aim, we used climate, C-

resource and pollen-related variables aggregated from months to years. We believe that further 

progress could arise from the identification of finer time windows, in relation to flower/fruit 

development phenophases (e.g. see Sharp and Sprague 1967).  
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Finally, the formulation of a realistic process-based model of fruit production requires further 

work. This is obvious when considering the low to moderate share of variance explained by the 

non-parametric RF method across our large dataset (ca. 16% and 45% of variance in the fruit 

signals explained in oak and beech, respectively). Candidate approaches for investigation will 

notably imply refining the coarse description of resource availability currently used in resource-

budget models (Abe et al. 2016). For example, these models will have to be coupled with 

ecophysiological models able to simulate the dynamics of carbon, water (Delpierre et al. 2012; 

Guillemot et al. 2017), and nutrients (notably N; Han and Kabeya 2017) at the individual scale 

(Oddou-Muratorio and Davi, 2014).  
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Legends of the Figures and Tables 

Fig. 1 Geographical location of the 48 broadleaved stands of the RENECOFOR network and 

the 81 climatic stations of the Météo-France network. Black circles: 28 Quercus plots (9 

Quercus robur and 19 Quercus petraea plots); Grey triangles: 20 Fagus sylvatica stands; 

Crosses: 81 climatic stations (36 with rainfall (R) only; 33 with temperatures (T) only; 12 with 

both R and T (Source: Météo-France)).  
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Fig. 2 Interannual variability of fruit biomass production (a, b) and air pollen concentrations (c, 

d) in the French temperate deciduous forests of the RENECOFOR network. Grey lines depict 

measured (fruit) or inferred (pollen) data at the individual stand level. The black line depicts 

interannual variation of the median value, established across stands. 
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Fig. 3 Periodograms of fruit biomass production (a, b) and air pollen concentration (c, d) time 

series in French temperate deciduous forests of the RENECOFOR network. Grey lines depict 

established periodograms at the individual stand level. The black line depicts interannual 

variation of the median value, established across stands. 
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Fig. 4 Partial dependence plots of the six best significant predictors for predicted acorn biomass 

in the 23 oak stands (n=256 data) for the CGPW model. Each plot gives a graphical description 

of the effect of the predictor and highlights threshold response effects. The last graph gives 

VIMP and DEPTH values for each predictor (sorted from VIMP values). See text and Table 1 

for details. 
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Fig. 5 Conditioning plots of fruit production in the 23 oak stands (n=256 data). Predicted fruit 

biomass (kg ha-1 y-1) as a function of the mean temperature during the first 16 days of pollen 

emission (Tpol16 in °C) stratified by [a] April temperatures (°C), [b] tree-ring growth (ResRW, 

no unit), [c] Climatic Water Balance in August (mm) or [d] Gross Primary Productivity in 

August (gC m-2) (see text for details). 
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Fig. 6 Partial dependence plots of the six best significant predictors for nut biomass in the 20 

beech stands (n=204 data). Each plot gives a graphical depiction of the effect of the predictor 

and highlights threshold response effects of the CGP* model. The last graph gives VIMP and 

DEPTH values for each predictor. See text and Table 1 for details. 
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Fig. 7 Conditioning plots of fruit production for the 20 beech stands (n=204 data). Predicted 

fruit biomass (kg ha-1 y-1) as a function of summer temperature (mean June and July) differences 

between years -1 and -2 (∆T in °C) stratified by mean daily air pollen concentrations during the 

emission period (gr m-3) [a], current mean temperature in October (°C) [b], or Gross Primary 

Productivity in November (gC m-2) [c] (see text for details). 
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Table 1. Summary of the different RandomForest models obtained for the two species and fruit 

biomass (Biom. in kg ha-1 y-1). Each model gives the percentages of explained variance, and 

the RMSEs on the adjusted and predicted values obtained with the six best predictors. For the 

retained predictors: 1 or 2 = previous years (-1= one year, -2 = two years); capital letters: 

parameter type; small letters: month or period (except for PolSeas and ResRW). jas = mean 

value from July to September; as = mean value from August to September; Tpol16 = mean 

temperature during the first 16 days of pollen emission (in °C). ∆T(Jun to Jul)-1-2 = Difference 

(in °C) between mean June to July summer temperatures in year -1 and year -2; T(Jun-Jul)-2 = 

Difference (in °C) between mean temperatures in June and July in year -2; PolSeas = mean 

daily number of pollen grains emitted during the pollen emission period (gr. m-3). Fruit number 

results (numbers of fruit ha-1 y-1) were similar but with higher percentages of explained variance 

(18.2 to 26.8 for Quercus, and 41.6 to 48.4 for Fagus). CGP*: model without NAO values. 
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% expl.
Nb Climate GPP-NPPPollen Climate Pol groWth var. adj. pred.

C 285 285 x x x x 13.6 173 381 Tapr CWBaug CWBapr PETjas-1 Tjas-1 Tas
CG 407 285 122 x x x 14.7 173 379 Tapr GPPas CWBaug Tsep-1 Taug-1 CWBapr

CGP 414 285 122 7 x x
CGPCP 522 285 122 7 108 x 16.2 169 375 Tpol16 Tapr Tsep-1 CWBaug CWBapr GPPaug
CGPW 524 285 122 7 108 2 16.1 168 373 Tpol16 Tapr ResRW Tsep-1 CWBaug GPPaug

% expl.
Nb Climate GPP-NPPPollen Climate Pol groWth var. adj. pred.

C 285 285 x x x x 44.2 106 242∆T(Jun to Jul)-1-2 Toct Tfeb T(Jun-Jul)-2 NAOapr PETfeb
CG 407 285 122 x x x 46.3 104 238∆T(Jun to Jul)-1-2 Toct Tfeb T(Jun-Jul)-2 GPPnov NAOapr

CGP 414 285 122 7 x x 43.1 108 246∆T(Jun to Jul)-1-2 Toct PolSeas T(Jun-Jul)-2 Tfeb NAOapr
CGP* 402 273 122 7 x x 42.9 108 246∆T(Jun to Jul)-1-2 Toct Tfeb PolSeas T(Jun-Jul)-2 GPPnov

CGPCP 522 285 122 7 108 x idem CGPidem CGP

Pool of candidate predictors

Type model

Quercus petrae and robur (23 stands and 256 data)
RMSE Retained predictors

(sorted by decreasing vimp values)
Pool of candidate predictors

idem CG idem CG

Fagus sylvatica (20 stands and 204 data)

Type model
RMSE Retained predictors

(sorted by decreasing vimp values)
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Short legends for Online Resources (Figures and Tables) 

Online Resource 1 Ecological characteristics of the RENECOFOR network stands 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Site Name Long. Lat. Altitude Slope Aspect SWHCm Humus
code of the forest (m) (% ) Pr Te (mm) C/N C/N pH S/T N P C/N pH S/T N P

QR 10  de Larivour 4.30 48.34 115 0  / 656 11.2 120 24.0 14.0 4.0 81.8 3 0.025 12.0 4.1 87.2 1.1 0.008
QR 18  de Verneuil 2.57 46.83 175 0  / 799 11.8 175 32.0 18.0 4.2 86.6 2.2 0.013 17.0 4.3 92.2 0.9 0.005
QR 40  de Gamarde -0.84 43.74 20 5 NE 1124 14.4 140 35.0 13.0 4.5 79.4 1.2 0.015 11.0 4.4 77 0.6 0.006
QR 49  de Monnaie -0.04 47.46 57 0  / 770 11.6 170 28.0 14.0 3.8 62.8 1 0.014 5.0 4.2 32.1 0.25 0.005
QR 55  de Haudronville 5.77 49.02 220 0  / 741 11.0 150 35.0 15.0 4.3 84.7 2.8 0.043 12.0 4.3 88.8 1 0.007
QR 59  de Mormal 3.75 50.17 149 3  / 699 10.6 200 23.0 13.0 3.627 2.3 0.043 12.0 4.1 57.7 0.8 0.017
QR 65  d'Azereix -0.04 43.20 370 12 SE 1423 13.6 140 41.0 12.04.2 38.6 2.5 0.013 9.0 4.2 22.2 1.4 0.005
QR 70  d'Anjeux 6.22 47.88 240 0  / 1199 10.5 170 25.0 14.0 4.260.8 1.7 0.022 13.0 4.2 46.9 0.8 0.01
QR 71  de Pourlans 5.24 46.96 190 0  / 818 11.5 180 40.0 15.0 4.0 52.8 1.5 0.026 14.0 4.1 62.1 0.7 0.011
QP 01  de Seillon 5.24 46.17 260 3  / 1360 12.0 170 22.0 12.0 4.1 18.6 3.5 0.022 13.0 4.1 10.8 0.8 0.008
QP 03  de Tronçais 2.73 46.67 260 0  / 774 11.7 75 28.0 17.0 3.8 35 1.4 0.02 16.0 4.2 22.1 0.4 0.009
QP 10  du Temple 4.45 48.30 160 0  / 656 11.2 200 26.0 18.0 3.726.5 1.5 0.028 10.0 3.8 26.4 0.7 0.006
QP 18  de Vierzon 2.13 47.25 176 1  / 772 12.3 130 31.0 18.0 3.7 22.4 1 0.014 20.0 4.1 7.9 0.31 0.005
QP 21  de Citeaux 5.07 47.07 220 0  / 818 11.5 200 32.0 15.0 4.1 50.1 1.3 0.018 16.0 4.1 38.1 0.5 0.004
QP 27  de Lyons 1.50 49.37 175 0  / 878 11.3 170 30.0 18.0 3.8 23.8 1.9 0.025 13.0 3.9 24.4 0.64 0.005
QP 35  de Rennes -1.54 48.18 80 0  / 702 12.4 120 22.0 22.0 3.49.2 2 0.019 11.0 4.1 6.8 0.67 0.009
QP 41  de Blois 1.26 47.56 127 0  / 672 11.8 175 36.0 19.0 3.7 30.5 2.3 0.023 16.0 3.8 12.9 0.4 0.005
QP 51  de Chatrices 4.96 49.03 180 2 S 815 9.9 55 28.0 20.0 3.343.5 2 0.036 19.0 3.4 21 0.62 0.014
QP 57a  d'Amelecourt 6.48 48.86 315 4 NE 745 10.4 140 31.0 13.0 4.0 40.5 1.44 0.035 11.0 3.9 25.9 0.81 0.021
QP 57b  de Mouterhouse 7.46 49.02 320 15 NW 982 10.0 80 26.0 22.0 3.2 13.9 2 0.014 24.0 4.3 6.2 0.4 0.005
QP 58  de Vincence 3.66 46.96 270 15 SW 806 11.2 150 38.0 16.04.2 44.7 1.7 0.015 14.0 4.1 24.1 0.9 0.007
QP 60  de Hez-Froidmont 2.29 49.39 55 1  / 653 10.9 125 25.0 13.0 3.8 49.5 1.3 0.031 13.0 3.9 34.7 0.3 0.004
QP 61  de Reno Valdieu 0.67 48.52 220 5 SE 841 10.4 110 29.0 17.0 3.8 43 2.5 0.013 15.0 3.8 31.7 1 0.004
QP 68  de la Hardt 7.47 47.69 256 0  / 792 10.9 85 29.0 16.0 4.0 39.3 1.9 0.062 16.0 4.1 18.9 0.6 0.02
QP 72  de Bercé 0.38 47.79 170 0  / 715 12.3 135 24.0 23.0 3.5 21.4 1.7 0.028 24.0 3.9 9.4 0.2 0.005
QP 81  de Grésigne 1.75 44.04 300 18 SE 867 12.8 85 38.0 18.0 3.7 28.5 3.1 0.028 14.0 3.9 22 0.7 0.003
QP 86  de Moulière 0.49 46.62 116 4 NW 713 12.0 80 24.0 23.0 3.2 26.8 1.8 0.02 25.0 4.0 6.4 0.4 0.005
QP 88  de Darney 6.04 48.02 330 0  / 1427 10.3 185 37.0 17.0 4.0 26.7 2.1 0.026 14.0 4.0 22.4 0.8 0.011
FS 02  de Retz 3.13 49.19 145 0  / 623 12.0 200 31.0 15.0 3.9 40.9 1.4 0.049 11.0 3.9 40.5 0.6 0.019
FS 03  des Colettes 3.00 46.19 590 15 N 838 11.0 88 30.0 19.0 3.7 16.9 2.4 0.013 11.0 4.1 7.2 0.7 0.005
FS 04  du Jabron 5.80 44.13 1300 50 N 708 13.2 120 30.0 16.0 6.0 100 3.3 0.014 12.0 7.4 100 2.2 0.006
FS 09  de Soulan 1.28 42.93 1250 32 SW 1666 10.4 100 30.0 16.03.7 21.6 6.5 0.014 15.0 4.1 9.4 2.9 0.006
FS 14  de Cerisy -0.86 49.18 90 4  / 848 11.3 95 22.0 18.0 3.6 14.4 2.5 0.021 14.0 4.1 6.8 0.8 0.007
FS 21  de Lugny 4.86 47.81 400 3 NE 865 10.6 55 42.0 18.0 6.0 100 5.7 0.037 13.0 7.4 100 3 0.019
FS 25  de la Verrière du Grosbois 6.27 47.18 570 2 W 1352 9.0 105 29.0 14.0 5.2 100 3.8 0.028 11.0 4.8 100 1.9 0.009
FS 26  de Lente 5.30 44.92 1320 12 W 1712 12.2 50 28.0 14.0 5.9100 7.8 0.04 11.0 6.9 100 4.9 0.019
FS 29  de Carnoet -3.54 47.84 50 0  / 942 12.2 140 26.0 20.0 4.3 18.1 2.4 0.034 17.0 4.2 15.1 0.8 0.014
FS 30  de l'Aigoual 3.55 44.12 1400 25 SW 2014 5.6 50 23.0 22.0 3.7 17.9 4.4 0.024 21.0 4.2 9.5 2.4 0.026
FS 52  d'Auberive 5.07 47.80 440 0  / 996 10.0 45 40.0 15.0 6.4100 3 0.009 12.0 7.4 100 1.7 0.004
FS 54a  des Hauts Bois 6.71 48.51 325 5 E 780 10.9 110 45.0 16.0 4.1 39.5 1.7 0.025 14.0 4.1 12.7 0.7 0.009
FS 54b  de Haye 6.07 48.65 390 2  / 780 10.9 60 34.0 14.0 5.0 100 4.3 0.012 11.0 7.2 100 3.4 0.009
FS 55  de Lachalade 5.00 49.17 250 0  / 834 11.5 80 30.0 20.0 3.8 18.5 0.9 0.013 16.0 4.0 8.1 0.3 0.005
FS 60  de Compiègne 2.87 49.32 138 0  / 738 11.2 88 35.0 16.0 4.9 100 2.2 0.026 12.0 6.2 100 0.6 0.005
FS 64  d'Ance -0.66 43.15 400 44 NW 1422 13.5 110 35.0 13.0 4.376.8 2.2 0.012 9.0 4.2 63.1 1.1 0.014
FS 65  de Bize 0.44 43.03 850 25 NW 1058 12.7 88 29.0 16.0 3.7 20 4.7 0.095 9.0 4.1 7.3 1.9 0.032
FS 76  d'Eawy 1.33 49.72 210 0  / 920 10.5 145 26.0 16.0 3.7 15.3 1.7 0.018 12.0 4.1 6.8 0.5 0.01
FS 81  de la Montagne Noire 2.18 43.41 700 0  / 1144 11.5 100 27.0 15.0 3.9 19.1 4.8 0.053 14.0 4.3 11 1.7 0.026
FS 88  du Ban d'Harol 6.24 48.11 400 3 W 1427 10.4 100 32.0 15.0 3.9 14.1 1.4 0.011 16.0 4.0 11.9 0.7 0.005
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Online Resource 2 Climatic characteristics along the longitudinal gradient 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Online Resource 2 Climatic characteristics along the longitudinal gradient (from oceanic to semi-
continental climate). Left: mean monthly precipitation (black line in mm) and temperature (grey line 
in °C) for the period 1994-2013 for 3 stations of the French Network Météo-France (Rennes, 
Trumilly and Nancy). Right: Mean soil water deficit (SWD in mm, white circles) and soil water 
surplus (SWS in mm, black circles) for the period 1994-2013. Calculations have been made with a 
SWHCm of 120 mm (method form Thornthwaite and Mather, 1955). 
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Online Resource 3 Crown, fruit production and phenology in the RENECOFOR network stands 
 

 
 
 



40 

 

 
Online Resource 4 Dendrometric characteristics of the RENECOFOR network stands 
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Online Resource 6 Evaluation of the auto-correlation of the fruit (a) and pollen (b) time series 
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Online Resource 7 Synchrony between stands and changes with distance 
 
To judge the synchrony of fruit production between stands and to see how it changes with 
distance, we selected stands with a complete data set. Thus, for oak stands, we selected 15 sites 
with 13 continuous years from 1995-2007 (195 site-years data; 105 different pairs, QR49 vs 
QP61, QR49 vs QP86,…). For beech, we selected also 15 sites with 12 years from 1995-2006 
(180 site-years data; 105 different pairs). We calculated the distance between sites for each pair 
(Figure 1). For beech, the distance varied from 33 (distance between FS60 and FS02) to 1118 
km (FS29 and FS04) with a mean value of 543 (±255) km. For oak, the mean distance was 284 
(±127) km with a range from 12 (QR10 and QP10) to 584 km (QP86 and QP57b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To highlight how the fruit production was correlated between stands, we calculated a 
correlogram (i.e. correlation matrix) for oak and beech. It allows to analyze the relationship 
between each pair of numerical variables (here fruit production for each year) of a matrix. The 
correlation between each pair of variable is visualize through a scatterplot that represents the 
correlation (corrplot  package in R). A synchrony between stands means that fruit production 
is synchronized (i.e. similar temporal variations) especially for the nearest stands. 
 
 
 
 
 
 
 
 
 

Figure 1. Distance (in km) 

between each pair for beech 

and oak stands. 15 stands 

for each species and 105 

different pairs. The mean 

distance is 543 km for beech 

and 284 for oaks.  
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Synchrony for oak 
 
The correlogram clearly showed that synchrony between oak stands was weak despite the 
proximity of the stands (mean distance 284 km) (Figure 2). Thus, the correlation between fruit 
production was significant (p.value = 0.05) for only 8 pairs (among the 105). QP10-QR59 (dist. 
213), QP10-QR70 (139), QP10-QP57a (235), QR70-QR59 (312), QR70-QP57a (112), QP57a-
QR71 (230), QP41-QP57b (487 km), QP41-QP86 (119km). No correlation was observed for 
the nearest stands (QP10-QR10, 12 km; QP21-QR71, 19 km; QP27-QP60, 58 km; QP57a-
QP57b, 74 km; QR70-QP01, 88 km…).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Synchrony for beech 
The results for beech was quite different with 44 significant correlation confirming the high 
synchrony between stands despite the distance (mean distance 543 km) (Figure 3). Only one 
stand (FS29) showed no correlation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Correlogram for 

oak stands (15 stands, 105 

pairs). A circle indicates a 

significant correlation (p. 

value = 0.05) for fruit 

production between stands. 

The color and the size of the 

circle change with the sign 

of the correlation (from blue 

o red) and the value 

(increasing size with 

increasing value). QR = 

Quercus robur and QP = 

Quercus petraea. The 

number represents the 

French department. 

Figure 3. Correlogram for 

beech stands (15 stands, 

105 pairs). A circle indicates 

a significant correlation (p. 

value = 0.05) for fruit 

production between stands. 

The color and the size of the 

circle change with the sign 

of the correlation (from blue 

o red) and the value 

(increasing size with 

increasing value). FS = Fagus 

sylvatica. The number 

represents the French 

department. 



45 

 

Figure 4. Change of the 

frequency of significant 

correlations (p. value = 

0.05) between beech 

stands according to the 

distance between the 

pairs (n = 15 stands, 

105 different pairs). 

The number above the 

blue histogram is the 

Figure 5. Change of the 

frequency of significant 

correlations (p. value = 

0.05) between beech 

stands according to the 

distance between the 

pairs (n = 15 stands, 105 

different pairs). The 

number above the blue 

histogram is the number 

of pairs analyzed.  

The figure 4 shows the change of the frequency of significant correlations between stands 
according to the distance between the pairs. For example, for the class [0-200] km, the mean 
distance between the 9 pairs was 134 km. For this class, 6 correlations were significant at the 
p.value = 0.05 (=66% of significant correlations) and the mean correlation was 0.86. The 
frequency of significant correlations remained high until the distance of about 500 km and 
decreased hereafter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The different clustering tested confirmed the decreasing correlation with increasing distance 
(Figure 5). The highest synchrony was observed for stands distant from less than 200 km. A 
sharp decrease was observed for a distance higher than 500 km. 
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Online Resource 8 Predicted mean fruit biomass of acorns obtained with the CGPW model (Pred.) 
versus observed values (Obs.) for the 23 oaks stands (n=256 data). The number of over- and 
underestimations by class of differences (between observations and predictions) and the related 
means are given. For example, 27 predictions showed a difference between observed and predicted 

values ≤ 10% : 11 values are overestimated (mean difference: 12 kg ha
-1
 y

-1
) and 16 are 

underestimated (-20 kg ha
-1
 y

-1
). 

Online Resource 8 Mean predicted acorn biomass obtained with the CGPW model versus 
observed values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dif. Class
N Mean N Mean Nt

≤ 10% 319 315 11 12 16 -20 27
]10-20%] 370 344 10 33 16 -85 26
]20-30%] 523 464 8 75 25 -192 33
]30-40%] 578 453 13 76 16 -325 29
]40-50%] 503 381 2 96 4 -340 6

>50% 39 133 135 94 135

Underestim.Overestim.
Biomass (kg ha

-1
 y

-1
)

Obs. Pred.
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Online Resource 9 Mean predicted nut biomass obtained with the CGP* model versus observed 
values 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dif. Class
N Mean N Mean Nt

≤ 10% 335 326 10 9.2 16 -27.4 26
]10-20%] 315 300 10 36.2 16 -65.6 26
]20-30%] 516 443 5 57.9 11 -202 16
]30-40%] 398 340 4 76.7 11 -193.7 15
]40-50%] 216 170 5 48.1 1 -139.1 6

>50% 17 61 115 43.5 115
149 45.3 55 -125.6

Biomass (kg ha
-1
 y

-1
)

Obs. Pred.
Overestim. Underestim.
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Online Resource 10 Length of the pollen emission window as related to temperature 
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Online Resource 11 Percentages of the variance of the fructification datasets explained by 
statistical models (Figure) 
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Species Climate zone Model variable % variance explained Variable explained Number of populations Number of site-years Reference
Apr-Sep Temp
Jan Precip

Quercus robur temperate Precip feb 46 crop score several 17 Kasprzyk et al. 2014
Fagus sylvatica temperate relative humidity Jan 52 crop score several 17 Kasprzyk et al. 2014
Fagus sylvatica temperate Fruit (y-1) + Tjul (y-1) + Tjul (y-2) + Tjun (y-1) 54 crop score 1 58 Vacchiano et al. 2017
Fagus sylvatica temperate Precip Jun(y-1) + Tjul(y-1) + Tjul(y-2) + Tjun(y-1) + Tjun(y-2) 33 crop score 1 65 Vacchiano et al. 2017
Fagus sylvatica temperate Fruit (y-1) + Pjul(y-2) + Tjul(y-1) + Tjul(y-2) + Tjun(y-1) + Tjun(y-2) 70 crop score 1 57 Vacchiano et al. 2017
Fagus sylvatica temperate Tjul(y-1) + Tjul(y-2) + Tjun(y-2) 46 crop score 1 44 Vacchiano et al. 2017
Fagus sylvatica temperate Fruit (y-1) + Pjul(y-2) + Tjul(y-1) + Tjun(y-2) 66 crop score 1 65 Vacchiano et al. 2017
Fagus sylvatica temperate Tjul(y-1) + Tjul(y-2) + Tjun(y-2) 47 crop score 1 56 Vacchiano et al. 2017
Fagus sylvatica temperate Fruit (y-1) + Pjun(y-2) + Tjul (y-1) + Tjul (y-2) + Tjun (y-1) 72 crop score 1 55 Vacchiano et al. 2017
Fagus sylvatica temperate Fruit (y-1) + Tjul (y-1) + Tjul (y-2) + Tjun (y-1) + Tjun(y-2) 63 crop score 1 65 Vacchiano et al. 2017
Quercus velutina continental mean spring max T 64 log(nb fruits) 1 8 Sork & Bramble 1993
Quercus rubra continental mean spring max T 77.44 log(nb fruits) 1 8 Sork & Bramble 1993
Quercus alba continental mean spring max T 54.76 log(nb fruits) 1 8 Sork & Bramble 1993
Quercus lobata mediterraneanApril T + Fall T (y-1) 78 log(nb fruits) 2 23 Koenig et al. 1996
Quercus douglasii mediterraneanApril T 48 log(nb fruits) 2 23 Koenig et al. 1996
Quercus agrifolia mediterraneanRainfall (y-1) 63 log(nb fruits) 2 23 Koenig et al. 1996
Quercus kelloggii mediterraneannone 0 log(nb fruits) 1 16 Koenig et al. 1996
Quercus chrysolepis mediterraneanRainfall (y-2) + winter T (y-1) + rainfall (y-1) 63 log(nb fruits) 1 16 Koenig et al. 1996
Quercus lobata mediterraneanApr T (y + y-1) 49 log(nb fruits) 1 33 Pearse et al. 2014
various dec. Quercus sp. temperate Apr Temperature 41 log(nb fruits) several 28 Fearer et al. 2008
Fagus crenata temperate Tmin apr-may 68 log(nb fruits) 1 12 Kon et al. 2005
Fagus crenata temperate Tmin apr-may + repro y-1 58 log(nb fruits) 1 12 Kon et al. 2005
Fagus crenata temperate Tmin apr-may + repro y-1 70 log(nb fruits) 1 12 Kon et al. 2005
Fagus crenata temperate Tmin apr-may + repro y-1 75 log(nb fruits) 1 12 Kon et al. 2005
Fagus crenata temperate Tmin apr-may + repro y-1 83 log(nb fruits) 1 12 Kon et al. 2005
Fagus sylvatica temperate NAOaut+NAOspr+Psummer+Taut 55 log(fruit mass production) 19 131 Fernandez-Martinez et al. 2016
Quercus petraea temperate NAOautumn + Tautumn 21 log(fruit mass production) 19 123 Fernandez-Martinez 2016
Quercus robur temperate PrecipSummer+Taut+Twint 28 log(fruit mass production) 10 60 Fernandez-Martinez 2016
Quercus robur+petraea temperate T pollen season + Fruit (y-1) + site 37 percentage of fruiting trees 3 60 Bogdziewicz et al. 2017
Fagus sylvatica temperate Tsummer(y-1)*Fruit(y-1) + site 42 percentage of fruiting trees 2 40 Bogdziewicz et al. 2017
Quercus ilex mediterraneanwater stress index (summer) + nb days torrential rain (spring) 65 fruit mass production 1 26 Perez-Ramos et al. 2010
Quercus robur+petraea temperate see main text 16.2 fruit mass production 23 256 This study
Fagus sylvatica temperate see main text 44 fruit mass production 20 204 This study

Askeyev et al. 2005Quercus petraea temperate 10 crop score 1 56

 O
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Online Resource 13 Spatial variability of fruit crop in a temperate oak forest (FR-Fon, ICOS 
research station, www.barbeau.u-psud.fr) 
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Online Resource 14 Partial dependence plots of the seven best significant predictors of fruit 
biomass for the 5 beech stands with tree-ring width data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Online Resource 14 Partial dependence plots for the seven best significant 
predictors for predicted fruit biomass of nuts for the 5 beech stands with 
tree-ring width data (n=64 data). Each plot gives a graphical depiction of 
the own effect of the predictor and highlights threshold response 
effects.VIMP and DEPTH values for each predictor. See Table 1 for the 
results obtained with the complete dataset (CGP* model). 



5
3

 

 

Tapr
Taug1

Tsep1

C
W

B
apr

C
W

B
aug

G
PPaut

CWBaug

Tapr
GPPaut

Taug1

Tsep1
CWBapr

CWBaug

Tapr

GPPaut
Taug1

Tsep1

CWBapr

CWBaug
Tapr

GPPaut

Taug1
Tsep1

CWBapr

0.10

0.15

0.20

0.25

0.30

0.10

0.15

0.20

0.25

0.30

Interactive Minimal Depth

Tm
oy10

Tm
oy2

TyJunJul2

deltaTJunJul
N

A
O

apr
PETfeb

deltaTJunJul

Tmoy10

Tmoy2

NAOapr

TyJunJul2

PETfeb

deltaTJunJul

Tmoy10

Tmoy2

NAOapr

TyJunJul2

PETfeb

deltaTJunJul

Tmoy10

Tmoy2

NAOapr

TyJunJul2

PETfeb

0.1
0.2

0.3
0.4
0.5

0.1

0.2

0.3
0.4

0.5

Interactive Minimal Depth
 O

nline R
esource 15 M

inim
al depth variable intera

cti
ons 

 
M

odel C
 - Q

uercus 
 

 
 

 
M

odel C
G

 – Quercus 
              

M
odel C

G
P

C
P

 - Quercus 
 

 
 

 
M

odel C
G

P
W

 - Quercus 
              

M
odel C

 - F
agus 

 
 

 
 

M
odel C

G
 – Fagus 

                

Tapr
Tas

Tjas1

C
W

B
apr

C
W

B
aug

PETjas1

Tapr

CWBaug

CWBapr
Tas

PETjas1

Tjas1

Tapr

CWBaug

CWBapr
Tas

PETjas1

Tjas1

Tapr

CWBaug

CWBapr

Tas

PETjas1

Tjas1

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

Interactive Minimal Depth

T_pol_deb16
Tapr

Tsep1

C
W

B
apr

C
W

B
aug

G
PPaug

T_pol_deb16

CWBaug

Tapr

GPPaug

CWBapr

Tsep1

T_pol_deb16

CWBaug

Tapr

GPPaug

CWBapr

Tsep1

T_pol_deb16

CWBaug

Tapr

GPPaug

CWBapr

Tsep1

0.1

0.2

0.3

0.1

0.2

0.3

Interactive Minimal Depth

T_pol_deb16
Tapr

Tsep1

C
W

B
aug

G
PPaut

R
esR

W
2

T_pol_deb16

CWBaug

Tapr

ResRW2

GPPaut

Tsep1

T_pol_deb16

CWBaug

Tapr

ResRW2

GPPaut

Tsep1

T_pol_deb16

CWBaug

Tapr

ResRW2

GPPaut

Tsep1

0.1

0.2

0.3

0.1

0.2

0.3

Interactive Minimal Depth

Tm
oy10

Tm
oy2

TyJunJul2

deltaTJunJul
G

PPdnov
N

A
O

apr

deltaTJunJul

Tmoy10

Tmoy2
NAOapr

TyJunJul2

GPPdnov

deltaTJunJul

Tmoy10

Tmoy2
NAOapr

TyJunJul2

GPPdnov

deltaTJunJul

Tmoy10
Tmoy2

NAOapr

TyJunJul2

GPPdnov

0.1
0.2
0.3
0.4
0.5

0.1
0.2
0.3
0.4
0.5

Interactive Minimal Depth



54 

 

Tmoy10 Tmoy2 TyJunJul2

deltaTJunJul NAOapr PolmeanSeas

de
lta

T
Ju

nJ
ul

P
ol

m
ea

nS
ea

s

T
m

oy
2

T
m

oy
10

N
A

O
ap

r

T
yJ

un
Ju

l2

de
lta

T
Ju

nJ
ul

P
ol

m
ea

nS
ea

s

T
m

oy
2

T
m

oy
10

N
A

O
ap

r

T
yJ

un
Ju

l2

de
lta

T
Ju

nJ
ul

P
ol

m
ea

nS
ea

s

T
m

oy
2

T
m

oy
10

N
A

O
ap

r

T
yJ

un
Ju

l2

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

In
te

ra
ct

iv
e 

M
in

im
al

 D
ep

th

Tmoy10 Tmoy2 TyJunJul2

deltaTJunJul GPPdnov PolmeanSeas

de
lta

T
Ju

nJ
ul

P
ol

m
ea

nS
ea

s

T
m

oy
10

T
m

oy
2

T
yJ

un
Ju

l2

G
P

P
dn

ov

de
lta

T
Ju

nJ
ul

P
ol

m
ea

nS
ea

s

T
m

oy
10

T
m

oy
2

T
yJ

un
Ju

l2

G
P

P
dn

ov

de
lta

T
Ju

nJ
ul

P
ol

m
ea

nS
ea

s

T
m

oy
10

T
m

oy
2

T
yJ

un
Ju

l2

G
P

P
dn

ov

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

In
te

ra
ct

iv
e 

M
in

im
al

 D
ep

th

 
 
 
 
 
 
 
 

Model CGP - Fagus     Model CGP* – Fagus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Online Resource 15 Minimal depth variable interactions. Reference variables are marked with red 
cross in each panel. Higher values indicate lower interactivity with reference variable. See Table 1 for 
the details.  


