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Research Article 

Samuel Soubeyrand*, Florence Carpentier, François Guiton and Etienne K. Klein
Approximate Bayesian computation with functional 
statistics
Abstract: Functional statistics are commonly used to characterize spatial patterns in general and spatial genetic 
structures in population genetics in particular. Such functional statistics also enable the estimation of parameters 
of spatially explicit (and genetic) models. Recently, Approximate Bayesian Computation (ABC) has been proposed 
to estimate model parameters from functional statistics. However, applying ABC with functional statistics may be 
cumbersome because of the high dimension of the set of statistics and the dependences among them. To tackle 
this difficulty, we propose an ABC procedure which relies on an optimized weighted distance between observed 
and simulated functional statistics. We applied this procedure to a simple step model, a spatial point process 
characterized by its pair correlation function and a pollen dispersal model characterized by genetic differentiation 
as a function of distance. These applications showed how the optimized weighted distance improved estimation 
accuracy. In the discussion, we consider the application of the proposed ABC procedure to functional statistics 
characterizing non-spatial processes.
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1  Introduction
Statistical analysis of spatial data often rely on functional statistics such as correlograms or variograms 
in geostatistics (Cressie, 1991; Chilès and Delfiner, 1999), and pair correlation or Ripley’s functions for 
point pattern analysis (Cressie, 1991; Illian et al., 2008). For the particular case of spatial genetic data, 
functions giving a pairwise genetic distance/index with respect to the pairwise spatial distance between 
populations or individuals have been widely exploited to characterize spatial genetic structures and to 
derive effective gene flow. For instance, population geneticists commonly use functions of differentiation 
between populations, FST (Rousset, 1997), between individuals (Rousset, 2000) and between pollen pools, 
ΦFT (Austerlitz and Smouse, 2002), and functions of relatedness between individuals (Hardy, 2003) and 
between pollen pools (Robledo-Arnuncio et al., 2006). These functions enable the estimation of dispersal 
parameters and effective population sizes from spatial and genetic data (e.g., Rousset, 2000; Austerlitz 
et al., 2004).

For these genetic indices, likelihood-based methods are rarely adopted to fit the model due to the com-
plexity of the likelihood (Rousset and Leblois, 2007). Rather, least-square estimates are obtained relying on a 
simple but robust model which provides expectations of the functional statistics under different para meter 
values. Such approaches generally omit information about the specific distribution of individuals in the study 
population. For instance when one estimates pollen dispersal with the TwoGener approach (Austerlitz and 
Smouse, 2002; Robledo-Arnuncio et al., 2006) the expected functional statistics ΦFT(r) is computed assuming 
a Poisson distribution for the pollen sources whereas departures from this hypothesis are frequent and modify 
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2      Samuel Soubeyrand et al.

consequently the expected ΦFT(r) (Robledo-Arnuncio and Austerlitz, 2006). To solve this problem, Carpentier 
(2010) proposed to apply Approximate Bayesian Computation (ABC) and to use all the pairwise genetic indices 
ΦFT as summary statistics. However the large number of summary statistics (e.g., 190 summary statistics for 
only 20 sampling points) prevents the implementation of several efficient extensions of ABC, and Beaumont’s 
local regression in particular (Beaumont et al., 2002). Here, we alternatively propose a method where r   ΦFT(r) 
is viewed as a functional statistics. We propose a new method to optimize the use of functional statistics within 
ABC in general and apply it to the particular case of pollen dispersal estimation from ΦFT(r).

ABC encompasses a set of inference methods devoted to stochastic implicit models whose distribution 
theory is intractable but which can be run a large number of times to simulate data sets. Since the proposal of 
the ABC-rejection procedures (Rubin, 1984; Pritchard et al., 1999), many improvements have been proposed 
to increase the inference accuracy of ABC; see e.g., the reviews by Beaumont (2010), Csilléry et al. (2010), 
Marin et al. (2011), Marjoram et al. (2003). In the present study, we are specifically concerned in improving 
the selection of a distance function between observed and simulated data sets.

In ABC approaches, the distance between observed and simulated data sets is generally the distance 
between the set of summary statistics computed for the observed and simulated data sets. Traditionally, 
Euclidean or weighted Euclidean distances are used but the selection of the statistics and the distance func-
tion between statistics is crucial. An inappropriate choice of statistics may lead ABC to under-perform; see 
Blum (2010a) and Leuenberger and Wegmann (2010) who describe the curse of dimensionality in ABC and 
Haon-Lasportes et al. (2011) who illustrate with a basic example the negative effect of information redun-
dancy, dimension increase and uninformativeness in the set of statistics.

Numerous procedures have thus been proposed either to transform an initial set of statistics (possibly 
of large dimension) or build a distance between observed and simulated data sets in the aim of improving 
the inference accuracy. For instance, the variances of summary statistics may be equalized (Beaumont et 
al., 2002), subsets of statistics may be selected based on Kullback-Leibler divergence, relative ε-sufficiency 
or minimum entropy (Joyce and Marjoram, 2008; Nunes and Balding, 2010; Barnes et al., 2012), the sta-
tistics may be transformed into axes of a PLS regression (Wegmann et al., 2009) or into point estimates of 
the model parameters (Haon-Lasportes et al., 2011; Fearnhead and Prangle, 2012). These procedures reduce 
mean square errors and/or improve the coverage properties of the posterior intervals (see Blum et al., 2012, 
which also provides a comparison between dimension reduction methods in ABC).

Here, we propose an alternative procedure adapted to functional statistics. In the transformation men-
tioned above, all the raw summary statistics are considered equally. However, when one works with func-
tional statistics, there is generally a dependence of the function values along the support of the function. We 
propose to take into account this dependence by using for the ABC-rejection algorithm a weighted distance 
between observed and simulated functional statistics. We use a piecewise constant weight function and opti-
mize it by minimizing a loss function computed from pseudo-observed data sets (PODS) drawn in the prior 
distribution. We also optimize the acceptance rate, which has a large impact on the performance of ABC-
rejection algorithm (Beaumont et al., 2002). Our optimization is based either on a Bayesian mean square error 
or on a partial mean square error after a preliminary pilot ABC run. A similar approach has been proposed by 
Jung and Marjoram (2011) for non-functional statistics; see Discussion Section 6.

In the following, our approach is presented in Section 2. Then, the method is applied to three examples. 
First, we considered a simple step model (Section 3) as a simple case where the full Bayesian approach can 
be compared with our ABC approach. Second, we considered a spatial point process characterized through 
its pair correlation function (Section 4). This is a typical problem from spatial statistics where ABC may be 
a promising approach to carry out Bayesian estimation of mechanistic parameters that determine spatial 
point patterns. Third, we considered a pollen dispersal model including genetic information from molecular 
markers (Section 5). Here the observation of molecular markers at sampling locations provides a genetic 
pairwise differentiation index as a function of pairwise distance (Austerlitz and Smouse, 2002). In the three 
applications, the performance of the optimized weight function is compared with the performance of the 
constant weight function and the weight function obtained by equalizing the variances of the statistics. For 
the last example, we also compared our method with the performances of the PLS (Wegmann et al., 2009), 

Bereitgestellt von | De Gruyter / TCS
Angemeldet | 212.87.45.97

Heruntergeladen am | 20.03.13 14:33



ABC with functional statistics      3

minimum entropy and two-stage (Nunes and Balding, 2010) methods which reduce the dimension of the 
summary statistics.

2  Method

2.1  Background: The ABC-rejection procedure

Consider observed data D∈D which are assumed to be generated under the stochastic model M
θ
 parametrized 

by θ∈Θ with prior density π. The data space D  and the parameter space Θ are both included in multidimen-
sional sets of real vectors.

The posterior distribution p(θ/D) can be estimated using the following ABC-rejection algorithm (Rubin, 
1984):

A1.  Carry out the next two steps, independently for i in {1,…,I},
1. Generate θi from π and simulate Di from M

θi
.

2. Accept θi if Di=D, reject it otherwise.

The set of accepted θi forms a sample from the posterior distribution

Θ

θ π θ
θ

α π α α∫
( | ) ( )( | )= ,
( | ) ( )

fp
f d
D

D
D

where ( | )f θD  is the conditional probability distribution function of D given θ, i.e. the (intractable or 
unknown) likelihood of the model M

θ
.

Algorithm A1 is rarely usable because the probability of generating Di equal to D is very low when the 
dimensionality of the data space D is large and this probability is even zero for continuous data. To circum-
vent this difficulty, two ideas have been applied: the introduction of a tolerance threshold and the replace-
ment of the raw data by summary statistics (Pritchard et al., 1999). This leads to the following ABC-rejection 
algorithm which will be extensively used in this article:

A2. Carry out the next three steps, independently for i in {1,…,I},
1. Generate θi from π and simulate Di from M

θi
.

2. Compute the statistics Si=s(Di), where s is a function from D to the space S of statistics.
3. Accept θi if d(Si, S)  ≤  ε(τ), where d is a distance over S and ( ) +ε τ ∈R  is a tolerance threshold for the 

distance between the observed statistics S=s(D) and the simulated ones. The threshold ε(τ) depends 
on the proportion τ of accepted θi among the I simulated parameters; ε(τ) is the empirical quantile of 
order τ. Thereafter, τ is called the acceptance rate.

The set of accepted parameters, say Θτ,I  =  {θi:d(Si, S)  ≤  ε(τ), i = 1,…,I}, forms a sample from the posterior distribu-
tion

 

( )
( )

( , ( ))
( )

( , ( ))

( | ) ( )
( | )= ,

( | ) ( )
B S

B S

f z dz
p S

f z dz d
ε τ

ε τ

Θ ε τ

θ π θ
θ

α π α α

∫
∫ ∫

�

�
  

(1)

where f (̃S|θ) is the conditional probability distribution function of S given θ and B(S, ε(τ)) is the ball with 
center S and radius ε(τ) in the space S with distance d.

When ε(τ) tends to zero, pε(τ)(θ|S) may be a good approximation of the posterior distribution conditional 
on the statistics (Appendix A), i.e.
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 Θ

θ π θ
θ

α π α α∫
�
�

( | ) ( )( | )= ,
( | ) ( )

f Sp S
f S d

 
 (2)

and the sample Θτ,I of accepted parameters is approximately distributed under this posterior distribution. If, 
in addition, the statistics are sufficient, then f (̃S|θ)=  f (D|θ) and Θτ,I is approximately a sample from the clas-
sical posterior distribution p(θ|D) conditional on the data.

2.2  Selecting a weight function for functional statistics

Here, S is a functional statistics. The space S  of statistics is included in the space of real-valued and square-
integrable functions defined over  :

{ }⊂ → ∞∫ 2: , < .g gS


 

Besides, we assume that the distance +→2: ,d S   used in algorithm A2 to compare observed and simu-
lated statistics, is parametrized by a non-negative weight function +→:w    and satisfies:

 
−∫ 2( , ; )= ( ){ ( ) ( )} .i id S S w w r S r S r dr

   
(3)

The weight function is expected to modulate the squared difference between Si(r) and S(r) with respect to 
the information about the parameters brought by the statistics at r. Other weighted distances could be used 
and compared, e.g. the integral or the maximum of weighted absolute values |Si(r)–S(r)|. It has to be noted that 
if the distance is changed, then the conditions satisfied by the functional statistics S may be different: here, 
the distance given in Eq. (3) is properly defined because functional statistics are square-integrable functions.

We used three weight functions. The first one is the constant function:

wcst(r) = 1.

The second weight function is the inverse variance function, which corres ponds to a classical scaling 
procedure in ABC consisting in equalizing the variances of the statistics (Beaumont et al., 2002):

−



1Var( ( )) if Var( ( ))>0
( )= 0 otherwise;

i i
var

S r S r
w r

The third weight function is the optimized function wopt obtained by minimizing a mean square error 
(MSE) of a point estimate of θ (Rohatgi, 2003, chap. 4). The MSE that we used is a Bayesian MSE (BMSE): the 
square error is integrated over Θ with respect to the prior distribution π. This approach, detailed below in 
algorithm A3, is analogue to minimizing the mean square error of prediction where θ is the random variable 
to be predicted McCulloch and Searle (2001, chap. 9).

The optimized weight function wopt as well as an optimized acceptance rate τopt are determined within the 
following ABC-rejection algorithm:

A3.  Carry out the next four steps,
1. For i in {1,…,I}, independently generate θi from π, simulate iD  from iθM  and compute the functional 

statistic = ( );i iS s D
2. For j in {1,…,J}, independently generate jθ′  from π, simulate j

′D  from θ′
j

M  and compute the func-
tional statistic ′ ′= ( );j jS s D  θ′ ′( , ),j jS  j = 1,…,J, will be used as pseudo-observed data sets (PODS);

3. Select the weight function and the acceptance rate which minimize the following BMSE criterion:

 

θ τ −θ
τ

θ
∑∑

′ ′

′

2

=1 =1

ˆ( ( , ) )1BMSE ( , )= .
Var( )

J K
jk jk

J
jkj k

w
w

J  
 (4)
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 In Eq. (4), θ′ ,jk  k = 1,…,K, are the K components of jθ′  ( Θ⊂ ,K  K  ≥  1); θ′Var( )jk  is the prior variance of 
θ′

jk  depending only on π and allows the scaling of the parameter components; the point estimates 
θ τ′ˆ ( , )jk w  are the marginal posterior medians of θ′ :jk

θ τ θ ≤ε τ′ ′ …ˆ ( , )= Median{ : ( , ; ) ( ), =1, , },jk ik i jw d S S w i I

 obtained by applying the last step of algorithm A2 with '
jS  for the observed statistic, Si for the simu-

lated statistics, d(‧,‧; w) for the distance and τ for the acceptance rate. The BMSE is minimized over the 
space function +→ ∫={ : , =1}w w


    and the interval (0, 1]:

 τ∈ ×τ τ, (0,1]( , )=argmin BMSE ( , ).opt opt Jww w   (5)

4. For i in {1,…,I}, accept θi if ≤ε τ( , ; ) ( ) .i opt optd S S w

The set of accepted parameters Θopt = {θi: d(Si,S;wopt)  ≤  ε(τopt), i = {1,…,I} forms a sample from the posterior dis-
tribution (1) with ε(τ) = ε(τopt) and with B(S,ε(τ)) equal to the ball with center S and radius ε(τopt) in the space 
S  with distance d(‧,‧; wopt). Thus, weighting the distance modifies the posterior under which the accepted 
parameters are drawn. However, when ε(τopt) tends to zero, the new posterior distribution [like the one given 
in Eq. (1)] may be a good approximation of p(θ|S) given in Eq. (2); see Appendix A.

Note that the BMSE in Eq. (4) is the Monte-Carlo approximation of the exact BMSE equal to 
θ τ −θ θ∑ ′ ′ ′2

=1
ˆE{( ( , ) ) }/Var( )

K

jk jk jkk
w . Besides, other criteria than the BMSE may be used to select w and τ, e.g. 

mean square errors or mean absolute errors based on the posterior mode, the posterior mean or posterior quan-
tiles.

To be able to compare the ABC procedures using the three weight functions wcst, wvar and wopt, the accept-
ance rate τ should also be optimized when wcst and wvar are used. Thus, the algorithm A3 is modified for wcst and 
wvar by carrying out the minimization of the BMSE with respect to the acceptance rate τ only [this approach is 
analogue to the proposal of Csilléry et al. (2011) based on cross-validation]. When wcst or wvar is used, the mini-
mization program (5) is respectively replaced by:

 τcst = argminτ∈(0,1] BMSEJ (wcst, τ)  (6)

or

 τvar = argminτ∈(0,1] BMSEJ (wvar, τ)  (7)

2.3  Using a pilot ABC run

After a first (pilot) run of algorithm A3 which yields a pilot posterior sample, namely Θpilot, one may proceed 
to a second selection of the weight function and the acceptance rate by restricting the computation of the 
MSE to simulations close to Θpilot. This approach may be implemented as follows (without supplementary 
simulation):

A4.  Carry out the next three steps,
1. Select the set J  with size | |< JJ  formed by the indices j∈{1,…,J} corresponding to the | |J  smallest 

distances between '
jθ  and Θpilot, this distance being defined by:

  θ −θ
 θ ∈Θ

θ  
∑

′

′

2
,

=1

( )
min : ,

Var( )

K
jk pilot k

pilot pilot
jkk

where θpilot,k, k = 1,…,K, are the K components of θpilot.
2.  Select the weight function and the acceptance rate which minimize the following partial MSE (PMSE) 

criterion:
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∈

θ τ −θ
τ

θ
∑∑

′ ′

′

2

=1

ˆ( ( , ) )1PMSE ( , )= .
| | Var( )

K
jk jk

jkj k

w
wJ

JJ
 

 (8)

Terms in Eq. (8) are the same than those in Eq. (4) except that the sum is restricted to .J� The 
PMSE is minimized over the space function   and the interval (0,1]:

 τ∈ ×τ τ, (0,1]( , )=argmin PMSE ( , ) .pilot pilot
opt opt ww w J   

(9)

3. For i in {1,…,I}, accept θi if ≤ε τ( , ; ) ( ).pilot pilot
i opt optd S S w

The set of accepted parameters forms a sample from the posterior distribution (1) with ( )= ( )pilot
optε τ ε τ  and with 

B(S, ε(τ)) equal to the ball with center S and radius ( )pilot
optε τ  in the space S  with distance ⋅⋅( , ; ).pilot

optd w  Here also 
weighting the distance modifies the posterior under which the accepted parameters are drawn. However, when 

( )pilot
optε τ  tends to zero, the new posterior distribution [like the one given in Eq. (1)] may be a good approximation 

of p(θ|S) given in Eq. (2); see Appendix A.
The pilot posterior sample can be the set of accepted parameters resulting from algorithm A3 based on 

wcst, wvar or wopt. It can even be a combination of these three posterior samples.

2.4  Optimization algorithm

In the examples tackled below, the class of weight functions   in which the optimized function wopt is 
selected is restricted to sets of positive piecewise constant functions with a finite number of jumps, with 
known jump locations r0 < … < rN (N > 0) and with integral over   equal to 1. This implies that w∈  takes the 
value zero over the infinite intervals (–∞, r0) and [rN, ∞). Let w0,…,wN–1 denote the values of w in the intervals 
[r0, r1),…,[rN–1, rN).

The optimization program (5) [resp. (9)] consists in minimizing the BMSE (resp. the PMSE) with respect 
to a finite number of jump levels, namely w0,…,wN–1, and the acceptance rate τ with the constraints w0  ≥  0,…, 

wN–1  ≥  0, 
1

1=0
( ) =1

N

n n nn
r r w

−

+ −∑  and τ∈(0, 1]. To carry out this optimization we used the Nelder-Mead algorithm 
(Nelder and Mead, 1965) modified to take into account the constraints on w0,…,wN–1, τ: when the constraints 
were not satisfied in a reflection (or expansion) step, the reflection (or expansion) coefficient was divided by 
m  =  2, 3, … until the constraints were satisfied.

When wcst and wvar are used, only the acceptance rate has to be selected. This corresponds to a simple 
search of a minimum in the interval (0, 1].

3  Application to a simple step model

3.1  Model

We built a model which randomly generates the heights of four steps; three realizations of this model are 
shown in top panels of Figure 1. The heights, which are independently and normally distributed with varying 
means and varying variances, are used as summary statistics (in this case the summary statistics are the raw 
data).

More formally, we study the step functional statistics S equal to zero over   except over the interval 
[0, 4):

 

2 ( ) if [0, 4)
( )= 0 otherwise,

r r r
S r

θ +   ∈



ε

 
 (10)
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where r  denotes the floor value of r, θ is a real parameter and ε(0), ε(1), ε(2), ε(3) are independently drawn 
from centered normal distributions with standard deviations σ(0), σ(1), σ(2), σ(3). Thus, the heights of the 
four steps are ε(0), θ+ε(1), 4θ+ε(2) and 9θ+ε(3).

Let the prior distribution for θ be the uniform distribution over [0, 2].
We study three noise structures, that is to say three vectors of values for the standard deviations:

1. Constant noise: [σ(0), σ(1), σ(2), σ(3)] = (1, 1, 1, 1)
2. Increasing noise: [σ(0), σ(1), σ(2), σ(3)] = (0.05, 0.1, 0.5,1)
3. Decreasing noise: (σ(0), σ(1), σ(2), σ(3)) = (1, 0.5, 0.1, 0.05).

We aim to see which of the weight functions leads to the lowest BMSE and, for the optimized function, how 
the statistics are weighted with respect to the structure of the noise. We especially aim to see how the statis-
tics S(0) which does not depend on θ is weighted.

3.2  ABC tuning

For each noise structure of the model described above, we independently ran 500 times the first two steps of 
algorithm A3, with I = 105 and J = 103. Then, for each weight function, we minimized the BMSE; see Eqs. (5), (6) 
and (7).

We selected the optimized weight function among the step functions satisfying:

 

 ∈ + ∀ ∈



if [ , 1), {0,1,2,3}
( )= 0 otherwise,

nw r n n n
w r

 
 (11)

w0, w1, w2, w3  ≥  0 and 
3

=0
=1nn

w∑ . The distance between functional statistics Si and jS ′  is simply:

r
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Figure 1 Realizations (top panels) of the simple step model and corresponding posterior distributions (PDs, bottom panels). 
The realizations were obtained with the constant (left), increasing (center) and decreasing (right) noise structures. The PDs were 
obtained with the exact approach (black curve) and with algorithm A3 applied with the three weight functions wcst (red curve),  
wvar (green curve) and wopt (blue curve). The last three PDs were drawn using a Gaussian kernel smoothing applied to the posterior 
sample provided by the algorithm. The vertical dashed line is the true value of θ, namely 1.
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−

−

∫

∑

′ ′

′

2

3
2

=0

( , ; )= ( ){ ( ) ( )}

                     = { ( ) ( )} .

i j i j

n i j
n

d S S w w r S r S r dr

w S n S n



3.3  Results

The average BMSEs obtained with the three weight functions and the three noise structures are shown in 
Table 1. The gain in using wopt for the constant noise structure is not large but is larger for the other noise 
structures. Besides, wcst is better than wvar for the increasing noise structure whereas the opposite is true 
for the decreasing noise structure. This indicates that the choice of one of these functions depends on the 
model. In comparison, the performance of the optimized function wopt is more robust: Using wopt led for each 
of the 1500 runs to the lowest BMSE. This was expected because, in this application, wcst and wvar are particu-
lar cases of wopt. In the two next applications, only wcst is a particular case of wopt.

Table 2 provides statistics about the optimized acceptance rate and weight function. The size (105 × τopt) 
of the posterior sample is much larger for the constant noise structure than for the varying noise structures. 
This may explain the low reduction of the BMSE in the case of the constant noise structure, see Table 1. 
For the increasing noise structure, the optimization program yields high weight to S(0) (with no informa-
tion about θ) because it does not cost a lot to use a statistics which has a very low variability. Besides, 
among S(1), S(2) and S(3) the algorithm gives more weight to the less varying statistics, namely S(1). For the 
decreasing noise structure, the algorithm gives low weight for the strongly varying and useless statistics 
S(0). Moreover, among S(1), S(2) and S(3) the algorithm gives more weight to the less varying statistics, 
namely S(3).

3.4  Comparison with the exact posterior distribution

For the simple step model, we can compare the ABC-based posterior distributions and the exact posterior 
distribution. The likelihood of the model is:

L(θ) = φ0,σ(0) (S(0))φθ,σ(1) (S(1))φ4θ,σ(2) (S(2))φ9θ,σ(3) (S(3)),

where φμ,σ (·) is the probability density function of the normal distribution with mean μ and standard devia-
tion σ. Thus, the exact posterior distribution of θ can be easily computed:

θ ≤θ≤
θ

α α∫
2

0

( ) (0 2)( | )= ,
( )exact

Lp S
L d
1

where 1 is the indicator function [1(E) = 1 if event E holds, zero otherwise].

Table 1 BMSE statistics for the simple step model. For each noise structure and each weight function: mean value (and 
standard deviation) of 1000 × BMSE based on 500 runs (1st line); number of times among the 500 runs that each weight  
function provided the lowest BMSE (2nd line).

wcst wvar wopt

Constant noise 9.30 (0.44) 10.02 (0.47) 9.27 (0.44)
0 0 500

Increasing noise 4.23 (0.20) 3.90 (0.18) 3.85 (0.17)
0 0 500

Decreasing noise 0.044 (0.002) 0.259 (0.019) 0.030 (0.001)
0 0 500
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Bottom panels of Figure 1 show, for the three realizations provided in top panels, the posterior distribu-
tions obtained with the exact approach and with algorithm A3 applied with the three weight functions wcst, 
wvar and wopt. Qualitatively, we can see that algorithm A3 with wopt leads to a reasonable approximation of the 
exact posterior distribution. Besides, these plots corroborates what can be seen in Table 1:
1. For the constant noise structure (1st line in Table 1 and left plots in Figure 1), the mean BMSEs with wcst 

and wopt are close as well as the corresponding posterior distributions;
2. For the increasing noise structure (2nd line in Table 1 and center plots in Figure 1), the mean BMSEs with 

wvar and wopt are close as well as the corresponding posterior distributions;
3. For the increasing noise structure (3rd line in Table 1 and right plots in Figure 1), the mean BMSE with wopt 

is much lower than the mean BMSEs with wcst and wvar, and the posterior distribution with wopt is a better 
approximation of the exact posterior distribution.

These are qualitative statements based on three simulations but these statements are consistent when a 
series of simulations/estimations is performed (data not shown).

4  Application to a spatial point process

4.1  Model and methods

A Neyman-Scott point process (Illian et al., 2008, chap. 6) is made of daughter points forming clusters around 
parent points. The parent points are generated from a stationary Poisson point process with intensity λ. The 
daughter points in a cluster are random in number with mean μ and are independently and identically dis-
tributed around their parent. The Neyman-Scott process only consists of the daughter points and is a model 
for clustered point patterns. It can be viewed as a model for the dispersal of a species over one generation.

Here, we consider a particular case of the Neyman-Scott process: the planar case of the modified Thomas 
process (Illian et al., 2008, chap. 6). The daughter points are distributed around each parent point under a 
bivariate isotropic normal distribution with dispersion parameter σ. The modified Thomas process, say χ, is 
observed in the square window [0, 1] × [0, 1]. The intensity λ of the parents is supposed to be known: λ = 100 
but the parameters μ and σ have independent uniform prior distributions over the intervals [1, 10] and [0.01, 
0.1], respectively.

Figure 2 (top) shows three realizations of the modified Thomas process with three values of the dispersal 
parameter σ.

4.2  ABC tuning

Functional summary characteristics, such as the pair correlation function, are commonly used to estimate 
the parameters of point processes; see Illian et al. (2008, chap. 7). For instance, the pair correlation function 

Table 2 Mean values (and standard deviations) of the optimum acceptance rate τopt and weight function wopt for the simple step 
model with respect to the three noise structures (based on 500 runs). The quantity 105 × τopt is the size of the posterior sample 
based on the I = 105 simulations.

Noise
105 × τopt

wopt(0) wopt(1) wopt(2) wopt(3)

Constant 1940 (930) 0.16 (0.11) 0.23 (0.10) 0.30 (0.09) 0.31 (0.08)
Increasing 360 (200) 0.98 (0.02) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
Decreasing 85 (38) 0.02 (0.05) 0.03 (0.02) 0.18 (0.05) 0.77 (0.06)
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10      Samuel Soubeyrand et al.

especially brings information about the degree of clustering in point patterns. Below, the functional statis-
tics under consideration is the empirical pair correlation function, thereafter noted S(r), given by the kernel 
smoothing method with the Ripley’s correction (Stoyan and Stoyan, 1994, pp. 284–285). We restricted S(·) to 
the interval (0,0.3) where the endpoint 0.3 is about the fifth of the maximum inter-point distance in the point 
patterns studied in this section; see Illian et al. (2008, p. 96) for recommendations about the choice of the 
endpoint. Examples of S(·) functions are drawn in Figure 2 (bottom).

Using the modified Thomas process and the prior distributions described above, we independently ran 
500 times the first two steps of algorithm A3, with I = 105 and J = 103. Then, for the three weight functions wcst, 
wvar and wopt, we minimized the BMSE; see Eqs. (5), (6) and (7).

The optimized weight function wopt was selected among the step functions with 21 jumps satisfying:

 

)  ∈ + ∀ ∈
≥

…if 0.3 /20, 0.3( 1)/20 , {0,1, ,19}
( )=

0 if <0 or 0.3,
nw r n n n

w r
r r  

 (12)

w0,…,w19  ≥  0 and 
19

=0
( ) = (0.3/20) =1nn

w r dr w∑∫


.
The distance between functional statistics Si and jS ′  was approximated by a finite sum of 249 terms:

−

≈ −

∫

∑

′ ′

′

2

249
2

=1

( , ; )= ( ){ ( ) ( )}

                  (0.3 /250){ (0.3 /250) (0.3 /250)} .

i j i j

i j
k

d S S w w r S r S r dr

w k S k S k



Here, wvar which can take 249 different values, is not a particular case of wopt which can only take 20 dif-
ferent values. Thus, if equalizing the variance of the statistics is a valuable approach for this application, then 
wvar could lead to better results than wopt.

4.3  Results

The BMSEs obtained with the three weight functions are shown in Table 3. The decrease of the BMSE with wopt 
is significant and wopt led to the lowest BMSE 500 times over 500 runs.

Abscissa

O
rd

in
at

e

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

Abscissa
0 0.2 0.4 0.6 0.8 1.0

Abscissa
0 0.2 0.4 0.6 0.8 1.0

14
12

4 2.0

1.5

1.0

0.5

3

2

1

10
8
6
4
2
0

0 0.10 0.20 0.30

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

O
rd

in
at

e

Abscissa

O
rd

in
at

e

Distance (r)
0 0.10 0.20 0.30

Distance (r)
0 0.10 0.20 0.30

Distance (r)

S
(r

)

S
(r

)

S
(r

)

Figure 2 Realizations of the modified Thomas process and the corresponding estimated pair correlation functions S. (λ, μ, 
σ) = (100, 5, 0.01) in the left panels, (100, 50, 0.025) in the middle panels and (100, 5, 0.1) in the right panels.
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The optimum size of the posterior sample (number of accepted parameters among I = 105 parameters) 
generally takes low value (mean: 17.9, SD: 9.3); see Figure 3, left. It does not really differ from the optimum 
size obtained with wcst (mean: 18.0, SD: 7.2) but is generally smaller than the optimum size obtained with wvar 
(mean: 35.3, SD: 13.1).

The optimum weight function wopt varies between runs (Figure 3, middle and right) but the median 
optimum function has a U-shape, giving more weight to S(r) when r is small or close to 0.3. Despite the vari-
ability of wopt between runs, this weight function strongly decreases the BMSE and, consequently, improves 
the accuracy of the inference based on ABC.

5   Application to a spatial point process marked with genetic data
Here we aim to estimate, for a tree species, the pollen dispersal function with mean dispersal distance δ and 
shape parameter b based on data classically used in the TwoGener approach (Austerlitz and Smouse, 2002).

5.1  Data

Samples of nm seeds are collected on each tree m of a set of M trees, called mother-trees, with known locations 
…{ : =1, , }mother

mz m M  and known genotypes …{ : =1, , }mother
mG m M  at a set of L microsatellite markers. Seeds 

are genotyped at the same loci and we know the allele frequencies in the whole population {fla: l = 1,…,L, 
a = 1,…,Al} possibly estimated from a set of adult trees, including or not the mother-trees; Al is the number of 
alleles at locus l. Knowing the genotype of a seed and the genotype of its mother, the paternal genetic con-
tribution can be retrieved (possibly in a probabilistic way when the seed and mother are heterozygous for 
the same alleles; for details see Smouse et al., 2001). The genetic differentiation ,

obs
FT mm′Φ  between the pollen 

pools of two mother-trees m and m′ is estimated from the paternal contributions of the seeds sampled on 
these two trees by applying an analysis of molecular variance (AMOVA). We also assume that we know the 
locations …{ : =1, , }donors

dz d D  of a sample of D pollen donors, including the mother-trees in hermaphroditic 
species.
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Figure 3 Modified Thomas process. Distribution of the optimum acceptance rate τopt (left; τopt is multiplied by 105 to get the 
posterior sample size). Median and quantiles of order 0.025 and 0.975 of the optimum weight function wopt (middle) and three 
examples of wopt which were obtained among the 500 runs.

Table 3 BMSE statistics for the modified Thomas process: mean value (and standard deviation) of the BMSE for each weight 
function, based on 500 runs (1st line); number of times among the 500 runs that each weight function provides the minimum 
BMSE (2nd line).

wcst wvar wopt

BMSE 0.651 (0.024) 0.942 (0.031) 0.365 (0.025)
Lowest BMSE frequency 0 0 500
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12      Samuel Soubeyrand et al.

As an illustrative application, we used a Sorbus torminalis dataset sampled in 1999 and previously ana-
lyzed in Austerlitz et al. (2004) and Oddou-Muratorio et al. (2005). In this study, 653 seeds were collected on 14 
mother-trees (11–100 seeds/tree, mean: 46.6 seeds/tree) in a 472 ha plot where we know exhaustively all pollen 
sources (i.e. 185 adult trees for which locations are known); see Figure 4, top left. Using six microsatellite 
markers with six to 21 alleles per locus, we estimated all ′Φ , ,obs

FT mm  plotted on Figure 4 (top right) as a function 
of pairwise spatial distances.

5.2  Model

For a given density of pollen sources outside the study plot, λ, and a given set of dispersal parameters, (δ, b), 
the pairwise differentiation indices ΦFT,mm′ were obtained as follows. Locations for pollen donors outside the 
study plot { : =1, , }out out

dz d D…  were drawn from a homogeneous Poisson point process of density λ in a disk 
of radius 16 km (i.e. representing the whole forest) from which the study area (white area on Figure 4, top 
left) was removed. The set of all pollen sources then gathered the known trees inside the study plot and the 
simulated trees outside the study plot +… … …1 1{ : =1, , }={ , , , , , }.out donors donors out out

outd D D
z d D D z z z z  For each source 

tree that was not a mother-tree we simulated a genotype by drawing two alleles independently at each locus 
l with allele frequencies {  fla: a = 1,…,Al}.

The proportion of pollen from the source d in the pollen pool of the mother-tree m was computed as:

′

′≠

 
 
 

π
 
 
 ∑

exp
= ,

exp

b
md

b

md b
md

bd m

r
a

r
a

where rmd is the distance between mother m and pollen source d, b is the shape parameter, a = δΓ(2/b)/Γ(3/b) 
is the natural parameter of the exponential-power dispersal kernel used here (see Austerlitz et al., 2004) and 
δ = aΓ(3/b)/Γ(2/b) is the mean dispersal distance.
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Figure 4 Top: Data for the estimation of the pollen dispersal function. Top left: Spatial distribution of the sampled mother-
trees (crosses) and known additional pollen sources (dots) in the S. torminalis dataset. Top right: ,

obs
FT mm′Φ  as a function of the 

pairwise distance rmm′
 between mother trees estimated from the observed genotypes using an AMOVA. Bottom (left and right): 

Simulated clouds of points ,( , )sim
mm FT mmr ′ ′Φ  for two different sets of parameters and expected ΦFT,mm′ (curves) assuming a Poisson 

process like in Austerlitz and Smouse (2002).
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ABC with functional statistics      13

For each of the nm seeds sampled on mother-tree m we drew a father-tree d randomly with proportions 
{πmd: d = 1,…D+Dout} and a genotype by drawing at each locus one allele evenly among the two that each 
parent carries. The pairwise genetic differentiation ,

sim
FT mm′Φ  for mother-trees m and m′ were estimated from 

an AMOVA applied to the retrieved paternal contributions of the sampled seeds, similarly to ′Φ , ;obs
FT mm  two 

examples of simulations are provided in Figure 4, bottom.
For the prior distributions, we used a uniform distribution over [0, 10–4] for parameter λ, a log-normal 

distribution with parameters (mean:  5.75, SD:  1.73) for δ and a log-normal distribution with parameters 
(mean:  –0.25, SD: 0.7) for b.

5.3  ABC tuning

The functional statistics which are used in this application are the ΦFT,mm′ computed at all the pairwise 
distances rmm′ separating the 14 mother-trees of the data set. This set of pairwise distances is denoted by 
� …{ : =1, ,91}kr k .

We ran algorithm A3 with two simulation numbers: (I, J) = (105, 103) and (I, J) = (106, 103). Then, we mini-
mized the BMSE for the three weight functions wcst, wvar and wopt; see Eqs. (5), (6) and (7). The BMSE was com-
puted with respect to parameters δ and b but not λ because very few information about λ is contained in the 
ΦFT statistics that we used (data not shown). Thus, λ was randomly drawn in the interval [0, 10–4] to take into 
account the uncertainty about the density of trees outside the study plot, but was not estimated to avoid noisy 
results. Our interest is focused on dispersal parameters δ and b.

The optimized weight function wopt was selected among the step functions with 21 jumps satisfying:

 

)+
 ∈ ∀ ∈ 
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…1
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. The sequence 0 = r0,…,rN was chosen so that the number of sampled inter-

tree distances per interval [rn, rn+1) was approximately constant (equal to 4 or 5); rN was set to the maximum 
inter-tree distance.

The distance between functional statistics Si and jS ′  was approximated by a finite sum of 91 terms:
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Like in the previous application, wvar which can take 91 different values, is not a particular case of wopt 
which can only take 20 different values. Thus, if equalizing the variance of the statistics is a valuable approach 
for this application, then wvar could lead to better results than wopt.

5.4  Results

The BMSE obtained with the three weight functions and the two simulation numbers are provided in Table 
4. The optimal weight function allows a decrease of about 4–5% of the BMSE with respect to the constant 
weight function (the variance weight function leads to larger BMSEs than the two other weight functions). 
This moderate decrease is however significant as indicated by the low p-values of the paired t-test carried out 
to compare the BMSEs obtained with wopt and wcst (the BMSEs can be compared with paired t-tests because we 
used the same J = 103 simulations in every case).

The gain in using the optimized weight function is moderate, certainly because the functional statistics 
ΦFT is particularly noisy compared, for instance, to the pair correlation function used for inferring parameters 
of the modified Thomas process.
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14      Samuel Soubeyrand et al.

However, even if the gain is moderate, optimizing the weight function in the ABC procedure with only 
I = 105 simulations led to a BMSE value (0.974) slightly lower than the BMSE value (0.977) obtained with ten 
times more simulations (i.e. I = 106) and the constant weight function. Therefore, using wopt is especially advan-
tageous when the simulations are very time-consuming.

For this application, we also ran algorithm A4. For the pilot posterior sample Θpilot, we used the union of 
the three posterior samples obtained with the three weight functions and I = 105. The partial MSEs (PMSE) were 
computed for the | |=250J  closest parameter vectors from Θpilot. Table 4 provides the PMSEs obtained with and 
without pilot ABC. These values were computed for the same set J  of parameters so that they can be com-
pared. We can see that, whatever the weight function, using the pilot ABC allows to reduce the PMSE. The reduc-
tion is about 10% in the case of wopt and is significant (p-values of paired t-tests: 6.2 × 10–5 for I = 105 and 0.029 for 
I = 106). Besides, algorithm A4 has the same properties than algorithm A3: The optimal weight function allows a 
significant decrease of the PMSE (about 10%); using I = 105 simulations and the optimal weight function led to a 
lower PMSE than the one obtained with I = 106 simulations and the constant weight function.

Figure 5 (top) shows the three weight functions obtained with I = 106 and algorithm A4 including the pilot 
ABC run. pilot

optw  is fluctuating around the constant function and seems to not accumulate information over too 
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Figure 5 Estimation of the pollen dispersal function with algorithm A4 including a pilot ABC run. Top: Constant weight function 
(dashed lines), variance weight function (left, dots linked by lines) and optimal weight function (right, solid line). Bottom: Mar-
ginal prior distributions (gray histogram, I = 106 values) and marginal posterior distributions (black histogram, 113 values) for the 
mean distance parameter (left) and the shape parameter (center). Bottom right: Joint prior distribution (contour lines and gray 
dots; only 105 points are drawn) and joint posterior distribution (black dots) of the parameters.

Table 4 BMSE and PMSE obtained for the estimation of the pollen dispersal function with I = 105 and I = 106 simulations and with 
the three weight functions. In each row, the fifth column gives the p-value of the paired t-test comparing the average MSEs 
obtained with wopt and wcst.

wcst wvar wopt p-value

I = 105

BMSE 1.009 1.051 0.974 7.9 × 10–4

PMSE (without pilot ABC) 0.101 0.102 0.100 0.57
PMSE (with pilot ABC) 0.097 0.099 0.087 5.4 × 10–5

I = 106

BMSE 0.977 0.981 0.938 1.1 × 10–4

PMSE (without pilot ABC) 0.092 0.094 0.089 0.11
PMSE (with pilot ABC) 0.090 0.094 0.083 1.8 × 10–4
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ABC with functional statistics      15

long ranges of distances. Figure 5 (bottom) shows the (marginal and joint) prior and posterior distributions 
of the two parameters (the posterior sample has size 113). The joint posterior distribution clearly shows that 
data contain information over the dispersal parameters included in the model.

5.5  Comparison with other approaches

We carried out a comparison between algorithm A4 and the ABC-rejection algorithm A2 applied after a trans-
formation of the set of summary statistics proposed in previous works. We tested three transformations: the 
minimum entropy approach and the two-stage procedure of Nunes and Balding (2010) and the PLS transfor-
mation of Wegmann et al. (2009). The three algorithms are denoted A2-ME, A2-TS and A2-PLS.

Details about the implementation of these algorithms and about the definition of the comparison crite-
ria are provided in Appendix B. Here we only notice that in Nunes and Balding (2010) and Wegmann et al. 
(2009), the acceptance rate is not optimized but fixed. So, we tested two different values for the acceptance 
rate: τ = 10–4 and 10–3 (for ABC with I = 106 simulations).

Table 5 shows the results of the comparison. Algorithm A4 is the most efficient approach with respect 
to the BMSE and the PMSE (criteria used in A4); Algorithm A2-PLS with τ = 10–4 reaches the same PMSE for 
parameter δ but not for parameter b. Based on the mean square root of the sum of squared errors denoted 
MRSSE (criterion used in A2-TS), algorithms A4 and A2-TS are the most efficient for parameter δ but A2-TS 
with τ = 10–4 outperforms the other algorithms. We also investigated the coverage properties of the algorithm 
as suggested by (Wegmann et al., 2009). The coverage of δ is a little bit larger than expected with algorithm 
A2-PLS, τ = 10–3, but the coverage of b is correct for all the algorithms.

Thus, even if the spatial dependence in the summary statistics is weak in this application (see Figure 4, 
top right), the overall performance of algorithm A4 which does exploit the dependence between the statistics 
is satisfactory (despite the inacurracy of the estimation of b with respect to the MRSSE).

Table 5 Comparison between algorithms A4 and A2 with transformation of the set of summary statistics for estimating 
parameters δ and b of the pollen dispersal function. Three transformations are included in algorithm A2: the minimum entropy 
approach (A2-ME) and the two-stage procedure (A2-TS) of Nunes and Balding (2010), and the PLS transformation (A2-PLS) of 
Wegmann et al. (2009). A2-ME, TS and PLS were carried out with two different values of the acceptance rate: τ =10–4 and τ =10–3.

Algorithm τ BMSE PMSE × 10–3 Coverage MRSSE

Parameter δ
 A4 τpilot

opt 0.408* 3.26* 0.981 0.037*

 A2-ME 10–4 0.467 6.14 0.955 0.052
 A2-ME 10–3 0.462 6.20 0.955 0.055
 A2-TS 10–4 0.451 3.55 0.962 0.034*
 A2-TS 10–3 0.445 4.02 0.977 0.035*
 A2-PLS 10–4 0.460 3.26* 0.970 0.058
 A2-PLS 10–3 0.484 4.78 0.989+ 0.077
Parameter b
 A4 pilot

optτ 0.812* 0.193* 0.962 0.702

 A2-ME 10–4 0.972 0.371 0.947 0.717
 A2-ME 10–3 0.951 0.362 0.970 0.703
 A2-TS 10–4 0.862 0.234 0.936 0.475*
 A2-TS 10–3 0.860 0.245 0.974 0.539
 A2-PLS 10–4 0.886 0.234 0.959 0.537
 A2-PLS 10–3 0.925 0.272 0.966 0.583

The implementation of A2-ME, TS and PLS and the comparison criteria are described in Appendix B. In columns BMSE, 
PMSE and MRSSE, figures with stars are significantly lower than figures without stars (based on one-sided paired t-test 
with risk level 0.01). In columns Coverage, figures with the mark + indicates a coverage of the 95%-posterior interval 
which is significantly different from 95% (two-sided binomial test with risk level 0.01).
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16      Samuel Soubeyrand et al.

6  Discussion
We proposed a modification of ABC algorithms relying on a weighted distance between functional 
summary statistics and we optimized the weight function by minimizing a loss function computed on 
pseudo-observed datasets. This approach allows improved accuracy of estimation carried out with an ABC-
rejection approach. We applied it to two series of 500 simulations (simple step model and modified Thomas 
process) and fit to a dispersal model based on pairwise genetic distances measured between individuals 
spread in space (real spatial point process marked with genetic data). This application allowed us to infer 
the parameters of the dispersal function of the wildservice tree (S. torminalis).

6.1  Performance of the approach

The application of the method to the pollen dispersal model (third example) showed that, with the optimized 
weights, we can run ten times fewer simulations (105 instead of 106) and reach an estimation accuracy equal 
to the one obtained with the constant weights. This result is particularly useful when simulations are very 
time consuming. For 105 simulations, the optimization took a few hours with a desk computer. Neverthe-
less, simulations can be parallelized with the ABC-rejection algorithm whereas parallelizing the Nelder-Mead 
algorithm is more difficult.

We showed that the use of a pilot ABC run lead to even better estimations (with respect to the BMSE and 
the PMSE). The risk with such an iterative procedure is that the pilot study results in an overly narrow region 
in the space of parameters.

6.2  Other approaches for transforming the summary statistics

Other approaches for transforming the raw summary statistics have been proposed (see e.g. Joyce and Mar-
joram, 2008; Wegmann et al., 2009; Nunes and Balding, 2010; Haon-Lasportes et al., 2011; Jung and Marjo-
ram, 2011; Fearnhead and Prangle, 2012). In our application to the pollen dispersal model, we compared our 
approach with those of Nunes and Balding (2010) and Wegmann et al. (2009). Based on four comparison 
criteria (BMSE, PMSE, coverage rate and MRSSE), the performance of our approach was satisfactory.

The two-stage procedure of Nunes and Balding (2010) and our algorithm A4 have comparable stages: a 
pilot study is used in both procedures (based on entropy in the former and BMSE in the latter) and a trans-
formation of statistics is performed by optimizing a criterion (MRSSE in the former and PMSE in the latter) 
computed from outputs of the pilot ABC. The criteria used in both approaches are a matter of choice (see 
Section 6.3 below) and could be replaced.

Despite the similarity described above, a major difference exists between Nunes and Balding (2010) 
approach and ours. Our approach can be viewed as a dimension reduction of the summary statistics fol-
lowed by a quantitative weighting. Indeed, the raw summary statistics are replaced by N subsums of the 
summary statistics and the subsums are weighted. The minimum entropy and the two-stage approaches 
of Nunes and Balding (2010) only perform a dimension reduction which can also be viewed like a binary 
weighting. The PLS transformation of Wegmann et al. (2009) also performs a binary weighting applied to the 
PLS axes. In this approach, the binary weighting is based on how much each axis explains the variability of 
the parameters.

6.3  Selection of the acceptance rate

The role of the acceptance rate τ in the agreement between the ABC-based posterior distribution and the 
exact posterior distribution given the statistics is studied and discussed in Blum (2010a) and Jung and Mar-
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joram (2011). Choosing the value of τ consists in balancing between bias and variance of the ABC-based 
posterior distribution (as for the bandwidth of kernel estimators in nonparametric statistics). In practice, 
the acceptance rate was optimized in our approach by minimizing the BMSE and PMSE criteria with the 
Nelder-Mead algorithm. Jung and Marjoram (2011) also used a MSE criterion to optimize τ whereas Wilson et 
al. (2009, Supplementary Data) selected τ by calibrating the coverages of the parameter posterior intervals 
and Blum (2010b) optimized τ by maximizing the evidence function. Further studies could be carried out to 
compare these approaches.

6.4  Possible extensions of the approach

In the proposed method, several tuning parameters remain to be fixed by the user. The acceptance rate and 
the jump levels of the weight function are optimized in our algorithm whereas the numbers of simulations I 
and J and the jump locations of the weight function are preliminary determined by the user. When a pilot ABC 
run is used, the proportion of simulations which form the pilot sample has also to be determined. A further 
advance would be to find a way to make an automatic choice of these tuning parameters.

Note that the piecewise constant weight function and the Nelder-Mead algorithm could be replaced by 
other classes of functions (e.g. regular parametric functions, spline-based functions or kernel-based func-
tions; see Ruppert et al., 2003) and optimizers (e.g. simulated annealing and genetic algorithms; see Kirkpat-
rick et al., 1983; Jung and Marjoram, 2011). Similarly, other choices could be made for the weighted distance in 
Eq. (3) (which could be replaced, for instance, by the integral of weighted absolute values) and the optimiza-
tion criteria BMSE and PMSE in Eqs. (4) and (8) (which could be replaced, for example, by the mean square 
root of the sum of squared errors; see Nunes and Balding, 2010). Numerical comparisons would be useful to 
quantify the influence of these choices on estimation accuracy.

The approach that we proposed could be adapted to ABC-with-regression algorithms (Beaumont et al., 
2002; Blum and François, 2010; Leuenberger and Wegmann, 2010) and to sequential ABC algorithms (Marjo-
ram et al., 2003; Beaumont et al., 2009). For the latter algorithms, a constant weight function could be used 
during a first stage of the algorithm and then the weight function could be updated when enough simulations 
are available. This would lead to an adaptive algorithm (Haario et al., 2001).

Moreover, in spatial statistics, a single data set is commonly characterized by various functional statistics 
reflecting various properties (Illian et al., 2008). Our method could be easily adapted to incorporate several 
functional statistics in the distance between observed and simulated data sets.

6.5  Summary statistics depending on an auxiliary variable

The optimization of weights defining a distance between statistics can also be carried out for ABC methods 
relying on non-functional statistics as proposed by Jung and Marjoram (2011). These authors used a genetic 
algorithm to optimize the weights of scalar statistics as well as the acceptance rate (see above). They applied 
their method to inference problems with small numbers of statistics and shown that the optimized weights 
allowed a reduction of a mean square error computed for posterior means of parameters.

However, being able to sort the summary statistics with respect to a distance or a time or any other auxil-
iary variable, allows the reduction of the number of weights to be optimized and, consequently, to have less 
weights than the number of statistics. Thus, the proposed approach is particularly valuable when a large 
number of statistics correlated with respect to an auxiliary variable are available. In comparison to other 
methods that improve the distance between observed and simulated statistics in the ABC framework (e.g. 
Joyce and Marjoram, 2008; Wegmann et al., 2009; Nunes and Balding, 2010; Haon-Lasportes et al., 2011; 
Barnes et al., 2012; Fearnhead and Prangle, 2012), our method does exploit knowledge about the structure of 
dependence among statistics. However, when there is no dependence with respect to an auxiliary variable in 
the summary statistics, other methods might outperform ours.
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Finally, situations with large numbers of statistics correlated with respect to auxiliary variables are 
frequently encountered in spatial studies where statistical analyses are carried out with spatially explicit 
(genetic) models. Therefore, our approach should especially help in developing the use of ABC in spatial 
studies like those presented in this article (up to now, ABC has been lightly applied in such studies).

Acknowledgements: We thank the reviewers for their useful suggestions and comments. This research was 
supported by the French research agency ANR (EMILE project).

7  Appendix

A  Approximation of the posterior distribution of θ given S
This appendix shows in a simple case that pε(θ|S) given by Eq. (1) approximates the posterior distribution 
conditional on the statistics p(θ|S) given by Eq. (2). This simple case is based on regularity assumptions about 
the conditional probability distribution function ( | )S f S θ��  of S given θ which cannot be checked in usual 
applications of ABC where f�  is generally analytically intractable.

Here, (i) θ and S are fixed, (ii) the space S  of statistics is  , (iii) the conditional probability distribution 
function ( | )S f S θ��  of S given θ is three times differentiable over , (iv) the absolute values of its second and 
third derivatives are π-integrable over Θ, (v) its third derivative is a Lipschitz function (∃A∈[0,∞), ( , ) ,u S∀ ∈S  

′′′ ′′′θ − θ ≤ −� �| ( | ) ( | ) | | | ).f u f S A u S
From the Taylor’s theorem,
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Using assumption (v), the absolute value of the remainder term R(ε, S, θ) is bounded from above by:
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Let r(ε, S, θ) = R(ε, S, θ)/ε3. Using assumption (iv), the upper bound of |R(ε, S, θ)| is π-integrable over Θ as 
well as θr(ε, S, θ) and, consequently,
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Therefore, when ε tends to zero, pε(θ|S) approximates the posterior distribution conditional on the statistics 
p(θ|S).
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B  Implementation of algorithms A2-ME, TS and PLS  
and comparison criteria

In Subsection 5.5, algorithm A2 was applied to three different sets of summary statistics: (i) a subset of the 
raw statistics obtained with the minimum entropy approach of Nunes and Balding (2010), (ii) a subset of the 
raw statistics btained with the two-stage procedure of Nunes and Balding (2010) and (iii) a subset of the axes 
obtained after a PLS regression between the parameters and the statistics like in Wegmann et al. (2009). The 
three algorithms are denoted A2-ME, A2-TS and A2-PLS. Note that these approaches can be carried out with 
the abctools R package proposed by Nunes and Prangle and the ABCtoolbox software of (Wegmann et al., 
2010).

For the ME (resp. TS) selection of the statistics, the exhaustive search of the subset of statistics which 
minimizes the entropy (resp. mean square root of the sum of squared errors, denoted MRSSE) over all the 
possible subsets was not feasible (for 91 statistics there are almost 2.5 × 1027 possible subsets). Therefore, we 
replaced the exhaustive search by an iterative search: we used a forward search based on the entropy (resp. 
MRSSE). At iteration one, the subset is made of the statistic which leads to the lowest entropy (resp. MRSSE). 
Then, at each of the following iterations, the current subset is completed by the statistic which leads, when 
it is merged to the current subset of statistics, to the lowest entropy (resp. MRSSE). The iterative search is 
stopped when the entropy (resp. MRSSE) is no more decreasing by the addition of any of the remaining statis-
tics. For A2-ME, 5 (resp. 7) statistics were selected with τ = 10–4 (resp. τ = 10–3). For A2-TS, 11 (resp. 14) statistics 
were selected with τ = 10–4 (resp. τ = 10–3).

It has to be noted that, in A2-TS, the MRSSE that we used includes a standardization to rescale the com-
ponents of the parameter vector (as suggested by Nunes and Balding, 2010) and satisfies:

1/22

=1 =1

{ ( ) }1 1MRSSE= .
| | Var( )

n EM EMKacc
m jk

EM
EM acc jkm kj

jk
n

∈

 Θ −θ
  θ 

∑ ∑∑
J

J

where EMJ  is the set of 100 PODS selected in stage one of the two-stage procedure, 
′Θ Θ Θ… …{ ( )=( ( ,1), , ( , )) : =1, , }EM EM EM

m m m accj j j K m n  is the posterior sample (set of accepted parameter vectors) 
obtained for each PODS in EMJ  obtained after stage one of the two-stage procedure. The size of the poste-
rior sample is nacc = Iτ = 106 τ where τ is the acceptance threshold (10–4 or 10–3).

For A2-PLS, we fitted the PLS regression to 104 simulations and kept the minimum number of axes 
explaing at least 99% of the variance of the parameters. This led us to keep 24 axes among 91 possible axes.

We computed marginal criteria measuring the accuracy of the estimation for each parameter component. 
The marginal BMSE was computed with 1000 new pseudo-observed data sets (PODS) not used in the imple-
mentation of the algorithms which are compared. Among the 1000 new PODS, only 266 were used to compute 
the marginal PMSE, the marginal coverage of the 95%-posterior intervals of δ and b and the marginal mean 
square root of the sum of squared errors [MRSSE; criterion used in the two-stage approach of Nunes and 
Balding (2010)]. The 266 PODS were obtained as follows: For each value of τ (10–4 and 10–3), we selected the 
250 PODS with the summary statistics reduced by the ME approach which are the closest from the observed 
summary statistics reduced by the ME approach (the closeness is quantified with the Euclidean distance). 
Then we merged the two sets of PODS and obtained a set of 266 different PODS. This selection of PODS is 
similar to stage one in the TS procedure of Nunes and Balding (2010).

Let * *( , )j jSθ , j = 1,…,103 denote the 1000 new PODS. The marginal BMSE satisfies:

3 * * 210

3 *
=1

ˆ( )1BMSE = ,
10 Var( )

jk jkmarg

jkj

θ −θ

θ
∑

where θ*ˆ ,jk  k = 1,…,K, are the marginal posterior medians of the K components of θ θ θ…* * *
1=( , , ),j j jK  the marginal 

posterior medians being obtained with either A4, A2-ME, A2-TS or A2-PLS.
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Let *J  denote the set of 266 selected PODS. The marginal PMSE satisfies:

* * 2

* *
*

ˆ( )1PMSE = .
| | Var( )

jk jkmarg

jkj∈

θ −θ

θ
∑
J

J

The marginal coverage of any parameter by the corresponding marginal 95%-posterior interval is:

( )***
*

*

1Coverage 1 ,
| |

marg
jkjkjk

j∈

θ ≤θ ≤θ∑
J

J

where *
jkθ  and *

jkθ  are the posterior quantiles of order 0.025 and 0.975 of the k-th component of *
jθ , the poste-

rior quantiles being obtained with either A4, A2-ME, A2-TS or A2-PLS, and 1 is the indicator function [1(E) = 1 
if event E holds, zero otherwise]. The marginal MRSSE satisfies:

1/2* * 2
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where ′Θ Θ Θ… …* * *{ ( )=( ( ,1), , ( , )) : =1, , }m m m accj j j K m n  denotes the posterior sample (set of accepted parameter 
vectors) obtained by applying either A4, A2-ME, A2-TS or A2-PLS to the j-th PODS (to infer θ* ).j  The size of 
the posterior sample is nacc = Iτ = 106 τ where = pilot

optτ τ  in algorithm A4 and τ = 10–4 or 10–3 in algorithms A2-ME, 
TS and PLS.
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