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Abstract. Soil moisture is of primary importance for predict-
ing the evolution of soil carbon stocks and fluxes, both be-
cause it strongly controls organic matter decomposition and
because it is predicted to change at global scales in the fol-
lowing decades. However, the soil functions used to model
the heterotrophic respiration response to moisture have lim-
ited empirical support and introduce an uncertainty of at least
4 % in global soil carbon stock predictions by 2100. The ne-
cessity of improving the representation of this relationship
in models has been highlighted in recent studies. Here we
present a data-driven analysis of soil moisture-respiration re-
lations based on 90 soils. With the use of linear models we
show how the relationship between soil heterotrophic res-
piration and different measures of soil moisture is consis-
tently affected by soil properties. The empirical models de-
rived include main effects and moisture interaction effects of
soil texture, organic carbon content and bulk density. When

compared to other functions currently used in different soil
biogeochemical models, we observe that our results can cor-
rect biases and reconcile differences within and between such
functions. Ultimately, accurate predictions of the response
of soil carbon to future climate scenarios will require the
integration of soil-dependent moisture-respiration functions
coupled with realistic representations of soil water dynamics.

1 Introduction

Soil moisture is one of the most important environmental
factors driving productivity and carbon cycling in terrestrial
ecosystems. Next to temperature, it is a primary determinant
of the rate at which soil carbon is mineralized by microbes
into carbon dioxide (Greaves and Carter, 1922; Davidson et
al., 2000; Davidson and Janssens, 2006; Cook and Orchard,
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2008) and the main driver of soil microbial activity in many
ecosystems (Davidson et al., 2000; Jassal et al., 2008; Liu et
al., 2009). It is also expected to change significantly at global
scales as a result of climate change in the coming decades
(IPCC, 2007; Burke and Brown, 2010), potentially leading to
large scale changes in soil carbon stocks in different regions,
such as the Amazon basin (Falloon et al., 2011).

The relationship between soil moisture and soil respiration
is known to be variable. It depends not only on the soil type
(Franzluebbers, 1999; Vincent et al., 2006) but also on the di-
versity of measures used to express water conditions in soils,
each having a unique relationship with soil microbial activity
(Ilstedt et al., 2000; Paul et al., 2003). Soil factors including
total pore space, bulk density and texture have been shown to
influence this relationship (Franzluebbers, 1999; Thomsen et
al., 1999). However, such studies have been few with most
concentrating on finding the measure of moisture that best
predicts respiration rates (e.g. water potential, water-filled
pore space, etc.) or the single function that best describes
this relationship (e.g. linear, polynomial, etc.). A systematic
analysis of variations in response to a wide range of soil types
has been lacking.

Soil carbon models use soil moisture-respiration functions
that, in theory, represent an average response of microbial
respiration to soil moisture content, i.e. they do not account
for any possible variation in this relationship (Rodrigo et al.,
1997). In addition, these functions are generally developed
and validated using soils from specific sites and, as a con-
sequence, are not suitable for a wider range of soil types.
Accordingly, a few studies indicate that the variability in
soil carbon budget predictions related to the use of different
moisture-respiration functions can be important (Rodrigo et
al., 1997; Bauer et al., 2008; Falloon et al., 2011). Fallon
et al. (2011) showed that the divergence in simulations re-
lated to the choice of moisture function alone is nearly 4 %
of global carbon stocks by 2100. However, since all the com-
pared functions still represent an “average” response, the real
uncertainty may be larger than reported. A better under-
standing of how this relationship actually depends on soil
properties will help to quantify and reduce such uncertain-
ties (Franzluebbers, 1999; Schjonning et al., 1999; Thomsen
et al., 1999).

Here we present results from a meta-analysis of multiple
soil incubation datasets that describe how soil properties reg-
ulate the relationship between soil microbial respiration and
moisture. We use the terms “soil respiration” or simply “res-
piration” referring to soil CO2 emissions from heterotrophic
microbial activity. The soil respiration response to moisture
is the result of several processes – including osmotic stress,
diffusion and oxygen limitations – that combined produce
a net effect on the rate of carbon decomposition. Conse-
quently, we did not look for a function that acts as the best
single average predictor, as it would invariably underperform
in most soil types. Instead, we treated the respiration re-
sponse as a variable that changes freely at different levels

of moisture and is explained by moisture itself and other soil
properties.

The main outcome of this analysis is statistical models that
predict the proportional response of soil respiration to mois-
ture as a soil-type dependent variable. This can then be used
to derive relative soil respiration curves for a given soil type.
We illustrate the results by comparing the model we derive,
using data from soils of England and Wales (Bellamy et al.,
2005), with other currently used functions.

2 Materials and methods

2.1 Data processing

Data were assembled from studies where soil carbon diox-
ide emissions were measured together with variations in soil
moisture under controlled laboratory conditions. Treatments
varied across studies (e.g. intact vs. homogenized soils) but
only homogenous samples with respect to soil properties
were used. Incubations with temperatures outside the 10 to
35◦C range were excluded. Respiration data from incuba-
tions where moisture decreased over time were corrected for
substrate depletion effects using data from control (constant
moisture) samples. Pore space, if not available, was calcu-
lated assuming a mineral density of 2.65 and organic matter
density of 1.4 (R̈uhlmann et al., 2006). We converted the
measures of soil CO2 emissions, moisture and soil proper-
ties to the same units and individually normalized soil res-
piration data sets to a 0–1 scale. The latter facilitated data
manipulation but did not affect the results since we analyzed
the proportional response rather than the absolute changes,
as described below.

The resulting database consisted of data from 90 differ-
ent soils originating from 42 sites and characterized by a
broad range of soil properties (Tables 1 and 2). From this
data we obtained a total of 310 respiration-moisture relation-
ships by plotting soil respiration from a given soil against
related soil moisture data expressed in one or more out of
four available measures. These measures are: mass related
or gravimetric moisture (θm), volumetric moisture (θv), frac-
tion of water saturation (θs), and the logarithm of water po-
tential (ψlog). θm is a laboratory standard whileθv is the
most widely used field measure, often associated with high
frequency carbon flux data.θs andψlog are often consid-
ered optimal predictors of microbial respiration as they are
related to air space and water energy status respectively (Or-
chard and Cook, 1983; Skopp et al., 1990). In order to obtain
an approximate range of 0 to 1, convenient for the analysis,
the unit used forψlog was (−log10|ψ |kPa)/5 + 1. Those for
the other measures are: g H2O gSoil−1 (θm), cm3 H2O cm−3

(θv), and cm3 H2O cm−3 pore-space (θs). When possible,
missing moisture measures were derived, e.g. using bulk den-
sity or pore space for convertingθv to θm or θs, respectively,
and vice versa.
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Table 1. Description of the data used in the analysis. Each line represents a specific site or location. DS is number of data sets, representing
different soil types related to each site. Site averages of soil properties used in the analysis are shown. BD = bulk density, SOC = soil organic
carbon, N = soil nitrogen.

Reference DS Country Ecosystem BD SOC N Clay Silt Sand pH
(g cm−3) (mg g−1) (mg g−1) (%) (%) (%)

Bouckaert (unpublished data) 3 Belgium Forest 1.6 44 3.5 18 49 33 5.4
Bowden et al. (1998) 1 USA Forest 0.3 NA NA NA NA NA 3.3
Cook (unpublished data) 1 New Zealand Grassland 1.3 64 4.7 16 6 79 5.4
Cook (unpublished data) 1 New Zealand Grassland 0.9 55 5.5 17 33 50 5.7
Cook (unpublished data) 1 New Zealand Grassland 0.8 71 6.2 52 34 14 6.1
Cook et al. (1985) 1 New Zealand Grassland NA NA NA NA NA NA NA
Craine and Gelderman (2011) 8 USA Grassland NA 46 3.3 33 60 8 6.7
Curiel Yuste et al. (2007) 2 USA Forest 0.9 102 3.5 11 29 60 5.5
Curiel Yuste et al. (2007) 2 USA Grassland 1.5 28 2.5 14 44 43 6.4
Don (unpublished data) 1 Germany Grassland 1.5 11 1.1 9 10 81 4.5
Doran (1990) 1 USA Forest 1.1 31 NA 14 16 70 6.8
Doran (1990) 1 USA Cultivated 1.2 14 NA 18 29 53 6.8
Doran (1990) 1 USA Cultivated 1.1 21 NA 22 75 3 6.8
Doran (1990) 1 USA Grassland 1.2 8 NA 26 19 55 6.8
Doran (1990) 1 USA Grassland 1.1 22 NA 17 64 19 6.8
Doran (1990) 1 USA Grassland 1.0 16 NA 46 42 12 6.8
Doran (1990) 1 USA NA 1.1 35 NA 14 37 49 6.8
Doran (1990) 1 USA Cultivated 1.2 13 NA 20 51 29 6.8
Doran (1990) 1 USA Grassland 1.2 7 NA 22 24 54 6.8
Doran (1990) 1 USA Cultivated 1.1 13 NA 58 35 7 6.8
Doran (1990) 1 USA Cultivated 1.1 11 NA 16 68 16 6.8
Skopp et al. (1990) 1 USA Grassland 1.2 13 NA 24 54 22 6.8
Epron (unpublished data) 1 France Forest 0.8 27 2.5 20 66 14 4.6
Formanek (unpublished data) 3 Czech Republic Forest NA 318 11.2 NA NA NA 4.8
Franzluebbers (1999) 15 USA Grassland 1.2 16 1.1 19 16 65 6.2
Gulledge and Schimel (1998) 2 USA Grassland NA 61 NA NA NA NA NA
Ilstedt et al. (2000) 3 Malaysia Forest 0.6 52 4.1 27 32 42 4.7
Ilstedt et al. (2000) 1 Sweden Forest 0.5 556 NA NA NA NA 4.1
Linn and Doran (1984) 1 USA Cultivated NA 21 1.6 34 54 12 5.8
Liu et al. (2009) 1 China Grassland NA 16 1.5 17 20 63 6.8
Lomander et al. (1998) 2 Sweden Cultivated NA 18 1.9 57 38 5 8.2
Nyhan (1976) 1 USA NA 1.4 9 NA NA NA NA 6.8
Orchard and Cook (1983) 1 New Zealand Grassland NA NA NA NA NA NA NA
Orchard et al. (1992) 1 New Zealand Grassland NA 56 3.5 24 NA NA 5.2
Orchard et al. (1992) 1 New Zealand Grassland NA NA NA NA NA NA NA
Reichstein et al. (2005) 1 Germany Forest 0.9 45 2.0 10 38 52 2.9
Rey et al. (2005) 2 Italy Forest 1.0 49 6.0 NA NA NA 5.7
Ruamps (unpublished data) 1 France Cultivated 1.5 14 1.2 17 53 30 6.8
Thomsen et al. (1999) 15 Denmark Cultivated 1.3 15 1.5 23 14 64 6.9
Skopp et al. (1990) 1 USA Cultivated 1.4 9 NA 3 7 90 6.8
Stott et al. (1986) 1 USA Cultivated NA 4 0.6 NA NA NA 7.0
Wickland and Neff (2008) 3 USA Forest NA 318 14.5 NA NA NA NA

The following analysis was performed in parallel for each
moisture measure using the R statistical software version
2.13.1 (Supplement: R Code and data files MRD.txt, DD.txt
and funs.txt). We started by assuming that a response to a
change in soil moisture is proportional to the value of res-
piration itself, as normally done in soil carbon models. By
using the proportional response we make our results gener-
alizable, avoiding the problem of comparing absolute respi-

ration values which vary largely across soils. Since the re-
sponse of respiration varies along the moisture axis, we de-
fined the Proportional Response of Soil Respiration (PRSR)

related to a 0.01 increase in soil moisture as the central unit
for analysis, with the unit of this 0.01 value depending on
the moisture measure applied. We then tested how PRSR is
affected by diverse soil properties.
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Table 2. Range of values for soil moisture (SM), soil organic carbon (SOC), clay, and bulk density (BD) used to fit linear regression models
using different measures of soil moisture. Numbers in italics are for descriptive purposes only since the respective variables were not used in
that particular model.θm is gravimetric moisture (g H2O gSoil−1), θv is volumetric moisture (cm3 H2O cm−3), θs is relative water saturation
(cm3 H2O cm−3 pore-space), and9 log is water potential [(−log10|9|kPa)/5 + 1].

Model and
Moisture Measure

SM SOC (g g−1 soil) Clay (fraction) BD (g cm−3)

min max min max min max min max

Model 1 (mineral soils)

θm 0.04 0.65 0.01 0.05 0.09 0.45 0.8 1.5
θv 0.05 0.60 0.01 0.05 0.03 0.58 0.8 1.5
θs 0.07 1.00 0.01 0.05 0.03 0.58 0.8 1.5
ψlog 0.22 1.02 0.01 0.03 0.09 0.45 0.6 1.5

Model 2 (mineral soils)

θm 0.04 0.66 0.01 0.05 0.09 0.57 – –
θv 0.05 0.60 0.01 0.05 0.03 0.58 – –
θs 0.07 1.00 0.01 0.05 0.03 0.58 – –
ψlog 0.22 1.02 0.01 0.03 0.09 0.45 – –

Model 3 (organic soils)

θm 0.05 1.1 0.05 0.40 – – – –
θv 0.05 0.85 0.06 0.35 – – 0.24 0.9
θs 0.07 0.99 0.06 0.35 – – 0.24 0.9
ψlog 0.27 0.97 0.06 0.56 – – – –

To obtain PRSR values we used general additive mod-
els (GAMs) to fit smooth curves to each of the 310 rela-
tionships. Linear or polynomial fits were used instead if
the number of moisture points in a dataset was less than 4.
Respiration values at each 0.01 moisture interval were then
predicted from the fitted curves between the minimum and
maximum moisture value of each relationship (as to avoid
extrapolations). With the resulting set of predicted values,
the PRSR of each 0.01 increase in moisture was calculated,
at moistureM, as the average of SR(M)/SR(M-0.01) and
SR(M+0.01)/SR(M).

2.2 Regression models

The dependence of PRSR on soil properties was analyzed us-
ing soil pore space, bulk density, soil organic carbon, and
sand, silt and clay content. We also tested soil pH and the
interaction between organic carbon and clay but found no
significant effects. To isolate the effect of each soil property
we used linear regression models of the form:

PRSR=β1M+β2M
2
+β3M

3
+βiSPi+βiM ·SPi+ε (1)

whereM is soil moisture (eitherθm, θv, θs orψlog) and SP are
soil properties which can interact withM. Stepwise model
selection was applied.

Preliminary results revealed important differences be-
tween soils with high and low organic carbon content. Af-
ter empirically testing the influence of different soils on the
models’ root mean square deviation, we set a threshold of
50 mg C g−1 soil, with soils above this value considered or-
ganic for the purpose of this analysis. These soils were
analyzed separately from mineral soils.

The PRSR tended to be very large at respiration values
near 0. Such PRSR are related to very low respiration rates
and do not have a large absolute impact, but can still repre-
sent a real response. However, our model failed to accurately
predict them and, as a consequence, a few of such values pro-
duced a strong general bias. To avoid this we excluded any
PRSR value further than 3 standard deviations from the mean.

Model simplification led to excluding pore space (strongly
correlated with BD), sand, silt and the SOC-M interaction.
As bulk density is often not available for use in large scale
soil simulations, we fitted a second model for mineral soils
including only clay and organic carbon. The final linear
models predicting PRSR were:

PRSR=β1M+β2M
2
+β3M

3
+β4BD

+β5M ·BD+β6clay+β7M ·clay+β8SOC (2)

PRSR=β1M+β2M
2
+β3M

3
+β4clay

+β5M ·clay+β6SOC (3)

Biogeosciences, 9, 1173–1182, 2012 www.biogeosciences.net/9/1173/2012/
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PRSR=β1M+β2M
2
+β3M

3 (4)

whereM is soil moisture, BD is bulk density, SOC is soil or-
ganic carbon andβ are model coefficients. Model 1 (Eq. 2)
and Model 2 (Eq. 3) are mineral soil models, with the latter
excluding bulk density (Table 3). Model 3 (Eq. 4) is for or-
ganic soils and has only moisture as a predictor. Few datasets
were available for these soils and significant correlations
with soil properties were not found (Table 3).

2.3 Soil respiration predictions

With the PRSR values obtained from the above models, res-
piration was predicted using the equation:

SR(M)=
(
5Mk=M0

PRSRk

)
·SR0 (5)

where soil respiration (SR) as a function of soil moisture (M)

is equal to an initial respiration value (SR0)multiplied by the
product of all PRSRvalues (denoted by the5 symbol) at each
0.01 moisture interval (k) from the initial moisture (M0) to
M (for M0<M; otherwise the product term divides SR0).
PRSR values at eachk interval are predicted with the above
PRSR models.

Relative respiration curves, which scale respiration from
0 to 1, were obtained in a two-step calculation: (1) using
Eq. (2) to predict PRSR values for each 0.01 moisture interval
and (2) using Eq. (5) to calculate respiration values along the
moisture axis (with an arbitrary SR0 of 1) and dividing all
values by the maximum obtained. As data at low moistures
extremes was generally missing, regression models did not
well reproduce the high PRSR related to respiration values
approaching 0. As a result, depending on the soil type, curve
intercepts were variably higher than 0. To obtain curves with
a 0 intercept we applied a rescaling of respiration from 0 to
1 in the range of 0 to optimum moisture. For this, we sub-
tracted the minimum respiration value (Rmin) and divided by
1-Rmin (Supplement: R Code lines 463–467). This resulted
in a scaling down that was strongest at lower moisture levels
but minimal when approaching optimal moisture.

In order to compare our results with existing functions,
we applied Eq. (3) usingθs or ψlog to predict respiration
curves for 106 soil series from England and Wales covering
an area of ca. 50 000 km2. Soil organic carbon and clay con-
tent in these soils ranged between 0.01–0.05 g g−1 and 80–
610 g clay kg−1 soil. We compared these results with func-
tions from six other models using the same moisture mea-
sures, plotting the resulting range of respiration values next
to θs functions belonging to the RothC (Coleman and Jenkin-
son, 1999; Bauer et al., 2008), CANDY (Franko et al., 1995;
Powlson et al., 1996), Bethy (Knorr, 2000) and SimCycle
(Ito and Oikawa, 2002) models andψlog functions from the
Daisy (Abrahamsen and Hansen, 2000; Bauer et al., 2008)
and SOILCO2 (̌Simunek and Suarez, 1993; Bauer et al.,
2008) models. To useθs with the RothC function we fol-
lowed the same procedure as Bauer et al. (2008), assuming
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moisture increase. The black and dashed lines are mean and standard deviations, respectively. 496 

Fig. 1. Proportional response of soil microbial respiration (PRSR)

to moisture. PRSRvalues correspond to a 0.01 increase in soil mois-
ture. Values are shown for all datasets and forθm (gravimetric mois-
ture, (a)), θv (volumetric moisture,(b)), θs (fraction of saturation,
(c)), andψlog (log water potential, (d)). Units of soil moisture

in the x-axis are: g H2O gSoil−1 (a), cm3 H2O cm−3 (b), cm3

H2O cm−3 pore-space (c) and (−log10|ψ |kPa)/5+1 (d). Grey cir-
cles represent the PRSR of each 0.01 moisture increase. The black
and dashed lines are mean and standard deviations, respectively.

that the accumulated total soil moisture deficit equalsθv at
saturation minus actualθv and maximum total soil moisture
deficit is equal toθv at saturation.

3 Results

For each dataset, PRSR values are highest at dry conditions
and decrease progressively with increasing moisture (Fig. 1),
with values below 1 corresponding to a negative trend in
respiration rates. Mean PRSR values forθs and ψlog de-
creased monotonically with increasing moisture (Fig. 1c and
d) while those forθm andθv showed more discontinuities re-
lated to sharp variations in soil types (Fig. 1a and b). All
moisture measures had a wide range of soil moisture asso-
ciated to an optimum for respiration, defined as the point
where PRSR crosses 1. Takingθs as an example, the PRSR
mean value reaches 1 at 0.63θs, consistent with the com-
monly reported range of 0.6–0.7, but different datasets had
values of optimum moisture as low as 0.4 and as high as 0.9
water saturation.

For mineral soils, significant correlations were found be-
tween PRSR and all soil properties, with the correlation
strength and significance being strongly dependent on the
moisture range and type of moisture measure (Fig. 2). With
θm andθv, correlation coefficients of PRSR versus bulk den-
sity were negative and tended to increase with increasing
moisture. Correlations with pore space, not shown in Fig. 2,
were identical but of opposite sign, i.e. positive. Fewer or no

www.biogeosciences.net/9/1173/2012/ Biogeosciences, 9, 1173–1182, 2012
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Table 3. Variables and coefficients for linear models predicting the proportional response of soil respiration (PRSR) at 0.01 moisture intervals.
SM = soil moisture, BD = bulk density, SOC = soil organic carbon. Coefficient values and standard errors are given under the corresponding
moisture measure. All terms are significant atp< 0.001. In addition, values are given for the number of data points (n) and datasets used,
and the model root mean square deviation (RMSD) with the improvement relative to a moisture-only fit in brackets.

Gravimetric Volumetric Fraction of Log water
Variables moisture (θm) moisture (θv) saturation (θs) potential (ψlog)

Model 1 (mineral soils)

n 1233 1936 3610 2193
n-datasets 50 52 52 42
RMSD 0.023 (0.006) 0.024 (0.003) 0.014 (0.002) 0.012 (0.001)
Intercept 1.00± 0.02 0.98± 0.01 1.02± 0.00 1.26± 0.02
SM −0.80± 0.09 −0.48± 0.08 −0.29± 0.02 −1.36± 0.05
(SM)2 3.5± 0.2 1.8± 0.3 0.37± 0.04 2.26± 0.08
(SM)3 −3.1± 0.2 −1.6± 0.3 −0.19± 0.03 −1.12± 0.04
BD (g cm−3) 0.10± 0.01 0.1± 0.01 0.03± 0.00 0.05± 0.01
BD (g cm−3) SM −0.44± 0.05 −0.3± 0.04 − −0.09± 0.01
Clay (fraction) 0.33± 0.03 0.18± 0.02 0.09± 0.01 0.17± 0.02
Clay (fraction) SM −0.7± 0.1 −0.31± 0.06 −0.08± 0.01 −0.25± 0.02
SOC (g gSoil−1) 1.5± 0.1 1.4± 0.09 0.8± 0.04 –

Model 2 (mineral soils)

n 1474 1951 3710 2232
n-datasets 59 65 66 43
RMSD 0.025 (0.006) 0.025 (0.002) 0.015 (0.001) 0.013 (0.0003)
Intercept 1.13± 0.01 1.11± 0.01 1.059± 0.003 1.31± 0.01
SM −1.31± 0.05 −0.83± 0.07 −0.26± 0.02 −1.45± 0.05
(SM)2 3.0± 0.2 1.5± 0.3 0.32± 0.04 2.18± 0.08
(SM)3 −2.23± 0.2 −1.0± 0.3 −0.15± 0.03 −1.07± 0.04
Clay (fraction) 0.26± 0.02 0.08± 0.01 0.08± 0.01 0.12± 0.01
Clay (fraction) SM −0.39± 0.05 − −0.09± 0.01 −0.16± 0.02
SOC (g gSoil−1) 1.07± 0.07 1.28± 0.08 0.57± 0.04 0.19± 0.06

Model 3 (organic soils)

n 682 286 355 159
n-datasets 16 6 6 3
RMSD 0.020 0.010 0.008 0.014
Intercept 1.146±0.005 1.178±0.004 1.134± 0.003 1.42± 0.04
SM −0.57±0.03 −1.12±0.03 −0.67± 0.02 −1.9± 0.2
(SM)2 0.79± 0.07 2.22± 0.09 1.08± 0.05 2.9± 0.4
(SM)3 −0.37± 0.04 −1.40± 0.06 −0.57± 0.03 −1.4± 0.2

significant correlations of these properties were seen forθs
andψlog.

Significant PRSR correlations with texture and organic car-
bon were found for all moisture measures but most impor-
tantly for θm and θv. Correlations were generally negative
for sand and positive for clay, silt and organic carbon. Corre-
lations with clay and silt followed a similar pattern that mir-
rored the behavior of sand. Correlations with organic carbon
content were similar to those of clay and silt. In contrast, or-
ganic soils showed no significant correlations between PRSR
and carbon content (data not shown).

The range of values used for fitting the multiple linear re-
gression models is given in Table 2. Models usingθm and
θv showed the largest improvement in their root mean square
deviation (RMSD) after adding soil properties to the basic
moisture polynomial. However, the much lower RMSD val-
ues of the models usingθs andψlog, which only decreased
slightly after adding soil properties, show that they are bet-
ter predictors, withψlog having a slightly better performance
(Table 3). An analysis of model residuals resulted in no
trend or significant correlation with soil incubation temper-
ature and incubation duration. Note that models using dif-
ferent measures of moisture were fitted with different sets
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Figure 2: The respiration response to moisture (PRSR) correlated with soil properties of mineral soils. 499 

Correlation coefficients of PRSR vs. bulk density (black circles), organic carbon (green squares), sand 500 

(yellow inverted triangles), silt (brown triangles) and clay (red diamonds) on the y-axis are shown for 501 

different levels of soil moisture (SM) on the x-axis. Full symbols denote correlations significant at 502 

p<0.05. Units of soil moisture in the x-axis are: g H2O g-1 dry soil (a), cm3 H2O cm-3 total (b), cm3 H2O 503 

cm-3 pore-space (c) and [-log10||kPa]/5+1 (d). 504 
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Fig. 2. The respiration response to moisture (PRSR) correlated with
soil properties of mineral soils. Correlation coefficients of PRSR
vs. bulk density (black circles), organic carbon (green squares),
sand (yellow inverted triangles), silt (brown triangles) and clay (red
diamonds) on the y-axis are shown for different levels of soil mois-
ture (SM) on the x-axis. Full symbols denote correlations signifi-
cant atp < 0.05. Units of soil moisture in the x-axis are: g H2O
gSoil−1 (a), cm3 H2O cm−3 (b), cm3 H2O cm−3 pore-space (c)
and [-log10|ψ |kPa]/5 + 1 (d).

of observations, one reason whyR2 values were not used to
compare them.

Relative respiration curves are shown in Fig. 3. The effect
of clay content on respiration was mainly at low (aerobic)
moisture ranges and strongly affected the spread in the curve.
Less clay resulted in a wider range of soil moisture values as-
sociated to optimal respiration and a respiration peak at lower
water contents. Soil organic carbon produced a shift in the
curve under all moisture measures with the exception of wa-
ter potential. More carbon content did not affect the spread
of the curve but drove the point of maximum respiration to-
wards higher values of moisture. With changes in bulk den-
sity, respiration changed relatively little for a constant volu-
metric moisture (θv curve) or water potential (ψlog curve) but
changed strongly under a constant gravimetric moisture (θm
curve) or water saturation fraction (θs curve).

When compared to currently used models (Fig. 4), results
from our model covered much of the range of variability
between other functions based onθs, which either under-
or overestimate average respiration, with a strong tendency
towards the latter. Functions usingψlog were comparable
to our predictions, where we observed a limited influence
of soil properties, but they showed a general overestima-
tion of respiration values in most of the range of suboptimal
moisture conditions.
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Figure 3: The response of predicted soil moisture-respiration curves to variations in soil properties 507 

for mineral soils. Darker lines represent higher values of a given property. Variations are shown for 508 

clay content from 0.1 to 1 fraction (a-d), organic carbon from 0.005 to 0.05 g g-1 (e-h), and bulk 509 

density from 0.6 to 1.6 g cm-3 (i-l). The respective values for the variables held constant are: 0.3 510 

fraction, 0.02 g g-1 and 1.2 g cm-3. Moisture units are: g H2O g-1 dry soil (a,e,i), cm3 H2O cm-3 total 511 

(b,f,j), cm3 H2O cm-3 pore-space (c,g,k), and -log10||kPa (d,f,l).  512 
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Fig. 3. The response of predicted soil moisture-respiration curves to
variations in soil properties for mineral soils. Darker lines represent
higher values of a given property. Variations are shown for clay
content from 0.1 to 1 fraction (a–d), organic carbon from 0.005 to
0.05 g g−1 (e–h), and bulk density from 0.6 to 1.6 g cm−3(i–l). The
respective values for the variables held constant are: 0.3 fraction,
0.02 g g−1 and 1.2 g cm−3. Moisture units are: g H2O gSoil−1 (a,
e, i), cm3 H2O cm−3 (b, f, j ), cm3 H2O cm−3 pore-space (c, g, k),
and−log10|ψ |kPa (d, f, l).
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ture. The grey area marks the full range of values obtained with Eqs. (3) and (5) using s (a) or log (b) 516 

for 106 soil series from England and Wales ranging from 8 to 50 mg g-1 SOC and 0.08 to 0.61 clay 517 

fraction. Other lines are moisture-respiration functions from existing models using either s (a) or 518 

log (b) as a predictor. In panel a: CANDY model (full line), Bethy model (dashed line), SimCycle mod-519 

el (dotted line), RothC model (dot-dash line). In panel b: Daisy model (full line), SOILCO2 model 520 

(dashed line). 521 

Fig. 4. Comparison of predicted relative soil heterotrophic respi-
ration as a function of soil moisture. The grey area marks the full
range of values obtained with Eqs. (3) and (5) usingθs (a) orψ log
(b) for 106 soil series from England and Wales ranging from 8 to
50 mg g−1 SOC and 0.08 to 0.61 clay fraction. Other lines are
moisture-respiration functions from existing models using eitherθs
(a) orψ log (b) as a predictor.(a): CANDY model (full line), Bethy
model (dashed line), SimCycle model (dotted line), RothC model
(dot-dash line). (b): Daisy model (full line), SOILCO2 model
(dashed line).

4 Discussion

This comparison of multiple datasets revealed a strong soil-
dependent variation of the moisture-respiration relationship,
in clear contrast to the simple functions found in all current
models. The large range of variability observed (e.g. respi-
ration maximums ranging from 40–100 % water saturation)
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reflects differences between ecosystems that are largely ig-
nored in the more common and simplified representations of
this relationship. A major difference observed was in the re-
sponse of organic vs. mineral soils. In the case of organic
soils we found little or no effects of soil properties on the
PRSR. The models derived for organic soils use moisture as
the only predictor. It is evident that, with a generally lower
bulk density and mineral fraction, the influence of oxygena-
tion and clay content become less important. These mod-
els serve as a best approximation, but remain rough averages
given the limited availability of data and the often incomplete
characterization of soil properties. More data of well char-
acterized soils will be needed to better understand moisture
effects in these soils.

For mineral soils (with less than 50 mg C g soil−1) the soil
factors having an influence on the moisture-respiration rela-
tionship involved aeration and structure (bulk density), tex-
ture (clay) and composition (carbon content). The models we
derived from the data include clay but not silt or sand. This
was a result of the large effect of clay and the relatively small
influence of silt or sand when including one or the other in
the linear regression. This is probably caused by the much
larger specific surface area of clay which affects water re-
tention and availability. The increase in the optimum water
content for respiration with increasing clay fraction we ob-
served has also been identified in field studies (Balogh et al.,
2011). Water potential is the only measure of soil moisture
for which this pattern was not observed.

Biological and physical theory predicts that microbial ac-
tivity in soils should be tightly regulated by the osmotic and
matric potential of water (Parr et al., 1981; Orchard and
Cook, 1983). Accordingly, the relation between soil respira-
tion and soil water potential (ψlog) was the least affected by
soil properties. RMSD values (Table 3) show that this mea-
sure was the best predictor of respiration rates with or with-
out including soil properties – except in organic soils, which
may be the result of having only three related datasets. How-
ever, since large changes in water potential are often asso-
ciated with small changes in water content, predicting water
potential in soils could itself be associated with large errors.
Among the models based on measures of water content (θs,
θm or θv), those usingθs resulted in the lowest root mean
square deviation and were thus the best predictor of respira-
tion rates. Ultimately, finding the measure that performs best
in large scale simulations will require a validation of model
performance against actual field data. It should be noted that
R2 were not reported because, first, different models were fit
with different sets of observations, and second, even with a
low R2 a moisture measure may still be a good predictor of
respiration, as would be the case of a mostly constant PRSR
that does not vary with any of the predictor variables.

The main limitation of our models was simulating the res-
piration response at low values of moisture, usually associ-
ated with less than 10 %θs. This was partially the result of
the lack of data at low moistures (Fig. 1), but also of the

analysis procedure. Because we compared soils with un-
known basal respiration rates and incubated under very dif-
ferent conditions, the only comparable measure for this anal-
ysis was the proportional or relative change. However, this
means that at respiration values approaching 0 this propor-
tional change will tend to increase exponentially, resulting
in a wide spread of values and a poor model performance
in this range. In this study, we chose to apply a rescaling
of predicted values to obtain a zero-intercept (Fig. 3), as de-
scribed in methods, thus introducing a negative bias but mak-
ing fluxes at low moisture more realistic. Note that for water
potential models this rescaling was not performed.

The data from England and Wales soils used for model
comparison represents a large range of properties character-
istic of soils in temperate regions. The range of respiration
curves we predicted (Fig. 4), related to variations in the prop-
erties of these soils, covered most of the differences between
strongly differing functions such as those used in the RothC,
CANDY and Bethy models. Thus, the variability in model
predictions, associated with different moisture functions, can
be largely reduced or eliminated by using a common, but
generally valid, soil-dependent moisture-respiration func-
tion. Depending on the model, soil and climate, signifi-
cantly different predictions of soil carbon decomposition are
expected after including these soil-dependent functions. In
most cases this will tend to lower rates of respiration and,
consequently, to an increased sequestration of carbon in soils.

Our predictions rely on regression models which are prac-
tical and have the advantage of being based on data. As a
drawback, they can result in unrealistic values when extrap-
olating or where data was insufficient or non-linear. This can
be avoided by using mechanistic models that integrate, or are
parameterized with, the results of empirical studies. A re-
cent study that provides a process based framework of the
soil moisture-respiration relationship is that of Davidson et
al. (2012). The Dual Arrhenius and Michaelis-Menten kinet-
ics model (DAMM) they describe has the advantage of be-
ing process based, so that moisture effects are reproduced by
simulating the diffusion of substrates and oxygen depending
on water and air space content, respectively. DAMM is, how-
ever, in an early stage of development and must be parame-
terized for individual soils. In this sense, regression mod-
els may prove more useful at this stage and for large scale
simulations. As mechanistic models incorporate the effects
of texture, bulk density, etc., they should reproduce the ef-
fects of soil properties in a way that is consistent with the
correlations observed here.

5 Conclusions

It remains unclear if soils will cause a positive or nega-
tive feedback to global warming as global changes in cli-
matic patterns affect soil temperature and moisture (IPCC,
2007; Kendon et al., 2009; Burke and Brown, 2010), but the
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moisture response of soil carbon decomposition will likely
have an important role in determining any future evolution.
The empirical analysis presented here is a comprehensive
synthesis of what has been observed to date. But most im-
portantly, it shows that the soil heterotrophic respiration re-
sponse to moisture depends on soil properties in a consistent
and largely predictable way, explaining a significant part of
the variations found across studies. Future studies should
concentrate on reducing uncertainties in these relationships
and on better representing specific field conditions, such as
the depth-dependence of oxygen availability and the dynam-
ics of water in soils. This will require obtaining and analyz-
ing more relevant data while using observed relationships to
develop process-based models.

Supplementary material related to this
article is available online at:
http://www.biogeosciences.net/9/1173/2012/
bg-9-1173-2012-supplement.zip.
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