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ABSTRACT 

The aim of this paper was to explore the variation between 
individuals in the response to and recovery from a nutritional 
challenge, the repeatability of responses between lactation 
stages, and the use of shape-clustering methods to classify 
similar individuals. Sixteen dairy goats were exposed to a 2-d 
nutritional challenge (underfeeding) at 2 different stages of 
lactation. Each challenge consisted of a 7-d control period with 
standard total mixed ration (TMR), 2 d of straw-only feeding, 
and a 10-d recovery period on the TMR. All feeds were offered 
ad libitum, as was water. The first challenge was in late lactation 
on primiparous goats (mean days in milk = 249), and the second 
challenge was carried out on the same goats early in the 
following lactation (mean days in milk = 28). The main 
energetic response traits dry matter intake (DMI), milk yield, 
body weight, milk fat and protein contents, and plasma glucose, 
fatty acids (NEFA), β-hydroxybutyrate (BHB), urea, and 
insulin, were measured daily throughout. A clustering procedure 
linked to a piecewise mixed model was used to characterize 
different types of response. As expected, straw feeding caused 
a large decline in DMI and milk yield, and substantial increases 
in milk fat and milk protein composition, relative to the 
prechallenge period on the control TMR. For both DMI and 
milk yield, the slope of the response, and hence the size of the 
drop, was strongly related to the prechallenge values, indicating 
that these 2 measures were tightly constrained by the challenge. 
Regression slopes between lactation stages for responses to the 
same nutritional challenge were significant for DMI, milk 
protein content, plasma BHB and urea, and body weight, 
indicating that within-animal responses in late and early 
lactation were repeatable. The clustering procedure generally 
performed well, classifying both scaling differences and 
differences in shape. The extent of reranking of cluster 
designations between late lactation and the following early 
lactation period was examined. For milk yield, DMI, body 
weight, and urea, relatively little reranking occurred; the 
numbers of goats not changing class number were 10, 12, 10, 
and 13, respectively. In contrast, for milk contents of fat and 
protein, and also for BHB, no clear association was found 
between late and early lactation class numbers. For NEFA and 
glucose, these comparisons were not relevant because either the 
vast majority of goats were in 1 cluster (NEFA) or because an 

outlier goat skewed the cluster designation (glucose in late 
lactation). For insulin, 9 out of 16 goats kept the same rank. 

Key words: dairy goat, clustering method, adaptive capacity, 
resilience, lactation 

INTRODUCTION 

The ability of an animal to respond to, and recover from, 
environmental challenges is an increasingly important trait. 
This adaptive capacity is a key component of animal 
robustness [the ability to maintain life functions in the face 
of constraining environments (Kitano, 2004)] in the 
context of the challenges facing future livestock 
production. The diversity of environments to which 
livestock will be exposed is expected to increase as 
increasing food demand leads to further exploitation of 
marginal land (Bocquier and GonzálesGarcia, 2010). In 
addition, climate change is driving an increase in the 
variability over time in environmental conditions with a 
higher frequency of extreme conditions (Hansen et al., 
2012). These 2 trends will place increasing demands on the 
animal’s adaptive capacity. 

Although there is now general agreement that adaptive 
capacity is a complex trait conferred by a combination of 
several underlying components (Strandberg, 2009), there is 
little agreement on how to quantify it,  

and on which are the key biological components (Friggens 
et al., 2010). This clearly presents a difficulty for 
characterizing both adaptive capacity and thus robustness. 
Marked differences are present between breeds and strains 
in performance responses to environmental challenges 
(Horan et al., 2005; Delaby et al., 2009). It has also been 
shown that individual variation in performance, and in the 
use of body reserves, can be adversely affected in harsh 
environments (Puillet et al., 2010). In this context, being 
able to characterize robustness at the level of the individual 
animal would be valuable for refining both management 
and selection strategies with respect to the anticipated 
increase in diversity of livestock systems. 

The present study fits within an overall aim to develop 
ways to characterize the robustness and adaptive capacity 



 

 

of animals that can then be adapted to become operational 
methods for quantifying robustness on farm. [Robust 
animals are those that are able to be healthy and perform 
well under a wide range of environmental conditions 
(Amer, 2012)]. We believe that this is a timely and 
realistic aim given the increasing panel of automated 
measures that are becoming available on farm in the 
context of precision livestock farming (Rutten et al., 
2013). Such measures provide the opportunity to describe 
the dynamic features of responses of individual animals to 
environmental perturbations (Codrea et al., 2011). The 
advances in on-farm technology also mean that such 
response dynamics can be measured across multiple 
performance and physiological traits. Preliminary studies 
indicate that it is possible to derive operational definitions 
of components of robustness that are quantifiable. For 
example, it has been shown that biological entities such as 
degree of infection can be derived from multivariate 
measures of the animal’s disease response (Højsgaard and 
Friggens, 2010). 

In the area of nutritional status and nutritional 
challenges, markers to monitor key metabolites such as 
BHB have been in use for a considerable time and now 
exist in automated systems (Nielsen et al., 2005). Several 
indexes are also now available for the purpose of 
monitoring to identify at-risk animals with respect to 
health status (Bramley et al., 2008; Moyes et al., 2013). In 
the present study, we wanted to extend this approach from 
a monitoring perspective toward phenotyping (i.e., to 
develop ways to better understand and characterize 
between animal variation in adaptive capacity using 
multivariate measures). 

Accordingly, an experiment was carried out in which 
time-series measurements of behavior, performance, and 
metabolites were made in dairy goats exposed to a 
nutritional challenge, at 2 different stages of lactation. A 
major issue of this work relates to the exploration of the 
resulting data because the focus of this work is not to 
quantify the overall effect of the nutritional challenge but 
rather to examine individual differences in responses. 
Thus, we are interested in the portion of the variation that 
is usually eliminated (i.e., assigned to the error term) in 
standard ANOVA approaches. Given this, and the fact 
that there was no strong a priori rationale for which 
measures (or aspects of measures) are key components of 
adaptive capacity, an exploratory data analysis was used 
in this paper. Therefore, the aim of this paper was to 
prepare the ground (proof of concept) by providing the 
methodological basis for quantifying biologically 
meaningful descriptions of adaptive capacity phenotypes 
from multivariate measures. More specifically, the aim 
was to develop a methodology to explore the variation 
between individuals in the response and recovery to the 
challenge, the repeatability of responses, and shape-
clustering methods to classify similar individuals. 

MATERIALS AND METHODS 

Animals, Feeds, and Design 

Sixteen dairy goats, housed in individual pens (1.2 m by 0.75 
m), were exposed to a 2-d nutritional challenge (underfeeding), 
at 2 different stages of lactation. Each challenge consisted of a 
7-d control period with standard TMR, 2 d of straw only 
feeding, and a 10-d recovery period on the TMR. Prior to the 
start of each challenge period, the goats had received the 
standard TMR for at least 15 d. All feeds were offered ad 
libitum, as was water. The first challenge was in late lactation 
(mean DIM = 249, SD = 2.8, all goats were primiparous), and 
the second challenge was carried out on the same goats early in 
the following lactation (mean DIM = 28, SD = 3.3). The goats 
were housed in individual pens each with their own feed trough; 
they were milked twice per day and feed was distributed twice 
daily shortly after milking. Animals were cared for and handled 
in accordance with the French legislation on animal 
experimentation and European Convention for the Protection of 
Vertebrates Used for Experimental and Other Scientific 
Purposes (European Directive 86/609). The experiment was 
carried out between October 12, 2009, and February 14, 2010. 

The standard TMR (on a DM basis) consisted of 20% 
chopped hay, 30% chopped dried alfalfa (Rumiluz, Désialis, 
Paris, France), 30% sugar beet pulp, and 20% of a commercial 
dairy concentrate (containing 18% maize, 14% sugar beet pulp, 
12% sunflower meal, 10% wheat, 10% soybeans, 9% rapeseed 
meal, 6% soybean meal, 4% wheat distillers grains, 3.5% 
linseed, 3% pea seed, 1% rapeseed oil, 3% molasses, and 6.5% 
mineral and vitamin premix). The standard TMR (DM content  

98.3%) had a measured content (on a DM basis) of  

12.0% CP, 5.6% starch, 8.9% ash, 37.2% NDF, 20.0% ADF, 
and 2.5% ADL. The chopped straw (DM content 97.2%) 
contained (on a DM basis) 2.5% CP, 8.4% ash,  

74.1% NDF, 43.1% ADF, and 5.1% ADL. 

Measurements 

From the beginning of the prechallenge control period until 
the end of the postchallenge recovery period measurements of 
feed intake and BW were made daily. Milk yield was recorded 
and milk samples were taken at each milking for standard milk 
composition measures (Fossomatic, Hillerød, Denmark). Blood 
samples were taken daily in heparinized tubes after the morning 
milking and before feeding (average 20 min pre-feeding), 
immediately centrifuged for 10 min at 3,000 × g at 4°C, and the 
plasma was frozen (−20°C) for subsequent analysis, in 
duplicate, of urea (intra- and interassay CV: 1.7 and 3.2%), 
glucose (intra- and interassay CV: 0.8 and 1.8%), BHB (intra- 
and interassay CV: 1.4 and 2.0%), and fatty acids (NEFA; intra- 
and interassay CV: 4.1 and 8.2%) using a Cobas Mira-Analyzer 
(Roche, Mannheim, Germany) with commercial kits for urea  

(urea/BUN, Roche), glucose (Gluco-quant, Glucose/ 



 

 

HK, Roche), NEFA [NEFA-HR(2), Wako Chemical GmBH, 
Neuss, Germany], and BHB by the procedure of Barnouin et al. 
(1986). Insulin was measured using an ELISA kit (10-1202-01; 
Mercodia AB, Uppsala, Sweden; intra- and interassay CV: 1.2 
and 4.5%). 

Feeds were analyzed using the following standard methods: 
DM estimated from water content (ISO, 1983), ash (ISO, 1978), 
and starch (ISO, 2004). Total N was determined by the Dumas 
technique (Sweeney and Rexroad, 1987). Cell wall content was 
estimated by the NDF method of Van Soest and Wine (1967), 
modified by Giger et al. (1987) with the use of a heat-stable α-
amylase but without sodium sulfite and decalin. Lignocellulose 
(ADF) and lignin (ADL) were obtained using a sequential 
approach on the NDF residue (Giger et al., 1987). All the cell 
wall components were expressed on an ash-free basis. 

Statistical Analyses 

In the present study, we focused on the main energetic 
response traits (i.e., DMI, milk yield, BW, milk fat and protein 
contents, and plasma glucose, NEFA, BHB, urea, and insulin). 
The statistical analysis was carried out on each trait separately 
and consisted of 2 steps. In the first step, the response profile of 
each goat was described using a piecewise model with 4 
parameters. These parameters that characterize the response 
recovery profile allowed us to describe (1) the relationship 
between prechallenge and response to challenge, and  

(2) the relationship between response to challenge and 
recovery. In a second step, all response profiles were 
jointly analyzed to identify cluster of animals exhibiting 
similar profiles. 

Step 1: Individual Analyses. For each trait, and each 
lactation stage (late vs. early), each of the 16 individual 
time series were characterized separately using the 
following piecewise model: 

Yt =V1 ×I(t≤0) +V2 ×t×I(0<t≤2) + 

    

 (V3 ×t +V4 ×t×2)I(2<t≤4) +V5 ×I(t>4 +Et , 

where Yt is the trait measured at time t and the coefficients 

Vn are estimated by the model, V1 is the prechallenge level 
(assumed to be constant throughout the prechallenge 
period), V2 is the linear slope of the response during the 2-

d challenge, V3 is the linear component of the recovery, V4 
is the quadratic component (deceleration) of the recovery, 
and V5 is the postchallenge level that was assumed to be 
complete and constant 6 d after the beginning of challenge 
(confirmed by visual inspection). The error terms Et are 
assumed to be Gaussian and independent. Indicator 
variable I{condition} is a dummy variable with value 1 if 

condition is true, and 0 otherwise. The final postchallenge 
level was not assumed to be the same as the prechallenge 

level. In addition, parameters V1 to V5 were estimated 
subject to the constraint of profile continuity. The model 
and its associated parameters are summarized in Figure 1. 
The choice of model, along with its inherent assumptions, 
was made on the basis of both a visual inspection of the 
response/recovery profiles and keeping in mind a 
parsimony principle (keeping an acceptable ratio between 
the number of parameters and the number of data points in 
an individual time series). The set of parameters V1 to V5 

was then used to characterize the profile of each goat. 

The relationship between prechallenge and response to 
challenge was analyzed using the following model: 

V2ij =μ+a×LACTi +b×V1ij +c×LACTi ×V 1ij 

    

 +Gj +Eij , 

where V2ij is coefficient V2 for goat j and lactation stage i, V1ij 

is the mean centered coefficient V1 [i.e., V1ij = V1ij  

− mean(V1i)]. Parameter μ is the intercept for early 

lactation, LACTi is a dummy variable with values 0 and 1 

for early and late, respectively, a is the coefficient for 

difference in intercepts between lactation stages, b is the 

slope coefficient measuring the link between V1 and V2, and 

c is the coefficient for difference in slopes be- 

 

Figure 1. Schematic representation of the piecewise model for 
describing response and recovery time-series profiles relative to a 
nutritional challenge. 

tween lactation stages. Last, Gj is a Gaussian random 

effect with variance σG
2 accounting for possible 



 

 

correlations between coefficients measured on the same 
goat, and Eij is the residual with variance σ2. All random 
effects are assumed independent. This model was applied 
to each of the following traits: DMI, milk yield, milk fat 
content, milk protein content, BW, plasma glucose, 
plasma NEFA, plasma BHB, plasma urea, and plasma 
insulin. As across all traits c was found not to be 
significant, this interaction term was dropped from the 
model. 

The relationship between response to challenge and 
recovery was analyzed using a model similar to model (1), 
with the following differences: 

• The variable to be explained is now the rate of 
deceleration in recovery V4ij,  

• The explanatory variable is now V2ij = V2ij − 
mean(V2i). 

Note that V4 is the quadratic component of the recovery 
and characterizes (half) the rate of deceleration in the 
recovery. This variable was chosen because the absolute 
rate of recovery (i.e., the combination of the quadratic and 
linear components of the recovery) is strongly correlated 
with the amplitude of the response (r > 0.8 for most traits). 
One animal in late lactation was excluded as an extreme 
outlier. As previously, c was found not to be significant 
across all traits; therefore, this interaction term was 
dropped from the model. 

To assess repeatability between lactation stages, within trait, 
the following linear regression was used: 

  V22j =a +b×V21j +Ej .  

Parameters a and b are the intercept and slope for the relation, 

respectively. Note that perfect repeatability would result in b = 

1. A similar analysis was performed on V4. 

Step 2: Clustering Analysis. To identify goats exhibiting a 
similar response profile to the challenge, a clustering analysis 
was performed based on a 2-stage model. Each goat is assumed 
to belong to one of the K clusters, where the number of clusters 

K is fixed and assumed to be known. We note πk as the 

proportion associated with class k (i.e., the prior probability to 

belong to class k). For a goat j that belongs to cluster k, one has 

Yjt =V1k ×I(t≤0) +V2k ×t×I(0<t≤2) 

    

+(V3k ×t +V4k ×t×2)I(2<t≤4) +V5k ×I(t>4) +Ejt , 

which corresponds to model (1) previously described, except 
that parameters V1

k,…, V5
k are common to all animals belonging 

to class k, and that the variance of Ejt is assumed to be the same 
for all animals. The goal of the analysis is then to estimate the 
coefficients (πk, V1

k,…, V5
k) but also the posterior probabilities 

τjk of each animal j to belong to class k. This can be done thanks 

to the expectation maximization (EM) algorithm (Dempster et 

al., 1977). In practice, the number of clusters K being unknown, 
it was chosen within the range of cluster numbers from 2 to 5 
based on the integrated completed likelihood (ICL) criterion 
(Biernacki et al., 2000). Both the EM algorithm and the ICL 
criterion are described in the Appendix. To allow subsequent 
comparison of cluster class attributions between traits and 
lactation stages, the analyses were rerun using a pre-specified 
fixed number of 3 clusters, which corresponded to the cluster 
number most frequently found across traits. 

Comparison across traits was carried out on the cluster 
classifications using the adjusted Rand index (ARI; Rand, 1971). 
This is a pair-counting-based method that calculates across any 
2 traits whether the cluster classifications of a given pair of goats 
in the first trait match the cluster classifications of the same pair 
of goats in the second trait. When this is done across all possible 
pair combinations of goats, it provides an index of clustering 
agreement between traits that makes no a priori assumptions 
about mapping of one cluster classification onto the other, and 
that is adjusted for the fact that purely random clustering would 
still create some matches. Using ARI, a perfect match would 
give an ARI = 1 and purely random matches would give an ARI 
= 0. In addition, principal components analysis (PCA) was 
carried out on the cluster classification membership. The 
procedure was the following: for each initial variable, the 
clustering score was obtained (with values 1, 2, and 3 
corresponding to a clustering into 3 classes). This clustering 
score was then replaced by 3 dummy variables: Ind1, Ind2, Ind3, 
where Indjk = 1 if animal j belongs to cluster k, 0 otherwise; 
thus, no a priori relation was assumed between cluster classes. 
A PCA was performed on the set of all dummy variables 
corresponding to all traits, for each lactation stage. 

RESULTS 

The average time trends of DMI, milk yield, milk fat, and 
milk protein contents through the prechallenge, challenge, 
and postchallenge periods in both late and the following 
early lactation are shown in Figure 2. The  



 

 

Figure 2. The average time trends of (a) DMI, (b) milk yield, (c) milk fat, and (d) milk protein contents through the prechallenge (before d 0) , challenge 
(d 0 to 2), and postchallenge (d > 2) periods in both late (solid line) and the following early lactation (dashed line ). 

Table 1. Average prechallenge levels in late lactation and in the following early lactation1 

 

Item Late lactation2 Early lactation 

DMI (kg/d) 2.48 (2.02–3.29; 0.36) 2.97 (2.40–3.60; 0.35) 
Milk yield (kg/d) 1.93 (1.28–2.72; 0.46) 3.97 (2.18–5.17; 0.65) 
Milk fat content (g/kg) 35.7 (32.6–52.8; 2.9) 43.7 (36.5–49.4; 3.6) 
Milk protein content (g/kg) 36.5 (30.9–45.8; 3.8) 35.3 (30.6–40.1; 2.4) 
BW (kg) 60 (51–74; 7.4) 62  (54–78;  7.4) 
Plasma glucose (g/L) 0.60 (0.55–0.67; 0.03) 0.57 (0.50–0.63; 0.04) 
Plasma fatty acids (NEFA; μmol/L) 130 (97–149; 16) 493 (200–655 ;  136) 
Plasma BHB (mg/dL) 32 (27–41; 3.9) 52  (33–77;  14.2) 
Plasma urea (g/L) 0.25 (0.18–0.32; 0.04) 0.23 (0.16–0.30; 0.04) 
Plasma insulin (μg/L) 0.48 (0.28–1.04; 0.19) 0.18 (0.08–0.44; 0.09) 
1 



 

 

The prechallenge levels were estimated within a piecewise mixed model (see Materials and Methods), the ranges followed 
by the standard deviations are given in parentheses. 
2 
One extreme animal excluded. 

average prechallenge values for all traits in late and early 
lactation are given in Table 1. 

Response to a Nutritional Challenge   

(2 d Straw-Only Feeding) 

The slopes of response (V2; see Figure 1) to the change 

from a standard TMR to straw-only feeding in early and late 

lactation are presented in Table 2. As expected, straw feeding 

caused a large decline in DMI and milk yield, and substantial 

increases in milk fat and milk protein composition, relative to 

the prechallenge period on the control TMR. For both DMI 

and milk yield, the slope of the response, and hence the size 

of the drop, was strongly related to the prechallenge values 

indicating that these 2 traits were tightly constrained by the 

challenge. The responses in DMI expressed relative to pre-

period values (V2/V1) were −0.76 and −0.88 in late and early 

lactation, respectively. The proportional  

responses in milk yield were −0.75 and −0.62 in late and early 
lactation, respectively. In both cases, the differences between 
lactation stages were significant. For all other traits (milk fat, 
milk protein, NEFA, BHB, glucose, urea, insulin), the 
prechallenge values had no significant effect. 

For intake, milk protein content, plasma BHB and urea, and 

BW, significant slope coefficients were observed from 

regressions relating the rates of response (V2) between 

lactation stages, albeit with modest R2 (Table 3). This 

indicates that within-animal responses in late and early 

lactation were repeatable (Figure 3). For plasma metabolites 

other than BHB and urea, the relationship between lactation 

stages in rates of response (V2) was not significant, indicating 

that the other metabolic adaptations to nutritional challenge 

were not repeatable within animal. With the exception of 

glucose, insulin, and milk protein content, all intercepts of 

these regressions were significant, indicating  

Table 2. The relationship between the slope of the response during nutritional challenge, stage of lactation (early vs. late), and the prechallenge level of 
the measure1 

Response slopes  (V2, 

units per day) 
Early  

lactation 
Late lactation  

adjustment 
Coefficient for 

prechallenge level (V1) Residual R2 
DMI (kg/d) −1.31 +0.38 −0.49 0.005 0.93 

Milk yield (kg/d) −1.25 +0.55 −0.44 0.007 0.95 
Milk fat content (g/kg) 21.6 -3.5 +0.05 6.43 0.46 

Milk protein content (g/kg) 2.34 +2.60 +0.11 3.54 0.49 
BW (kg) −3.41 +1.85 −0.02 0.19 0.87 

Plasma glucose (g/L) −0.027 −0.006 −0.150 0.002 0.00 
Plasma fatty acids (NEFA; μmol/L) 845 −410 −0.3 26,600 0.61 

Plasma BHB (mg/dL) 8.34 −8.95 +0.03 57.89 0.38 
Plasma urea (g/L) 0.164 −0.041 −0.283 0.0005 0.66 
Plasma insulin (μg/L) −0.042 −0.081 −0.111 0.003 0.37 
1 
The response slopes (V2) and prechallenge levels (V1) were estimated using a piecewise mixed model (see Materials and Methods). Results are shown 

in equation form: V2 = average early lactation value + late lactation adjustment + coefficient × V1. In the analysis, the prechallenge levels were centered 
(i.e., expressed as the difference from the mean prechallenge level) and thus the average values of the response slopes in early and late lactation are given 
directly in the table. Coefficients significantly different from 0 are shown in bold (P < 0.05). As no significant interactions were found between 
prechallenge level and stage of lactation for any of the measures, this term was excluded from the model. 
The R2 was calculated from the residual of the full model (resf) and the residual from the null model (resn) as: (resn – resf)/resn. 



 

 

Figure 3. The relationship between late lactation and the following early lactation in slope of response to the same nutritional challenge (2  
d of straw-only feeding) for (a) DMI and (b) milk yield. 

that stage of lactation significantly affected the average size 
of response (Table 3). 

Recovery from a Nutritional Challenge   

(2 d Straw-Only Feeding) 

Given the inherently symmetrical nature of a response 
recovery profile, the size of the recovery (difference from 
peak to postchallenge baseline) is highly correlated with the 
size of response, consequently the stage of lactation effects 
on size of recovery (not shown) were essentially the same as 
those for size of response (Table 3). Thus, the quadratic 
component of the recovery [V4; i.e., (half) the rate of 

deceleration in the recovery] was focused on. As shown in 
Table 4, this rate (V4) was significantly greater in early 
lactation (relative to late lactation) for DMI, milk yield, and 
BW. Conversely, the rate of deceleration in recovery (V4) was 
significantly less in early lactation for milk fat content, 
NEFA, BHB, urea, and insulin. The correlations between the 
rate of deceleration and the size of the response were above 
0.5 for the majority of traits. This reflects the fact that within 
a similar recovery time, the greater the response, the 
“sharper” the curve needed to return to a plateau level. 
Indeed, the slope of response (V2) had a significant effect on 

the rate of deceleration in recovery (V4) for milk yield, BW, 
glucose, NEFA, BHB, and urea (Table 4). Thus, the relative 
rate of recovery was explored using the quadratic component 
of recovery/ slope of response (V4/V2). This relative rate of 
recovery  

Table 3. The relationship between early and late lactation values of the response slope during nutritional challenge derived by 

linear regression: response slope in early lactation = a + b × (response slope in late lactation)1 

Item Coefficient a Coefficient b Residual R2adj 

DMI (kg/d) −0.51* 0.85 0.16 0.40 
Milk yield (kg/d) −0.73 0.74* 0.29 0.17 
Milk fat content (g/kg) 13.47 0.45* 2.99 0.19 

Milk protein content (g/kg) 0.81 0.31 1.65 0.23 
BW (kg) −2.34 0.68 0.61 0.38 

Plasma glucose (g/L) −0.027* 0.017 0.044 0.00 
Plasma fatty acids (NEFA; μmol/L) 1,075 −0.53 211 0.00 

Plasma BHB (mg/dL) 9.92 2.58 9.78 0.37 
Plasma urea (g/L) 0.089 0.608 0.032 0.42 

Plasma insulin (μg/L) −0.042 0.0011 0.051 0.00 
1 
Perfect repeatability would result in b = 1. The response slopes (V2) were estimated using a piecewise mixed model (see 

Materials and Methods). Coefficients significantly different from 0 are shown in bold (P < 0.05). 
*0.05 < P value < 0.07. 

Table 4. The relationship between the rate of deceleration in recovery following nutritional challenge, stage of lactation (early vs. late), and the size of 
the response during the challenge1 



 

 

Rate of deceleration in recovery  (V4, 

units per day2): 
Early  

lactation 
Late lactation  

adjustment 
Coefficient for effect  of 

response slope (V2) Residual R2 

DMI (kg/d) −0.241 0.049 0.133 0.0016 0.41 

Milk yield (kg/d) −0.165 0.102 0.140 0.0020 0.67 
Milk fat content (g/kg) 5.87 −2.95 0.08 1.32 0.62 

Milk protein content (g/kg) 1.02 −0.30 0.07 0.457 0.02 
BW (kg) −0.804 0.280 0.166 0.033 0.58 

Plasma glucose (g/L) −0.026 0.007 0.259 0.00009 0.47 
Plasma fatty acids (NEFA; μmol/L) 287 −147 0.27 289.4 0.96 
Plasma BHB (mg/dL) 5.45 −3.25 0.140 1.33 0.76 

Plasma urea (g/L) 0.0756 −0.0139 0.2193 0.00006 0.57 
Plasma insulin (μg/L) −0.029 −0.044 0.079 0.00062 0.58 
1 
The rate of deceleration in recovery (the quadratic term of the recovery; V4) and the size of the response (V2) were estimated using a piecewise mixed 

model (see Materials and Methods). Results are shown in equation form: V4 = average early lactation value + late lactation adjustment + coefficient × V2. 

In the analysis, the V2 values were centered (i.e., expressed as the difference from the mean value), and thus the average values of the rate of deceleration 

in recovery in early and late lactation are given directly in the table. Coefficients significantly different from 0 are shown in bold (P < 0.05). As no 

significant interactions were found between V2 and stage of lactation for any of the measures, this term was excluded from the model. The R2 was 
calculated from the residual of the full model (resf) and the residual from the null model (resn) as:  
(resn – resf)/resn. 

was significantly greater than zero for DMI, milk yield, 
milk fat content, BW, plasma glucose, NEFA, and urea 
(results not shown). This indicates that for these traits the 
recovery was quicker than would be expected for the size 
of the initial response. No traits were found for which the 
recovery was more gradual than expected according to the 
size of the response. For milk yield, milk fat content, and 
BW, a significant difference was found between early and 
late lactation relative recovery rates. However, when 
examined for repeatability between late and early 
lactation, no significant effect was found on early 
lactation values of relative recovery rate in late lactation. 

Clustering of Response-Recovery Profiles 

The above results focused on different segments of the 
response-recovery profiles, here the profiles are examined 
in their entirety (see Figures 1 and 4). When optimizing 
cluster number based on minimizing the ICL criterion, the 
clustering procedure identified 4 clusters for milk yield, 
BW, milk protein content, milk fat content in early 
lactation, BHB in early lactation, and insulin in early 
lactation. It identified 2 clusters for NEFA in early 
lactation and urea in late lactation; for the remaining traits, 
it identified 3 clusters. As can be seen from Figure 4, the 
clustering procedure generally performed well, 
classifying both differences that can be described as 
scaling differences (Figure 4a) and differences in shape 
(Figure 4b). 

However, 2 issues should be noted; the first is that the 
cluster shapes are limited by the assumptions of the 
underlying piecewise model (i.e., a plateau value before 
the challenge and also 6 d postchallenge, a linear slope 
during the challenge, and a quadratic function for the 

recovery postchallenge). The second issue is that outlier 
animals often get assigned a class of their own (e.g., 
Figure 4a and 4c). This had the consequence that when the 
clustering was done using a fixed number of clusters (to 
allow comparison of cluster designation between traits the 
number was fixed to 3), the remaining variation between 
animals other than the outlier could be forced into only 2 
clusters, resulting in a loss of type description. As shown 
in Figure 5, this was the case for milk protein content in 
early lactation, and to a lesser extent BHB and insulin also 
in early lactation. The issue of outlier animals should be 
further evaluated in studies with larger numbers of 
animals. 

Because the clusters were numbered in ascending order of 
prechallenge level, it was possible to examine the extent of 
reranking of cluster designations between late lactation and the 
following early lactation period (whether the relative order of 
animals in cluster designations 1, 2, and 3 is changed). This was 
done in 2 ways, by visual inspection using the clustering without 
constraint on the cluster numbers, and using the ARI 
comparison with fixed cluster numbers. For milk yield, DMI, 
BW, and urea, relatively little reranking was observed and the 
corresponding ARI values were 0.3, 0.02, 0.41, and 0.33, 
respectively. (The range of ARI values across all comparisons 
for all traits was from 0 to 0.41). The apparent discrepancy 
between the ARI value for the late versus early lactation 
comparison for DMI relative to those of milk yield, BW, and 
urea was caused by the fact that although little reranking was 
found for DMI, 8 out of the 16 goats did decrease their class 
number by 1 (with a further 6 not changing class number). For 
milk yield, BW and urea, the numbers of goats not changing 
class number were 10, 10, and 13, respectively. In contrast, for 
milk contents of fat and protein, and also for BHB, no clear 
association was found between late and early lactation class 
numbers (ARI values of 0.02, 0.05, and 0.04, respectively). For 
NEFA and glucose, these comparisons were not relevant 
because either the vast majority of goats were in 1 cluster 



 

 

(NEFA) or because an outlier goat skewed the cluster 
designation (glucose in late lactation). For insulin, 9 out of 16 
goats kept the same rank (ARI = 0.1). 

When comparing across traits, the highest ARI values in 
late lactation were for associations between milk yield and 
milk protein content (0.34), DMI and BW (0.23), DMI and 
glucose (0.21), milk contents of fat and protein (0.22), milk 

protein and BHB (0.39), and glucose and urea (0.33). The 
highest ARI values in early lactation were for associations 
between milk yield and DMI (0.19), DMI and BW (0.29), 
BW and insulin (0.28) , and milk fat and BHB  (0.19). 

To provide a better visualization of the multivariate aspect, 
we used PCA on the cluster classes for all the  

Figure 4. Classes of response-recovery profile for (a) milk yield and (b) plasma glucose in early lactation, generated by the combined piecewise mixed 
model and clustering procedure (see Materials and Methods). The 16 individual time trends from which these profile classes were derived are shown for 
comparison: (c) milk yield and (d) plasma glucose. 



 

 

Figure 5. Comparison of profile classes based on variable cluster number assignment (a and b) with profile classes for the same measures based on a 
fixed cluster number (c and d). Two measures are shown: milk protein content (a and c) and plasma BHB (b and d) in early lactation. For milk protein 
content using the variable cluster number assignment (a), classes 1, 2, 3, and 4 contained 2, 8, 4, and 2 individuals, respectively. The 2 goats in class 1 
combine with those in class 2 to give a new class 1 in the fixed cluster number assignment (c). For BHB, the variable cluster classes 2 and 4 (containing 
5 and 3 goats) are merged into class 3 for 5 out of the 8 goats under the fixed cluster classes. 
traits (Figure 6). In this PCA, within each trait, each 
cluster class was included as a separate variable [i.e., 
avoiding any a priori assumptions of relativity between 
cluster classes (linear or otherwise)]. For example, in 
Figure 6b it can be seen that DMI cluster classes 1, 2, and 
3 fall in 3 distinct quadrants of the plot, which would not 
have occurred if DMI had been included as one variable 
with 3 levels (1, 2, and 3). The results of the PCA 
presented in Figure 6 are for a fixed cluster number across 
traits but were essentially the same when using variable 
cluster numbers. From the loading plots for late and early 
lactation (Figures 6a and 6b), some patterns can be 
discerned. In both late and early lactation, the different 

cluster classes for milk fat content, milk protein content, 
and plasma NEFA are each positioned approximately on 
a linear transect, all running from the lower right to the 
upper left quadrant. In late lactation, the most closely 
correlated of these are NEFA and milk fat content, 
whereas in early lactation milk fat and protein contents are 
more closely  



 

 

associated. In late lactation, another transect can be discerned 
for DMI and milk yield, running from lower left to upper right, 
but in general no strong grouping is present of traits in the 
loadings plot, or of individual goats in the scores plot (Figures 
6a and 6c, respectively). However, in early lactation, clearer 
positioning is present of traits into groups in the loadings plot  

(Figure 6b). One of these groups (top right, Figure 6b) is 
essentially associated with only one animal (goat 12, 
Figure 6d). Within the 2 other groups, contrasts are present 
between milk yield and milk composition cluster numbers, 
and these groups lie roughly on the transect lines for 
plasma NEFA, milk fat, and milk protein. 

DISCUSSION 

General Response to the Nutritional Challenge 

The overall effects of a 2-d nutritional challenge, 
replacing the standard TMR with straw, reported in this 
study using goats were broadly similar to other reports in 
the literature, although these come mainly from dairy 
cows. The decrease in milk yield in the present study (75% 
in late lactation and 62% in early lactation) was similar to 
the 57% decrease reported for black Moroccan goats that 
were feed deprived for 48 h (Hossaini-Hilali et al., 1993) 
and was equivalent to that found with a 2-d fast in dairy 
cows (McGuire et al., 1995; Agenäs et al., 2003). Using a 
more extreme feed restriction, 6 d of total fast, Reid et al. 
(1977) found that cows needed 49 d of recovery before 

 

Figure 6. Loading (a and b) and score plots (c and d) for the first 2 components of a principal components analysis of profile classes across all measures 

in late lactation (a and c) and in early lactation (b and d). Within each measure, profile classes are considered as being independent from each other. Profile 

classes were derived from the combined piecewise fitting and clustering procedure (described in the Materials and Methods) using a fixed number of 

classes (3) across measures. To aid interpretation, the clusters were numbered, within lactation stage, in ascending order of prechallenge level. In the score 

plots, each goat is identified by a number, which is the same in both score plots. 



 

 

their milk yield was normal. Toerien and Cant (2007) 
found that after 24 h severe restriction cows only needed 
18 h of re-feeding before they were back on pretrial levels. 
In the present study, following 2 d on straw, goats 
regained prechallenge levels after approximately 3 d. In 
the recent study of Bjerre-Harpøth et al. (2012), where 
cows had a standard TMR diluted with 60% straw for 4 d, 
milk yield decreased by 40% and was largely recovered in 
3 d. The study of Bjerre-Harpøth et al. (2012) also 
reported blood and milk metabolite changes for cows 
grouped according to early, mid, and late lactation. 
Allowing for the fact that the present challenge in goats 
was more severe, these 2 studies have general agreement 
with respect to magnitudes of changes in blood and milk 
traits, with a couple of exceptions. In the present study, 
milk protein content increased during the challenge, as did 
milk fat content, whereas in the study of Bjerre-Harpøth 
et al. (2012) only milk fat content increased with milk 
protein either decreasing (in early lactation) or not 
changing (in late lactation). Hossaini-Hilali et al. (1993) 
also found no increase in milk protein during feed 
deprivation. Further, in the present study and in the study 
of Hossaini-Hilali et al. (1993) urea increased markedly 
(×2) during the challenge, whereas it decreased in the 
study of BjerreHarpøth et al. (2012). These differences 
may be due to the degree of alteration in milk yield 
relative to the drop in protein supply, and the 
consequences of this on dilution within milk of the milk 
constituents. In the study of Bjerre-Harpøth et al. (2012), 
the CP content of the straw-diluted diet was adjusted to 
keep it above 12%, which was not done in the present 
study. Otherwise, the prechallenge levels and responses in 
glucose and insulin were lower in early lactation than in 
late lactation in both studies, and the prechallenge levels 
and responses in NEFA and BHB were greater in early 
lactation than in late lactation in both studies. In 
evaluating these results and the associated individual 
variation, it is important to remember that these are 
responses to a short-term challenge, which was useful for 
testing the methodology proposed in this study but may 
differ from responses to longer-term challenges. 

Exploring Individual Variation  in 

Response-Recovery Profiles 

However, the main purpose of the present study was not to 
quantify the average effects of a nutritional challenge but rather 
to explore the individual variation in responses and recoveries, 
and to see if this variation could be used to identify and describe 
animal types. To do this we primarily used a simultaneous 
piecewise fitting and clustering procedure. With respect to 
characterizing individual differences in the profiles of measures 
prechallenge, during the challenge, and postchallenge, the 
piecewise mixed model performed well, given the number of 
parameters to estimate (4) relative to the number of measures in 

a profile (18). The same was true of the clustering procedure. 
Statistical analysis of the mixed model parameters revealed 
some important aspects for predicting responses and for 
repeatability. With respect to predicting responses, for both 
DMI and milk yield a significant linear effect was found of the 
prechallenge level on the slope, and thus the size, of the 
response (Table 2, Figure 3). Further, the responses in DMI and 
milk were very similar between early and late lactation when 
expressed as proportions of the prechallenge levels. This finding 
is in agreement with the results of Bjerre-Harpøth et al. (2012) 
for cows at different stages of lactation (49–273 DIM). No 
significant effects were found of prechallenge level on size of 
response for any of the other traits. 

With respect to repeatability, significant coefficients were 
observed for the regressions between size of response in late 
lactation and in the following early lactation for DMI, milk 
protein content, BW, plasma BHB, and urea (and tendencies for 
milk yield and milk fat content; Table 3, Figure 3). Thus, for 
these traits, high responders in late lactation were also high 
responders in early lactation. This finding is highly promising 
for the characterization of adaptive capacity as it suggests that, 
despite the substantial homeorhetic changes associated with the 
transition from one lactation to another, these measures capture 
some of the innate, genetically driven, variability between 
individuals. This was not so evident for rate of deceleration in 
recovery (V4), where only plasma urea had a significant 
repeatability (data not shown). This quadratic component of the 
recovery was examined rather than the absolute recovery (i.e., 
combined linear and quadratic components) because the 
differences in absolute recoveries would very largely reflect the 
amplitude of the response (correlation between linear slopes of 
response and recovery ranged from 0.49 to 0.99 for the different 
traits). However, examining partial components of recoveries is 
a relatively crude way of dealing with the correlations among 
the different phases of the time series (prechallenge, during the 
challenge, and postchallenge). Another, more elegant way to 
deal with these autocorrelations is to treat the time series in their 
entirety and examine their shapes for evidence of clusters that 
group different individuals. This was done using the methods 
described earlier permitting visualization of the different shape 
types, trait by trait (e.g., Figures 4 and 5). However, the use of 
the ARI statistic to examine correlations between cluster types 
was found not to be particularly informative. In our opinion, this 
is in part due to the loss of detail when standardizing the number 
of clusters per trait (to 3), a necessary condition for the ARI 
comparison. There is an argument for repeating this type of 
challenge study on a much larger number of animals to increase 
the statistical power of the cluster comparisons. Another 
shortcoming of the ARI method is that although it allows 
pairwise comparison across traits or lactation stages (in this 
study), it is still difficult to visualize across multiple traits. 

Principal components analysis was used for a better 
visualization of the multivariate aspect. In late lactation a close 
correlation was observed between NEFA and milk fat content, 
whereas in early lactation milk fat and protein contents are more 



 

 

closely associated. A strong relationship between NEFA and 
milk fat content, or milk fat:protein ratio has previously been 
reported, especially in early lactation (Grieve et al., 1986; 
Moyes et al., 2013). The clearer positioning of traits in early 
lactation (Figure 6b) roughly on the transect lines for plasma 
NEFA, milk fat, and milk protein, and the fact that that the 
majority of individual goats are positioned along this transect 
(Figure 6d), is an important multivariate feature. It indicates a 
possible multivariate characteristic to describe differences 
between individuals using measures that relate to energy 
partition and metabolism. Interestingly, neither BHB nor 
glucose cluster classes exert a strong influence in principal 
components 1 or 2 in early lactation, although they are more 
evident in principal component 3 (not shown). The ability to 
describe differences between individuals in this way, and track 
these differences across stages of lactation, suggests that this 
may be a means to examine multivariate homeorhetic 
relationships. 

The use of a simultaneous piecewise fitting and clustering 
procedure to provide the input variables (within trait cluster 
classes) to the PCA provides several benefits: the variability that 
is captured describes the whole shape of the response/recovery, 
the clustering is independently done for each trait with no prior 
biological assumptions, and no relativity between cluster classes 
is assumed. The lack of prior grouping hypotheses implicit in 
this clustering method can be seen as an advantage of this 
approach relative to some of the indexing methods discussed 
below. Thus, the results of the PCA provide a simple means to 
begin to interpret the individual variability in the time-series 
profiles of response/recovery across multiple traits. Although 
the PCA visualization is useful for interpretation, this is clearly 
only one step if we wish to proceed toward methods to index 
differences in adaptive capacity. A follow-up step could be to 
derive an index directly from the PCA loadings. An example of 
this approach has been published for improving quantification 
of uterine health status from clinical measures (Gorzecka et al., 
2011). Other approaches are to develop indexes directly from 
shape profiles without clustering [e.g., using Mahalanobis type 
statistics (Cohen et al., 2013)], or to use prior physiological 
knowledge to identify and combine candidate measures to, for 
example, index physiological imbalance (Moyes et al., 2013). 
However, not all of these examples may be suited to complex 
characteristics such as adaptive capacity that are by their nature 
emergent properties of multiple underlying mechanisms 
(Kitano, 2004). In this context, it is necessary to explicitly 
recognize the complex nature of the characteristic that we seek 
to index, and that we cannot directly measure it. What we have 
measured is the degree of perturbation resulting from a 
nutritional challenge, which is due to both the adaptive capacity 
of the animal and to the size of the challenge. The finding that 
the size of the response is related to the initial level of 
performance clearly indicates that the true size of challenge, to 
the internal milieu of the animal, varies from animal to animal 
even for an apparently constant externally applied challenge. 
Thus, it seems likely that the next step toward developing 

indexes for characteristics such as adaptive capacity is to build 
on multivariate results such as those presented here using 
models that explicitly invoke latent variables such as degree of 
perturbation and adaptive capacity. Such models are being 
developed in the time-series context and in simple form have 
even been applied to biological problems such as degree of 
infection (Højsgaard and Friggens, 2010). 

CONCLUSIONS 

Responses to nutritional challenge (2 d with access to straw 
only) can be characterized using piecewise mixed models and 
shape clustering. Dry matter intake and milk yield responses 
were found to be predictable from prechallenge levels, and a 
significant relation was found between responses in late 
lactation and in the following early lactation for DMI, milk 
protein content, BW, plasma BHB, and urea. Further, significant 
variation was observed between individuals in their response/ 
recovery profiles, which suggests that defining adaptive 
capacity indexes from response/recovery profiles in multiple 
traits is possible. 
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APPENDIX  

Description of the Mixture Model Used  for 
the Analysis of Response Recovery Profiles 

Let Yj = (Yj1,…,YjT) be the response profile of goat j. The 

(unknown) membership of goat j to one of the K classes is 

characterized through a label Zj that takes values in {1,…,K}. 

The response profile of a goat j that belongs to cluster k (i.e., for 

which Zj = k), is 

Yjt =V1k ×I(t≤0) +V2k ×t×I(0<t≤2) 

    

 +(V3k ×t +V4k ×t×2)I(2<t≤4) +V5k ×I(t>4) +Ejt 

with the same notations as in the article. Parameters V1
k,…,V5

k 

are similar to all goats belonging to class k but different between 
clusters. Such a model is called a mixture of linear models. The 
marginal distribution of profile Yj is 

K 

 ∑πkφk (Yj ),  [A1] 

k=1 

where πk is the proportion of goats that belong to cluster k, and 

where ϕ stands for the (Gaussian) likelihood of profile Yj 

according to class k. 

The mixture model can be used to allocate each goat to a 
cluster. To do this, the probability of a goat to belong to cluster 
k given its profile is computed. This probability is called the 
posterior probability and is defined from equation [A1] by 

πkφ k (Yj ) 

 τjk =,  [ A 2] 



 

 

 
The mixture parameters (proportions πk, parameters 

V1
k,…,V5

k, and the residual variance) are estimated using 
the EM algorithm. The EM algorithm is dedicated to the 
class of incomplete data models where the status of the 
observations is unknown. In this context, the missing data 
are the information on the cluster for each goat. The 
algorithm iterates 2 steps: 

• In the E step, the parameters are fixed and the 
posterior probability for each observation to belong 
to each class is calculated using equation [A2]. 

• In the M step, the posterior probabilities are fixed the 
parameters of each class are estimated using a 
weighted regression, in which the weights are given 
by the posterior probabilities. 

Once convergence is achieved, one can classify an 
animal into a cluster using the maximum a posteriori rule: 
one just classifies the animal according to its highest 
posterior probability. 

The whole strategy requires the number of classes to be 
known, something unrealistic in practice. When K is 
unknown, the model can be fit for different potential values 
of K, and the best value is then selected using a penalized 
criterion. In this article, we considered the classical 
integrated completed likelihood (Biernacki et al., 2000). 
This criterion is a penalized likelihood criterion, which 
tends to select a parsimonious number of relatively 
homogeneous clusters. 


