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Interactive freeze-drying optimisation 
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Abstract 

Among existing dehydration methods, freeze-drying has unique benefits for the stabilisation and preservation of 

biological activity of pharmaceutical products, but remains an expensive and time-consuming process. A user-

friendly software tool was developed, allowing for interactive selection of process operating condition profiles in 

order to maximise process productivity while insuring product quality preservation. The software is based on a 

dynamic, one-dimensional heat and mass transfer model, which can accurately represent both the primary and 

secondary drying stages and the gradual transition between them. The model was validated in a wide range of 

operating conditions: -25 to +25°C shelf temperature and 10 to 34 Pa total pressure. By comparing a reference 

sucrose solution with a formulated pharmaceutical product containing polyvinylpyrrolidone (PVP), it is shown 

that controlling product properties such as glass transition temperature and sorption isotherm can reduce the 

minimum achievable cycle duration by 12 h (33%). 
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INTRODUCTION 

 

In pharmaceutical industry, freeze-drying is widely used to preserve proteins and polypeptides, which are 

physically and/or chemically unstable in aqueous solutions (1). The improved stability of freeze-dried proteins 

provides many benefits such as storage stability at ambient temperature, extended shelf life, convenient handling 
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and transport. However, freeze-drying is known to be a time-consuming and expensive process. An over 

conservative freeze-drying cycle results in long process time, added production costs, unnecessary consumption 

of drying capacity, and may compromise protein stability. Various process variables affect the efficiency of the 

freeze-drying process. The product temperature is a determinant factor for both productivity and product quality 

(2-4). The sublimation is generally faster at higher temperatures, but drying at excessive temperatures results in a 

loss of the pore structure obtained by freezing, which is defined as the collapse phenomenon by Pikal and Shah 

(5) and therefore in rejection of the batch. For amorphous formulations, the collapse is usually associated with 

the glass transition temperature of the maximally freeze-concentrated phase. The product temperature results 

from the shelf temperature and the chamber pressure applied and is not directly controlled during freeze-drying 

process. In practice, the appropriate shelf temperature and chamber pressure conditions are frequently 

established empirically in a “trial-and-error” experimental approach and many manufacturing processes are far 

from optimal (6). Theoretical modelling can provide a better understanding of the impact of process and 

formulation variation on cycle time and product temperature history and, thereby, facilitate process development 

and on-line monitoring (7). 

This study presents a software tool for interactive selection of the process operating conditions: shelf temperature 

profile, chamber pressure profile, condenser temperature, etc. While changing the operating conditions, the user 

monitors process parameters relevant for product quality and productivity: product temperature and glass 

transition temperature at critical points in order to asses product stability, as well as the residual moisture content 

which determines the cycle duration. Unlike fully automated optimisation (8, 9), the user retains complete 

control over the selected operating conditions, which can be advantageous for gaining insight into the limiting 

factors and for taking into account semi-empirical, experience-based considerations, difficult to encode in a 

formal optimisation process. The software is based on a simple yet accurate one-dimensional dynamic model of 

heat and mass transfer with associated product quality indicators. The development of this model was motivated 

by the necessity of very quick simulation compared to many existing complex multi-dimensional models (10-

13). Short simulation time, less than 0.2 s on a standard PC (AMD Athlon® processor at 2 GHz), allows 

comfortable interaction with the user. Detailed output information is also available for posterior analysis under 

Matlab® and Excel®, such as temperature, vapour pressure, residual moisture profiles in relevant locations in the 

product layer and in the chamber. 
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MATERIALS AND METHODS 

Experimental 

Product formulations 

Two product formulations were considered in this study. The first formulation (coded S) was a 5% sucrose and 

10 mM Tris-HCl solution taken as reference. The second formulation (coded PS) contained 4% 

polyvinylpyrrolidone (PVP), 1% sucrose and 10 mM of Tris-HCl and was selected for its efficient protein 

stabilisation properties (14). Sucrose was purchased from Prolabo (Paris, France) and polyvinylpyrrolidone (with 

a reported average molecular weight of 25,000 Da) from Merck (Darmstadt, Germany). 

Freeze-drying protocols 

One millilitre of each formulation was placed in 4 mL glass vials. The vials (a total of 213 vials per cycle) were 

placed on an aluminium tray and loaded onto the shelf of a SMH 15 freeze-drier (Usifroid, Maurepas, France). 

The cycle consisted of freezing at –45°C (shelf cooling rate at 0.6°C/min and holding at –45°C for 2h), followed 

by primary drying under various conditions of shelf temperature (-5°C, -15°C, -5°C, 5°C, 15°C and 25°C) and 

chamber pressure (10 Pa, 18 Pa, 26 Pa and 34 Pa) and, finally, a secondary drying of 6 hours at 25°C and 10 Pa. 

Depending on the experiment, the heating rates of the shelf temperature were of 0.1°C/min, 0.25°C/min or 

1°C/min. 

Product temperature was measured by two thermocouples placed at the bottom of two different vials. A moisture 

sensor (Panametrics Ltd, Shannon, Ireland) was used to monitor the partial vapour pressure in the chamber.  

Lyophilized samples were equilibrated at 25°C under the following saturated salt solutions of constant water 

activities (aw values are shown in parenthesis): CH3COOK (0.23), MgCl2·6H2O (0.33), K2CO3 (0.44), 

Mg(NO3)2·6H2O (0.53), NaCl (0.75) and KCl (0.84). 

Differential scanning calorimetry 

DSC was used to determine the glass transition temperature of liquid samples before freeze drying, and samples 

that were freeze dried and equilibrated to different relative humidities. DSC measurements were performed using 

a power compensation differential scanning calorimeter (DSC) (Pyris 1 model; Perkin Elmer LLC, Norwallk, 

CT, USA), equipped with a liquid nitrogen accessory (CryoFill, Perkin Elmer). Between 5 and 20 mg of each 
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sample were placed in 50 µL Perkin-Elmer DSC aluminium sealed pans, and a empty pan was used as a 

reference. Cooling and heating rates of 10°C/min were used. The glass transition temperatures were reported as 

the midpoint temperature of the heat capacity step associated with the glass transition, in accordance with the 

ASTM Standard Method E 1356-91.  

Liquid samples were cooled to –120°C to ensure temperature stability and sample equilibration, and scanned for 

the first time to 25°C. This conventional thermal cycle was replicated once to verify the absence of time 

dependent changes in thermal behaviour. Dried samples were cooled to –40°C and then heated to 200°C. 

Water content determination 

Water content of the freeze-dried product and the samples equilibrated under different relative humidity 

conditions was measured by the Karl Fisher titration method using a Metrohom KF 756 apparatus. At least 

20 mg of powder were mixed with 2 mL of dry methanol and titrated with Riedel-deHaen reagent (Seelze, 

Germany). 

Water activity measurement 

Water activity of samples from sorption isotherms at 25°C was measured by an aw meter FA-st/1 (GBX 

Scientific Instruments, Romans sur Isère, France). Measurements were made with dynamic method and each 

result was the average value of 10 measurements once the stability had been reached.  

Dynamic model of the freeze-drying process 

Assumptions 

A conventional one-dimensional freeze-drying model of heat and mass transfer was developed, based on the 

following assumptions: 

A1.  The product and the dryer state is described by relevant state variables in six key points shown in 
Figure 1: shelf, product bottom, sublimation front, product top, freeze-drying chamber and condenser. 
The heat and mass transfers are assumed to take place between these points. 

A2. Slow dynamics such as sublimation front movement and residual water desorption are described 
explicitly by differential equations. Relatively fast dynamics (compared to the typical duration of a 
freeze-drying cycle) such as heat transfer in the frozen and in the dry product layers, as well as the mass 
transfer in gaseous phase, are assumed to be in quasi-steady state and are described by algebraic 
equations. This assumption is supported by detailed calculation of the relevant time constants, reported 
in Appendix 1. 

A3. The residual water desorption flux was neglected in the heat and mass balances. A complete model, 
including the desorption heat and desorption vapour fluxes was also build and tested, and it was found 
that the contribution of the desorption was actually negligible, confirming earlier findings (15). 
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A4. Ice gradually disappears in various product regions. The relative importance of the primary and 
secondary drying mechanisms is given by the ratio of the remaining sublimation area to the total 
product cross area. 

Control variables 

The shelf, chamber and condenser temperatures, as well as the total chamber pressure are assumed to be imposed 

by the freeze-drying protocol and known at any moment. They are allowed to vary in time, however. 

State variables 

The product state at any given moment is described by the sublimation front position, the temperature and the 

residual water concentration at the product bottom, front and top. 

During the primary drying stage, the front temperature is determined from the heat balance condition at the 

sublimation front, taking into account assumptions  A2 and  A3: 

 ( ) ( )
( ))()()(

))(,(),( .

CondSat
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Eq. (1) expresses the fact that, in the assumed quasi-steady state situation, the net heat flux towards the 

sublimation front (from the product shelf and from the chamber) mainly serves for ice sublimation. In this 

equation, the heat transfer coefficients FrontShelfH  and ChambFrontH , as well as the mass transfer coefficient 

CondFrontK  are calculated using resistance in series formulae (Figure 1). The heat transfer between the shelf and 

the product bottom includes contact, radiation and gas conduction terms. The heat transfer resistance through the 

glass vial bottom turned out to be negligible. The gas conduction term depends on the total pressure in the 

freeze-drying chamber (2). The heat transfer between the product bottom and the sublimation front takes place 

by conduction through the frozen layer, and hence depends on its thickness (front position). The heat transfer 

between the sublimation front and the chamber takes into account transfer through the dry layer to the product 

top (by gas conduction, vial walls and radiation) and from the product top to the chamber, mainly by radiation. 

The mass transfer resistance includes flow resistance through the porous dry layer (depending on its thickness), 

from product top to the freeze-drying chamber (specifically to the location of the partial vapour pressure sensor) 

and from the chamber to the condenser. These last two transfer coefficients depend on the freeze-dryer design. 

For sake of readability and completeness, detailed expressions for all heat and mass transfer coefficients are 

given in Appendix 2 in a tabular form. 

Eq. 1 encodes the unavoidable interdependence between the heat and mass fluxes. The heat flux depends on the 

sublimation front temperature and determines the mass flux. The mass flux creates a vapour pressure increase in 

the dry layer, which in turn determines the sublimation front temperature, because of the local (at the sublimation 
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front) equilibrium condition between ice and vapour. In practice, solving Eq. 1 gives the sublimation front 

temperature. 

The front position is determined from the sublimation mass flux by considering the volume liberated by the 

sublimated ice: 
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w
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CondFrontFront
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Θ−Θ=  (2) 

During the secondary drying stage, the front position is fixed to zero and the front temperature is formally 

taken equal to the product bottom temperature. 

During both drying stages the residual water concentration at the top of the dry layer is calculated using a first-

order desorption kinetic: 
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The equilibrium water content  is given by the sorption isotherm, as described in the following section. It 

depends on the ratio between the actual vapour pressure and the saturation pressure. At equilibrium, the ratio of 

these pressures would represent the water activity of the product. The actual vapour pressure is determined from 

the mass flux and the resistance in series model (Figure 1). 

EquC

Similar equations were written for the product top and for the sublimation front. During the primary drying, at 

the product bottom and at the sublimation front, the vapour is in equilibrium with the ice according to 

assumption  A2 and the pressure ratio is equal to one. During the secondary drying stage, the front position is 

formally identical to the product bottom and the partial vapour pressure is in equilibrium with the chamber and 

the condenser. This later condition results from assumptions  A2 and  A3: the desorption mass flux being 

negligible, there is no local pressure increase in the dry layer (16). 

Finally, the model consists of a system of four differential equations (for the front position and the residual 

moisture contents at the product bottom, front and top) and one algebraic equation for the front temperature. The 

five coupled equations are solved simultaneously using the Matlab® numeric computation software (Natick, MA, 

USA). A detailed description of the model is given in the Appendix 2. 

Output variables 

The model allows a relatively straightforward calculation of various quantities of practical interest, in any 

relevant location among those shown in Figure 1, such as: product temperatures, glass transition temperatures 
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important for the product stability during drying, partial vapour and neutral gas pressures, average residual 

moisture content important for assessing the end of the drying cycle, evolution of the product mass in a vial, etc. 

Gradual transition between the primary and the secondary drying stages 

In practice, the freeze-drying conditions are not perfectly homogeneous (17). Lack of homogeneity appears both 

among vials, e.g. due to position on the shelf, wall chamber radiation, unequal vial filling etc. as well as inside 

each vial, e.g. due to heat conduction through vial walls, lack of planarity of the vial bottom, etc. At the scale of 

the freeze-dryer, the transition between the primary (I) and the secondary (II) drying stages appears gradual. 

According to assumption A4, this gradual “transition function” was defined as the ratio of the remaining 

sublimation area to the total product cross area: 
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A
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During the transition between stages, both models for the primary and the secondary drying are run in parallel, 

each with its own product cross section area: 
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The reported global values of the relevant variables are averages, weighted according to the transition function: 
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Similar weightings are used for the other state and output variables. 

The transition function was defined empirically as: 
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Eq. 9 says that the primary drying is the only phenomenon as long as the sublimation front position FrontZ  is 

above some critical transition value TransZ . Below this value, the relative importance of secondary drying 

increases until the sublimation front reaches the vial bottom ( ), when it becomes the only phenomenon. 

The value of 

0=FrontZ

TransZ is a measure of the smoothness of the transition. The larger TransZ , the longer the transition 

between the primary and the secondary drying. 
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Models of the product properties relevant for cycle optimisation 

Glass transition temperature 

An important condition for product stability in the frozen layer during freeze-drying is absence of collapse (5). 

The product temperature must remain below the collapse temperature in any point during the whole freeze-

drying cycle. The collapse temperature is usually about 2°C higher than the glass transition temperature of the 

freeze-concentrated phase  for formulations that remains amorphous during freezing (5). The stability of 

the product in the dry layer is insured if the product temperature is maintained below the glass transition 

temperature (18), which strongly depends on the residual moisture content. The condition on the glass transition 

temperature was thus retained as the main product stability criterion for both the frozen and the dry layers. The 

evolution of the glass transition temperature was modelled by the classical Gordon-Taylor equation, slightly 

modified to take into account the frozen layer: 

Frozen
GlassΘ

 
⎭
⎬
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⎩
⎨
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+−
Θ+Θ−

Θ=Θ
CqC
CqCC

Gordon
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GlassGordon
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GlassGlass )1(
)1(,max)(  (10) 

where C is the moisture content,  and are the glass transition temperatures of the perfectly dry product 

and of the ice respectively and  is the Gordon-Taylor shape coefficient. For each product formulation, the 

Gordon-Taylor coefficient was determined by fitting the considered equation to experimental glass transition 

data of the samples equilibrated under various relative humidity conditions (Figure 2). 

Dry
GlassΘ Ice

GlassΘ

Gordonq

Sorption isotherm 

A quality requirement on the final freeze-dried product is to reach a pre-specified residual moisture content, both 

under- and over-drying being damageable. Moreover, the glass transition temperature in the dry layer strongly 

depends on the moisture content. Both these conditions require the modelling of the water desorption process in 

the dry layer, which in turn requires the knowledge of the sorption isotherm and of the desorption kinetic. 

None of the commonly used models (Freundlich, Langmuir, BET, GAB) was found to fit experimental sorption 

isotherm data adequately for the considered formulations. The fit was particularly inappropriate in the region of 

small water activities (less than 0.2) leading to clearly wrong predictions of the final product moisture content. A 

piecewise linear model was found to give satisfactory results: 

 ( ){ }{ }21,max,min)( SorpwSorpMinMaxwEqu qaqCCaC −=  (11) 
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Here  is the equilibrium moisture content,  the water activity, and the other parameters are constants 

depending on the product formulation. The maximum adsorbed moisture content  was determined from the 

glass transition temperature of the frozen product (Figure 2). The fit of this model to the experimental data at 

25°C is shown in Figure 3. 

EquC wa

MaxC

Desorption kinetic 

The calculation of the residual moisture content evolution in time requires the knowledge of the desorption time 

constant in addition to the equilibrium moisture content (sorption isotherm). The following exponential 

desorption kinetic model was used, reflecting a first-order rate desorption mechanism (15): 

 ( ) Des

t

EquIniEqu eCCCtC τ
−

−+=)(  (12) 

Here Desτ  is the desorption time constant. The fit of this model to the experimental data is shown in Figure 4. 

RESULTS AND DISCUSSION 

Model validation 

The dynamic freeze-drying model was validated based the on-line measurements of product temperature and 

partial vapour pressure in the chamber. Additionally, the final average moisture content of the product was 

checked against the simulated value. The product-specific properties are listed in Table 1. The characteristics of 

the freeze-drying apparatus and other product-independent parameters are given in Table 2. The results of the 

model validation are shown in Figure 5 for the two extreme couples of operating conditions considered in the 

experimental design: shelf temperature of -25°C with total chamber pressure of 10 Pa, and shelf temperature of 

+25°C with total chamber pressure of 34 Pa during primary drying. The agreement between measurements and 

model predictions is quite satisfactory, taking into account the accuracy of the measurements and the 

repeatability of the experiments: ± 1°C for product temperature, ± 2 Pa for vapour pressure and ± 0.01 kg/kg for 

the final moisture content. 

Freeze-drying cycle optimisation 

After the validation step, the model was used for freeze-drying cycle optimization by interactive selection of the 

operating condition profiles and simultaneous monitoring of the critical product quality parameters. In order to 
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simplify comparison between the S and PS product formulations, most operating conditions were fixed to their 

usual values (condenser temperature to -65°C, chamber temperature to +25°C, total chamber pressure to 10 Pa, 

final average moisture content target to 0.03 kg/kg) and the only optimized operating condition was the shelf 

temperature profile.  

In all cases, increasing freeze-drying productivity requires increasing the shelf temperature as much as possible, 

while still satisfying the product stability requirement, i.e. product temperature below the glass transition 

temperature. Operating the process close to the highest temperature limit is considered beneficial not only for 

process productivity but also for the distributions of temperature and residual moisture at the end of the drying 

(19). During the interactive optimisation process, product temperatures are monitored at the bottom of the vial, at 

the sublimation front and at the top of the product. Glass transition temperatures are computed and displayed for 

the same points. During primary drying, the limiting factor is usually the bottom temperature. The shelf 

temperature has to be decreased in time, because the self-cooling effect due to ice sublimation decreases when 

the mass transfer resistance through the dry layer increases with time. A screenshot of the software tool during 

the interactive optimisation of the shelf temperature profile is shown in Figure 6. 

The top temperature may become limiting, however, if the heat transfer from the chamber is high and the heat 

conductivity of the dry layer is low, despite the fact that the glass transition temperature at the top increases 

rapidly when the moisture content of the product decreases. During the secondary drying, the moisture content of 

the whole product decreases, the glass transition temperature increases everywhere and the shelf temperature can 

be increased significantly up to a limit imposed by the thermal sensitivity of the biological product. 

Variations of the total chamber pressure profile were investigated and were found to have little effect on the 

product temperature and on the cycle duration. The chamber pressure mainly influences the heat transfer 

between the shelf and the vial, and similar effect can be easily obtained by manipulating the shelf temperature. 

Thus maintaining a low pressure and controlling the heat flux by the shelf temperature appears as a good policy 

(20, 21). It should be noted, however, that in the considered pilot-scale freeze-dryer a significant fraction of the 

transferred heat (up to 50% at low shelf temperatures) comes from the chamber, mainly by radiation. This need 

not to be the case in an industrial-scale dryer, when the heat transfer between the shelf and the vials through gas 

conduction may be dominant ant the pressure effect would be stronger. 

The best achievable control policies in terms of cycle duration for the two considered product formulations, S 

and PS, are compared in Table 3. As expected, the PS formulation allows higher shelf temperatures because of 

its higher glass transition temperature, and hence faster heat transfer resulting in a shorter freeze-drying cycle. In 
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the considered case, the cycle duration is shorter by 12 hours (33%) which is significant for process scheduling 

and designing the freeze-drying capacity on an industrial scale. 

CONCLUSION 

A user-friendly software for interactive selection of the operating conditions in a freeze-drying process was 

written. It was based on a validated dynamic model of the freeze-drying process, allowing very quick and 

accurate simulations of the primary and secondary drying stages, as well as of the gradual transition between the 

primary and secondary drying stages. Process productivity and product quality indicators at critical points were 

monitored simultaneously during the cycle optimisation process. It was shown that the optimal operating policy 

as well as the achievable cycle duration strongly depend on the physical properties of the product formulation, 

namely the glass transition temperature, the sorption isotherm and the desorption kinetic.  
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APPENDIX 1. TIME CONSTANTS FOR THE HEAT AND MASS TRANSFER 

The considered freeze-drying model assumes quasi steady state heat transfer in the frozen and in the dry product 

regions, as well as quasi steady state mass transfer in the gas phase of the dry region (Assumption A2). In order 

to justify these assumptions, the order of magnitude of the involved time constants is estimated below, by 

considering full dynamic heat and mass balance equations. These equations are based on a lumped parameter 

approximation (as opposed to a distributed parameter approach, involving partial differential equations), but are 

sufficient to show that the considered dynamics can be safely neglected compared to the typical duration of a 

freeze-drying process (100000 s). 

Heat transfer dynamics in the frozen product layer 

The dynamic heat balance considers heat accumulation in the frozen layer (resulting in temperature variation) 

and heat fluxes from the shelf and towards the sublimation front: 

 ( ) )()( FrontFrozenFrontFrozenFrozenShelfFrozenShelf
Frozen

DryDryIceIce HH
dt

dcMcM Θ−Θ−Θ−Θ=
Θ

+  (13) 

The heat capacity of the frozen layer takes into account the presence of ice and dry matter and depends on the 

sublimation front position. In the lumped parameter approximation, the equivalent heat transfer coefficient 

between the shelf and the frozen layer includes heat transfer between the shelf and the product bottom and heat 

conduction through one half of the frozen layer. Heat transfer between the frozen layer and the sublimation front 

consists in heat conduction through the other half of the frozen layer. The dynamic heat balance can be written in 

the following form: 

 )(1)(1 FrontFrozen
FrontFrozen

FrozenShelf
FrozenShelf

Frozen

dt
d

Θ−Θ−Θ−Θ=
Θ

ΘΘ ττ
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Substituting typical numerical values, e.g. ,  etc., one obtains the time constants 

 and , indicating that the thermal equilibrium between the shelf and the 

frozen layer is almost achieved in a several minutes, and between the frozen layer and the sublimation front in a 

few seconds. 

2/TotFront ZZ = Pa20=Chamb
tP

s564=Θ
FrozenShelfτ s37.4=Θ

FrontFrozenτ
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Heat transfer dynamics in the dry product layer 

A dynamic heat balance for the dry product layer was constructed in a similar way. The heat capacity of the dry 

layer includes that of the dry product and of the residual moisture and is much smaller than that of the frozen 

layer. In the lumped parameter formulation, the equivalent heat transfer coefficient between the sublimation 

front ant the dry layer is based on heat conduction through one half of the dry layer. The heat transfer between 

the dry layer and the chamber includes conduction through the other half of the dry layer and transfer between 

the product top and the chamber. With typical numerical values, the time constants are  and 

. Thermal equilibrium of the dry product layer is thus achieved in less than one minute. 

s05.1=Θ
DryFrontτ

s35.8=Θ
ChambDryτ

Mass transfer dynamics in the gaseous phase of the dry product layer 

A dynamic mass balance was established for the gaseous phase of the dry product layer. Vapour accumulation in 

the dry volume was expressed using the perfect gas law. With the lumped parameter formulation, the equivalent 

mass transfer coefficient between the dry layer and the sublimation front takes into account the transfer 

resistance of one half of the layer. The mass transfer coefficient between the dry layer and the chamber includes 

transfer resistance through the other half of the layer and between the product top and the chamber. In order to 

establish the time constants, the dynamic balance was rewritten in the following form: 
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wChambDry
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wDryFront

P

Dry
w PPPP
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−−−=
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 (15) 

With typical numerical values, one gets  and . The vapour pressure in the 

dry product layer reaches quasi steady state quite quickly (milliseconds), as physically expected. 

ms9.3=DryFront
Pτ ms2.7=ChambDry

Pτ
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APPENDIX 2. HEAT AND MASS TRANSFER MODEL EQUATIONS 
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Nomenclature 

Symbol Units Significance 

A m2 Product cross area 

aw Pa / Pa Water activity 

C kg / kg Moisture content, wet basis 

D kg / m3 Density 

F kg / s Mass flux 

H W / K Heat transfer coefficient 

h W / (K m) Heat conductivity 

h W / (K m2) Unitary heat transfer coefficient 

K kg / (s Pa) Mass transfer coefficient 

k kg / (s Pa m) Mass conductivity 

k kg / (s Pa m2) Unitary mass transfer coefficient 

LSubl J / kg  Specific sublimation heat 

M kg Mass for one vial 

N  Number 

P Pa Pressure 

Q W Heat flux 

q  Empirical model coefficient 

R m Radius 

Z m Position (height) in the product layer (origin = bottom) 

Θ °C Temperature 

τ s Time constant 
 

Upper indices  

Ave  Average 

Bottom  Product bottom 

Chamb  Chamber 

Cond  Condenser 

Dry  Dry product layer 

Front  Sublimation front 

Frozen  Frozen product layer 

Ice  Ice 

Sat  Saturation 

Shelf  Temperature controlled shelf 

Top  Product top 

Tot  Total 

Vial  Product vial 
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Lower indices  

(I)  Primary drying stage 

(II)  Secondary drying stage 

Coll  Collapse 

Cond  Conduction 

Contact  By contact 

Des  Desorption 

Equ  Equilibrium 

gas  Dominant gas composition: either water vapour (H2O) or nitrogen (N2) 

Glass  Glass transition 

Gordon  Gordon-Taylor formula for glass transition temperature 

Ini  Initial 

Max  Maximum 

Min  Minimum 

n  Neutral gas (nitrogen) 

Rad  By radiation 

Sorp  Sorption isotherm 

t  Total 

Trans  Transition; either from primary to secondary drying or from low pressure 
(molecular) to high pressure regime 

w  Water vapour 

Walls  Conduction through vial walls 
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Table 1. Formulation-specific model parameters 

 

 Glass transition  Sorption and desorption  Mass 
transfer 

 Frozen
GlassΘ  Dry

GlassΘ  Gordonq   
MinC  MaxC  1Sorpq  2Sorpq  Desτ   TopFrontk  

 °C °C   kg/kg kg/kg   s  kg/(s m Pa) 

S -34 65 5.4  0 0.153 0.177 -0.026 12600  12⋅10-9

PS -28 124 8.5  0.0167 0.144 0.459 0.188 10600  12⋅10-9

 

Table 2. Formulation-independent model parameters 

Vials and filling  Ice properties 

VialN  VialR  DryM  Ice
IniM  TotZ  TransZ   Ice

GlassΘ  IceD  SublL  FrontBottomh  

 m kg kg m m  °C kg/m3 J/kg W/(m K) 

213 7.12⋅10−3 0.05⋅10−3 0.95⋅10−3 6.82⋅10−3 1.70⋅10−3  -135 920 2.83⋅106 2.4 

 

Mass transfer  Heat transfer between shelf and product bottom 

TopFrontk  ChambTopk  CondChambK
 

 BottomShelf
RadContacth +

 

BottomShelf
OHq

2

 

BottomShelf
Nq

2

BottomShelf
Condh  BottomShelf

TransP
 

kg/(s m Pa) kg/(s m2 Pa) kg/(s Pa)  W/(m2 K)   W/(m2 K Pa) Pa 

1.2⋅10−8 8⋅10−6 5⋅10−7  1 1 0.625 0.6 100 

 

Heat transfer between sublimation front and product top  Heat transfer between 
product top and chamber 

TopFront
RadWallsh +  TopFront

OHq
2

 TopFront
Nq

2
 TopFront

Condh  TopFront
TransP   ChambToph  

W/(m K)   W/(m K Pa) Pa  W/(m2 K) 

50⋅10−3 1 0.813 327⋅10−6 100  5 
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Table 3. Optimisation results for the shelf temperature profile 

Formulation Initial (maximum) shelf 
temperature in primary 

drying 

Final (minimum) shelf 
temperature in primary 

drying 

Total cycle duration 

 °C °C h 

S -29 -48 36 

PS +12 -30 24 
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Figure 1. Schematic representation of heat and mass transfers between the characteristic points in the product 

and in the freeze-dryer. 
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Figure 2. Glass transition temperature models. Measured values in dry product (o), measured value in frozen 

product (− ⋅ −), Gordon-Taylor model (−), maximum moisture content of the freeze-concentrated product (⋅⋅⋅⋅⋅). 
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Figure 3. Sorption isotherm models. Measured values (o), piecewise linear model (−), maximum moisture 

content of the freeze-concentrated product (⋅⋅⋅⋅⋅). 
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Figure 4. Desorption kinetics. Measured values (o), exponential first order rate model (−). 
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Figure 5. Dynamic model validation. Formulation: PS. A: Shelf temperature at -25°C and total chamber pressure 

at 10 Pa during primary drying. B: Shelf temperature at +25°C and total chamber pressure at 34 Pa during 

primary drying. Measured values (o) and model predictions (−). 
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Figure 6. Screenshot of the freeze-drying cycle optimisation tool. Interactive selection of the operating 

conditions for the PS formulation. 
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